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Autonomous Machines Era
• Autonomous Machines on the Rise

Self-Driving Cars Drones Legged Robot AR/VR

Package Delivery Search & Rescue Agriculture Manufacture Space

• Wide Application Potential
Embodied AI Robot
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Autonomous Machines (Agentic System)
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Current Neural Networks in Our Daily Life

Image Recognition Speech Recognition Language Translation Autonomous Vehicle

Medical Diagnosis Financial Services Recommendation Systems ChatGPT
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But… Is That Enough?

Complex Question Answering
NN accuracy: 50%

Interactive Learning

Abstract Reasoning Automated Theorem Proving

Ethical Decision Making Competitive Programming

NN accuracy: 53% NN accuracy: 0%

NN accuracy: 8.7%NN accuracy: 65%NN accuracy: 71%
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What is Neuro-Symbolic AI?

Neural SymbolicRecognition
Flexibility
Scalability

Explainability
Knowledge

Data Efficient

Towards Cognitive and Trustworthy AI Systems
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Neuro-Symbolic AI Example: Visual Reasoning

[CLEVR dataset]
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Neuro-Symbolic AI Example: Visual Reasoning
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Neuro-Symbolic AI Example: Visual Reasoning

Visual Perception Logical Reasoning

Question Understanding

[CLEVR dataset]
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Other Examples

Eval on 30 Int. Math Olympics (IMO) problems:
• GPT-4:
• AlphaGeometry (Neuro-Symbolic):
• Human Gold Medalist:

0/30
25/30
26/30

LLM: construct generation
Symbolic: deductive reasoning

Trinh et al, “Solving Olympiad Geometry without Human Demonstrations”, Nature 2024
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Relationship to Human Minds

Daniel Kahneman 
(1934-2024) 
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However.. From Computing Perspective
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However.. From Computing Perspective
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What’s the system implications of neuro-symbolic
workloads?

Research Question:

25

Why neuro-symbolic workloads are inefficient on
off-the-shelf hardware?

[@HPCA’25]
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Workload Profiling – Runtime

26

Neuro-symbolic workload exhibits high latency compared to neural models;
Symbolic component is processed inefficiently on off-the-shelf CPU/GPUs
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Workload Profiling – Runtime

27

Neuro-symbolic workload exhibits high latency compared to neural models;
Symbolic component is executed inefficiently across off-the-shelf CPU/GPUs
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Workload Profiling – Memory & Operator

28

Symbolic components exhibit large memory footprint;
Symbolic operations are dominated by vector-symbolic circular convolutions
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Workload Profiling – Memory & Operator

29

Symbolic components exhibit large memory footprint;
Symbolic operations are dominated by vector-symbolic circular convolutions

(e)
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Workload Profiling – Kernel Behavior

Why system Inefficiency?

Neuro Kernel Symbolic Kernel

segmm_nn relu_nn vectorized elementwise

Runtime Percentage (%)

Compute Throughput (%)

ALU Utilization (%)

L1 Cache Hit Rate (%)

L2 Cache Hit Rate (%)

L1 Cache Throughput (%)

L2 Cache Throughput (%)

DRAM BW Utilization (%)
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Workload Profiling – Roofline Analysis

Symbolic exhibits low ALU utilization, low cache hit rate, massive data transfer, low data
reuse, resulting in hardware underutilization and inefficiency

Neuro Kernel Symbolic Kernel

segmm_nn relu_nn vectorized elementwise

Runtime Percentage (%) 18.2 10.4 37.5 12.4

Compute Throughput (%) 95.1 92.9 3.0 2.3

ALU Utilization (%) 90.1 48.3 5.9 4.5

L1 Cache Hit Rate (%) 1.6 51.6 29.5 33.3

L2 Cache Hit Rate (%) 86.8 65.5 48.6 34.3

L1 Cache Throughput (%) 79.7 82.6 28.4 10.8

L2 Cache Throughput (%) 19.2 17.5 29.8 22.8

DRAM BW Utilization (%) 14.9 24.2 90.9 78.4
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How to enhance the efficiency and scalability
of neuro-symbolic systems?

