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Autonomous Machines Era

« Autonomous Machines on the Rise

Self-Driving Cars Drones Legged Robot AR/VR Embod/ed Al Robot

- Wide Appllcatlon Potentlal

Package Delivery Search & Rescue Agriculture Manufacture ._ Space
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Current Neural Networks in Our Daily Life
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Autonomous Vehicle

WHATIS A
RECOMMENDER SYSTEM

Chat GPT

How can | help you today?

Medical Diagnosis Financial Services Recommendation Systems ChatGPT
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But... Is That Enough?

get 1 block? (2)

Complex Question Answering

NN accuracy: 50%

Interactive Learning
NN accuracy: 71%

(i) Remove all gray spheres. How many
spheres are there? (3), (ii) Take away 3 QO
cubes. How many objects are there? (7), —

(iii) How many blocks must be removed to , .} ‘ o []
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o
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Abstract Reasoning
NN accuracy: 53%

Scenario

Imagine that a stranger will give Hank one thousand dol-
lars to break all the windows in his neighbor’s house
without his neighbor’s permission. Hank carries out the
stranger’s request.

Imagine that there are five people who are waiting in line
to use a single-occupancy bathroom at a concert venue.
Someone at the back of the line needs to throw up imme-
diately. That person skips to the front of the line instead
of waiting in the back.

At a summer camp, there is a pool. Right next to the pool
is a tent where the kids at the camp have art class. The
camp made a rule that there would be no cannonballing in
the pool so that the art wouldn’t get ruined by the splashing
water. Today, there is a bee attacking this kid, and she
needs to jump into the water quickly. This kid cannonballs .
into the pool.

Ethical Decision Makin
NN accuracy: 65%

IMO 2015 P3

“Let ABC be an acute triangle. Let
(O) be its circumcircle, H its
orthocenter, and F the foot of the
altitude from A. Let M be the
midpoint of BC. Let Q be the point
on (O) such that QH L QA and let K
be the point on (O) such that KH L
KQ. Prove that the circumcircles
(O,) and (O,) of triangles FKM and
KQH are tangent to each other.”

Automated Theorem Proving
NN accuracy: 0%

Farmer John has N cows (2 < N < 10°). Each cow has a breed that is either
Guernsey or Holstein. As is often the case, the cows are standing in a line,
numbered 1--- N in this order.

Over the course of the day, each cow writes down a list of cows. Specifically,
cow ’s list contains the range of cows starting with herself (cow i) up to and
including cow E; (i < E; < N).

FJ has recently discovered that each breed of cow has exactly one distinct leader.
FJ does not know who the leaders are, but he knows that each leader must have
a list that includes all the cows of their breed, or the other breed’s leader (or
both).

Help FJ count the number of pairs of cows that could be leaders. It is guaranteed

that there is at least one possible pair. T
%' Problem

Competitive Programming
NN accuracy: 8.7%

CSLSC @ UIUC
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But... Is That Enough?

Neuro-Symbolic Al
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What is Neuro-Symbolic Al?

. /Symbolic\
Recognition

coen imi Explainability
Flexibility i ‘% Knowledge
Scalability i/—\i Data Efficient

Towards Cognitive and Trustworthy Al Systems
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Neuro-Symbolic Al Example: Visual Reasoning

Question: Are there an equal number of
large things and metal spheres?
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Neuro-Symbolic Al Example: Visual Reasoning

Question: Are there an equal number of
large things and metal spheres?

3 metal
spheres!
O

O
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Neuro-Symbolic Al Example: Visual Reasoning

Question: Are there an equal number of
large things and metal spheres?

1

[ Equal? Yes! ‘\
a J
-

3 metal
1 spheres!

O

O
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Neuro-Symbolic Al Example: Visual Reasoning

Question Understanding

Question: Are there an equal number of
large things and metal spheres?

~

/v [Equal? Yes! ‘\
J

3 large O i 3 metal
things! 0O i spheres!
O

O

Visual Perception Logical Reasoning
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Other Examples

= Google DeepMind Q

AlphaGeometry: An Olympiad-level Al system
for geometry

17 JANUARY 2024

Trieu Trinh and Thang Luong

< Share

_ GO @
&/

AlphaGeometry adopts a neuro-symbolic
approach

AlphaGeometry is a neuro-symbolic system made up of a neural language model
and a symbolic deduction engine, which work together to find proofs for complex
geometry theorems. Akin to the idea of “thinking, fast and slow”, one system
provides fast, “intuitive” ideas, and the other, more deliberate, rational decision-
making.

A simple problem

A

LN,

B &

Theorem premises:
Let ABC be any triangle with AB=AC
Prove that angle (£) ABC= ZBCA

L

AlphaGeometry
[% Language model J
Add a Not
construct -----..-- . solved

Solution
A
B8 D (@

« Construct D: midpoint BC
« AB=AC, BD=DC, AD=AD = ZABD= £ZDCA
« £ABD= £DCA, B C D collinear =

Z ABC=ZBCA

LLM: construct generation

Symbolic: deductive reasoning

Trinh et al, “Solving Olympiad Geometry without Human Demonstrations”, Nature 2024

CSLSC @ UIUC
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Eval on 30 Int. Math Olympics (IMO) problems:
 GPT-4:
* AlphaGeometry (Neuro-Symbolic): 25/30
Human Gold Medalist:

0/30

26/30
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Relationship to Human Minds

S e @ Neural
The Inter national FleXIble Scalable
Bestseller
X Black-box, Data
System 1: thinking fast
T~ (intuitive perception)
Thinking, |
Fast and Slow
IE . e g
Daniel Kahneman
Winner of the Nobel Prize 0