Research Question:
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Hardware Architecture Overview
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Reconfigurable Neuro/Symbolic PE
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Micro-architecture of
reconfigurable neuro/symbolic PE

Reconfigurable neuro/symbolic PE incurs low area overhead compared to systolic array PE;
Reconfigurable neuro/symbolic PE has three operation modes: load, neuro, symbolic
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Reconfigurable neuro/symbolic PE incurs low area overhead compared to systolic array PE;
Reconfigurable neuro/symbolic PE has three operation modes: load, neuro, symbolic
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Reconfigurable neuro/symbolic PE incurs low area overhead compared to systolic array PE;
The PE is reconfigurable for three operation modes: load, neuro, symbolic
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What is Circular Convolution?
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Bubble Streaming Dataflow
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For symbolic operation:
• TPU-like array suffers from low

parallelism & high memory access;
• Bubble streaming dataflow

improve parallelism, arithmetic
intensity, and data reuse.
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Bubble Streaming Dataflow
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Bubble Streaming Dataflow
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Bubble streaming dataflow flow improve parallelism, arithmetic intensity, and data reuse
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Vector-Symbolic Circular Convolution Example (CircConv #1): 
(A1, A2, A3)     (B1, B2, B3) = (A1B1+A2B2+A3B3, A1B3+A2B1+A3B2, A1B2+A2B3+A2B1)
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System Optimization - Adaptive Scheduling
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System Optimization - Adaptive Scheduling

52

Adaptive scheduling enables interleaved and reconfigurable neuro/symbolic processing
with partitioned array, improving parallelism, latency, efficiency, and utilization
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System Optimization - Adaptive Scheduling
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Adaptive scheduling enables interleaved and reconfigurable neuro/symbolic processing
with partitioned array, improving parallelism, latency, efficiency, and utilization
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Adaptive scheduling enables interleaved and reconfigurable neuro/symbolic processing
with partitioned array, improving parallelism, latency, efficiency, and utilization
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System Optimization - Adaptive Scheduling
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Adaptive scheduling enables interleaved and reconfigurable neuro/symbolic processing
with partitioned array, improving parallelism, latency, efficiency, and utilization
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Our Methodology
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4x - 90x speedup
compared to CPU/GPU

Symbolic operation:
75x speedup to TPU
18x speedup to GPU
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Key Observations:

Compared with systolic arrays that only support neural, our 
design provides reconfigurable support for neural and 

symbolic operations with only 4.8% area overhead. 

61

Our design achieves 0.3s latency per cognition task, with
1.18W power consumption.
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How to automate this neuro-symbolic
architecture design process?

Research Question:

62

[@DAC’25]
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Automated End-to-End FPGA Deployment

63

Frontend: dataflow arch generator
- Step 1: Extract execution trace
- Step 2: Generate dataflow graph
- Step 3: HW-mapping co-exploration

Backend: FPGA deployment
- Step 1: Pre-define hardware template
- Step 2: Configure design parameters
- Step 3: Synthesize and compile RTL
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Frontend – Dataflow architecture Generation 
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Extract workload execution trace
Generate dataflow graph & 

two-stage HW-mapping co-exploration



Backend – FPGA Deployment
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Pre-defined architecture template Dataflow & configure design parameters



Summary
• Neuro-symbolic AI is a compositional method to

improve agent reasoning and interpretability.
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Goals Challenges Methodology
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Efficient factorization 

Key Idea-2:
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for neural & symbolic

Key Idea-3:
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tasks, scales, complexities, 
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Target: efficient and 
scalable human-fluid 

intelligence and cognition
Efficiency, Performance 

Scalability, Interpretability 
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ty

Neurosymbolic AI

+

Architecture
Reconfigurable 

PE

Bubble-Streaming 
Dataflow

Spatial-Temporal 
Mapping

Scaling Up/Out 

Adaptive 
Scheduling

• In these work,
• Model: Characterize workload implications
• Architecture: Reconfigurable neuro-symbolic PE,

dataflow, mapping
• System: adaptive workload scheduling
• FPGA: automated end-to-end FPGA deployment
• ASIC SoC: programmable neuro-symbolic SoC
• Achieve efficient and scalable neuro-symbolic

execution across agentic reasoning tasks

Zishen Wan | School of ECE | Georgia Institute of TechnologyCSLSC @ UIUC



Autonomous Machines (Agentic System)
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Hardware Silicon

Architecture

System

Application

My Research:
Cross-Layer Approach

Safety-Critical
Reliability

Design 
Scalability

Real-Time 
Performance

Energy 
Efficiency

Human-like reasoning
Trustworthy decision making

Human-agent interaction

Cognition Capability
Requirements

Perception, Localization,
Mapping, Planning, Control,
Learning-based navigation

Autonomy Capability



Can autonomous agents collaboratively conduct 
complex long-horizon multi-objective tasks? 

Research Question:

68

[ASPLOS’25]

What’s system characteristics of embodied agents? 
How to improve system efficiency?   
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Embodied Autonomous Agent System

69

• Task: long-horizon multi-objective task and motion planning
• Examples: household tasks, transport objects, make meal, set up table, cook…
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Demo: Long-Horizon Multi-Objective Planning
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Embodied AI Agent Workflow
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Embodied AI Agent System Characterization
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Goals Challenges Methodology

Latency and Energy

This Work 
(ReCA)

Deployment

Challenge-2:
Low cooperative efficiency 
& memory inconsistency

Challenge-3:
Limited scalability with 
large number of agents

Key Idea-1:
Local LLM & Planning-

guided multi-step execution

Key Idea-2:
Dual memory structure: long-
term and short-term memory

Key Idea-3:
Hierarchical centralized/

decentralized coop. planning

Evaluate: across 
scenarios, 
number of 

agents, tasks, 
environments, etc 

Target: real-time 
and efficient 
cooperative 

embodied agents
Efficiency, Performance 

Scalability

Lo
ng

-H
or

iz
on

 T
as

k 
Pe

rf
or

m
an

ce

Hardware
level

Algorithm
level

System
level

Challenge-4:
Sensitivity of low-level 

planning and execution

Key Idea-4:
Heterogeneous A-star 

subsystem and GPU subsystem

Challenge-1:
Long planning & 

communication latency

High-level planning Low-level execution

Task time: 18min $$$ Task time: 6min  $

Coop. efficiency: 66% Coop. efficiency: 83%

Success rate: 71% Success rate: 94%

Action latency: 1sAction latency: 8s

Configurations: 
system & 
hardware
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cooperative embodied AI agent systems
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Evaluation Results
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Autonomous Machines (Agentic System)
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Hardware Silicon

Architecture

System

Application

My Research:
Cross-Layer Approach

Safety-Critical
Reliability

Design 
Scalability

Real-Time 
Performance

Energy 
Efficiency

Human-like reasoning
Trustworthy decision making

Human-agent interaction

Cognition Capability
Requirements

Perception, Localization,
Mapping, Planning, Control,
Learning-based navigation

Autonomy Capability



How can we improve robotics autonomy’s real-time
performance and energy efficiency?

Research Question:

81Zishen Wan | School of ECE | Georgia Institute of TechnologyCSLSC @ UIUC

[@CICC’22]



Autonomy: Localization and Mapping

82

Software Optimization
(e.g., quantization, sparsity)

Lower processor
operating voltage

Hardware Optimization
(e.g., optimized dataflow,

compute unit)

Localization

Mapping

Example: Simultaneous Localization and Mapping (SLAM)
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Key Domain-Specific Arch Design Techniques

83

IMU

720 kb 175.97 kb

Symmetry

Symmetry

+
Vision

Co-
observation

4.1x reduction

S matrix  

6

15

Data reuse and dataflow

Memory layout, symmetry, sparsity

Time-multiplexing and pipelining

Runtime reconfigurability and clock gating
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Key Takeaways:

Domain-specific co-design and design-technology co-
optimization unlock system performance and efficiency

84

Autonomous machines need spatial-aware computing that
consider environment dynamics and heterogeneity
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Low-Voltage Processing Reduces Energy

Software Optimization
(e.g., quantization, sparsity)

Lower processor
operating voltage

Hardware Optimization
(e.g., optimized dataflow,
specialized compute unit)

SRAM Access Energy vs. Operating Voltage
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Data measured from 14nm FinFET SRAM chips

Lower operating voltage
quadratically reduces energy
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Low-Voltage Processing Bring Variations

Software Optimization
(e.g., quantization, sparsity)

Lower processor
operating voltage

Hardware Optimization
(e.g., optimized dataflow,
specialized compute unit)
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Data measured from 14nm FinFET SRAM chips

Lower operating voltage bring
chip variations/errors
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How can we safety achieve
aggressive energy-savings
under low-voltage for
autonomous systems?

Research Question:

[@ASPLOS’24a]
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MulBERRY: Low-Vol Efficient Auto. Machines
• Design Objective: Aggressive energy-savings under low-voltage operation, 

yet computationally-resilient for swarm autonomous drone systems.
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• Design Principle: Cross-layer swarm robust learning framework, integrates
algorithm-level error-aware learning with system-level collaborative 
optimization and hardware-level thermal-voltage adaptive adjustment.

Success Rate

Processing

Flight Energy
#Missions
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Energy
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Server Para.
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injected random 
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     Payload 
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Learn with actual low-voltage bit-flips
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4

Offline Learning On-Device Robust Learning Improvements
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Evaluation: Efficiency Improve Across Scenarios

MulBERRY is adaptive across drones, hardware chips, environments, agent numbers, tasks,
and consistently improves mission efficiency
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Crazyflie UAV DJI Tello UAV
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Key Takeaways:

Low-voltage operation leads to energy savings in both 
compute and end-to-end mission energy 
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Optimizing autonomous system cyber components (compute)
impacts its physical performance

Zishen Wan | School of ECE | Georgia Institute of TechnologyCSLSC @ UIUC



Robot Applications

Localization Planning Control

Robot Algorithms

sweeper Manipulator Vehicle Drone

Solution 1 Solution 2

Programmable Accelerators Dedicated Accelerators
Strength: High generality
Weakness: Less effective in 
exploiting specific sparse structures 

Strength: High performance
Weakness: High NRE costs; Stacking 
accelerators requires large chip area

Design Accelerators for Each Algorithm?
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Design Accelerators for Each Algorithm?

Solution 1 Solution 2

Programmable Accelerators Dedicated Accelerators
Strength: High generality
Weakness: Less effective in 
exploiting specific sparse structures 

Strength: High performance
Weakness: High NRE costs; Stacking 
accelerators requires large chip area

Non-recurring engineering (NRE) cost 

Pe
rf

or
m

an
ce

Solution 1

Solution 2
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How can we improve robotics domain-specific
accelerators design adaptability and scalability?

Research Question:
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[@ASPLOS’24b]
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Non-recurring engineering (NRE) cost 

Pe
rf

or
m
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ce

Solution 1

Solution 2
ORIANNA

Solution 1 Solution 2
Programmable Accelerators Dedicated Accelerators

Strength: High generality
Weakness: Less effective in 
exploiting specific sparse structures 

Strength: High performance
Weakness: High NRE costs; Stacking 
accelerators requires large chip area

Orianna: Accelerator Generation Framework 
for Optimization-Based Robotic Applications
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ORIANNA
Software

ORIANNA
Accelerator

Use factor graph as 
unified abstraction;
Build flexible factor 

graph software library 

Compiler transforms diverse 
algorithms into unified 

factor graph instructions
and data flow graph

Different robotic algorithms 
can be executed concurrently 

on the Factor Graph 
Accelerator

ORIANNA
Compiler

Orianna Framework

Performance Generality & Scalability Resource Utilization
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Localization Planning Control

Mobile Robot
Variable dim 3 6 3, 2

Factor LiDAR 
GPS 

Collision-free 
Smooth Dynamics

Manipulator Variable dim 2 4 2, 2
Auto Vehicle Variable dim 3 6 5, 2
Quadrotor Variable dim 6 12 12, 5

Evaluation - Benchmark
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Hardware Setup Clock Frequency

Xilinx ZC706 FPGA 167 MHz

Baseline Detailed Information Short Title

Processors

High-end desktop CPU 16-core Intel 11th i7-11700 
CPU Intel

Lower power mobile CPU 4-core ARM Cortex-A57 ARM

Embedded GPU 256-core NVIDIA Maxwell 
GPU GPU

Accelerators
Accelerator for dense matrix operations

Directly accelerates matrix 
operations used in 

optimization problems
VANILLA-HLS

Accelerator utilizing factor graphs to 
accelerate individual algorithms

Simple integration of three 
accelerators STACK
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Evaluation - Setup and Baseline
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ORIANNA demonstrates a signicant speedup of 53.5× over ARM, 6.5× over 
Intel and 28.6× over GPU.
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Evaluation - Performance vs Processor
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Large Design Space

98Zishen Wan | School of ECE | Georgia Institute of TechnologyCSLSC @ UIUC



Large Design Space
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Large Design Space

100

How can we design DSAs to
handle the increasing levels

of system complexity?

Research Question:
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Our Solution: AutoPilot
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[@MICRO’23]
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Our Solution: AutoPilot
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[@MICRO’23]

Zishen Wan | School of ECE | Georgia Institute of TechnologyCSLSC @ UIUC



AutoPilot Framework
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Automating SoC Design Space Exploration for Size, Weight, and Power Constrained
Autonomous UAVs

[@MICRO’23]
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Specification
• Success Rate >90
• Sensor Frame rate: [30, 60] FPS
• TDP: [1-10] Watt
• Thrust-to-Weight Ratio: [1.5-3]
• Optimization Target: Velocity

Sensor configuration
• Frame rate
• RGB
• LIDAR
• …

Compute configuration
• TDP
• Latency
• Throughput
• …

System configuration
• Weight
• Thrust
• …

(Domain-specific)
Input the specification

Specification
Phase
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(Domain-agnostic)
Algorithm-Hardware

Co-Design Optimization

Specification
Phase

Optimization
Phase
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Specification
Phase

Optimization
Phase

Mapping
Phase

(Domain-specific)
Cyber-Physical

Mapping

[@ISPASS’23]

[@CAL’20]
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Mapping
Phase
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Specification
Phase

Optimization
Phase

Deployment
Phase

Mini UAV Micro UAV Nano UAV
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RobotPerf

• A Benchmarking Suite for Evaluating Robotics Computing Performance

“If You Can’t Measure It, You Can’t Improve it” - Peter Drucker

Collaborative efforts across 10+ universities & industries

Perception

Localization

Control

Navigation

Manipulation(your hardware)

[@ICRA’24]
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Key Takeaways:

Prioritizing system morphology can lead to greater domain-
specific architecture adaptability and efficiency
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Focusing on fragments in isolation leads to overlooking
interdependencies and system-wide implications
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Autonomous Machines (Agentic System)

110

Perception, Localization,
Mapping, Planning, Control,
Learning-based navigation

Hardware Silicon

Architecture

System

Application

My Research:
Cross-Layer Approach

Safety-Critical
Reliability

Design 
Scalability

Real-Time 
Performance

Energy 
Efficiency

Autonomy Capability

Human-like reasoning
Trustworthy decision making

Human-agent interaction

Cognition Capability
Requirements
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Summary: Core Research Methodology
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01. Application Discovery: Deeply understanding an application
through deep characterization to identify and address the
underlying problem space.

02. Systems Thinking: End-to-end design of complex systems,
where every element is considered as interconnected and part of
a larger, integrated whole.

03. Co-Design Intelligence: Developing software, architecture,
and silicon prototype that incorporate insights from application
discovery and systems thinking to automatically design solutions.

Application
Discovery

Systems
Thinking

Co-Design
Intelligence
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Vision for Future
90% basic functions
10% end-user applications

10% basic functions
90% end-user applications

90% basic autonomy functions
10% end-user applications

10% basic functions (perception/planning/control)
90% AGI (reasoning, cognition, human-AI)
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Our research

software-system-hardware
co-design intelligence
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