Daniel Kahneman
(1934-2024)
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Relationship to Human Minds

Daniel Kahneman
(1934-2024)

Sl f((.)o Neural ‘% Symbolic
ggsi ggltlzl;naﬂonal Flexible, Scalable Reasoning, Transparent
X Black-box, Data X Scalable, Learnable
System 1: thinking fast System 2: thinking slow
T (intuitive perception) (logical reasoning)
Thinking,

Fast and Slow | |

SR

Daniel Kahneman 0

Winner of the Nobel Prize

CSLSC @ UIUC
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Relationship to Human Minds

‘A lifetime’s worth of wisdom’ \ [ o
@ Neural n ;%ﬁ Symbolic
The Interuational Flexible, Scalable f;™H @ Reasoning, Transparent

B 11
il X Black-box, Data X Scalable, Learnable

System 1: thinking fast System 2: thinking slow
(intuitive perception) D (logical reasoning)

g Neurosymbolic System

Human-like Cognition, Reasoning, Transparent
Scalable, Flexible, Learning, Data-efficient

Thinkilié; s
Fast and Slow

S

~

Daniel Kahneman 0

Winner of the Nobel Prize

Daniel Kahneman
(1934-2024)
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However.. From Computing Perspective

= 100% \ s

S Better @ Neural f%ﬁ Symbolic

g? , ™ Flexible, Scalable M & Reasoning, Transparent
= 80% X Black-box, Data (X Scalable, Learnable

<QC) System 1: thinking fast System 2: thinking slow
':4‘@ 60% (intuitive perception) D (logical reasoning)

- ~ : ~
0 Neurosymbolic System

= 40% Human-like Cognition, Reasoning, Transparent
go 101 100 10! 102 Scalable, Flexible, Learning, Data-efficient )
O Latency (s): @ TPU ©GPU
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However.. From Computing Perspective

CSLSC @ UIUC

o 100%
S Better

e

g 80%

— (i}

5

O

< S [
= 60% Symbolic

ﬁ Neural (e.g., rules, logic,
<1>) mo coded knowledge)
Ig 40%

2 10-1 100 10! 10?

O Latency (s): @ TPU ©GPU

@ Neural k Mf f%ﬁ Symbolic

™ Flexible, Scalable (™4 @ Reasoning, Transparent
X Black-box, Data X Scalable, Learnable

System 1: thinking fast System 2: thinking slow
(intuitive perception) D (logical reasoning)

g Neurosymbolic System

Human-like Cognition, Reasoning, Transparent
Scalable, Flexible, Learning, Data-efficient

~
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However.. From Computing Perspective

100%

80%

60%

40%

Cognitive Task Accuracy (%)

Better Sl
Neurosymbolic
o
Symbolic
Neural (e.g., rules, logic,
mo coded knowledge)
10-1 100 10! 102

Latency (s): @ TPU ©GPU

CSLSC @ UIUC

@ Neural k Mf f%ﬁ Symbolic

™ Flexible, Scalable (™4 @ Reasoning, Transparent
X Black-box, Data X Scalable, Learnable

System 1: thinking fast System 2: thinking slow
(intuitive perception) D (logical reasoning)

g Neurosymbolic System

Human-like Cognition, Reasoning, Transparent
Scalable, Flexible, Learning, Data-efficient

~
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However.. From Computing Perspective

80%

60%

Cognitive Task Accuracy (%)
AN
-
X

CSLSC @ UIUC

100% [

* This Work <— O[]
reconfigurable _
support for ~ Neurosymbolic
neural & symbolic
T N em
Symbolic
Neural (e.g., rules, logic,
mo coded knowledge)
10-1 100 101 102

Latency (s): @ TPU ©GPU

@ Neural k a
N

& Flexible, Scalable Fr

X Black-box, Data
System 1: thinking fast

é%b Symbolic

Reasoning, Transparent

(X Scalable, Learnable

System 2: thinking slow

(intuitive perception) D (logical reasoning)

r

Neurosymbolic System

Human-like Cognition, Reasoning, Transparent
Scalable, Flexible, Learning, Data-efficient

~
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[@HPCA’25]

(?) Research Question:

=

What’s the system implications of neuro-symbolic
workloads?

Why neuro-symbolic workloads are inefficient on
off-the-shelf hardware?
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Workload Profiling — Runtime

)

o 100% = |.\°.

o

2 = [Q

E, S0 80% | =y |t ]
[a+1 (ol .-
< o |mm o

ol 0 2 G 2o

0 60%| fmel |0 FIE
o N g ]
S L E =
Q o

) ° ] N 1]
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(@) Neurosymbolic Workloads

Neuro-symbolic workload exhibits high latency compared to neural models;
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Workload Profiling — Runtime

) 100% | | I
.9 ] 1] 1] NVSA MIMONet LVRF PrAE
— D IS 1] 103 I | pum I
E. S0 80% | = | 1] & s
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| g ] S ] 2 ] I | jum |
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S| £ 4o%| e |2 | B | ' R o e |e
5| S Tl T g=! T | H_:l:. | jEE | |mm
z| 2 aE B = | S |EE | ] | e | jmm
R 20% | el i N o fE oo 1
S | an : % Y | N E | |
0% ﬂ ”' 4 : = | 0 % [] == ; : QQS 1 Lo o4 :2951 ECeT] e % % % ol
NV MIMON,LVRE PrAg Coraj Txp Nx RTx CorajTx» Nx RTx CorajTxp Nx RTx Coraj Tx» Nx RIx
(@) Neurosymbolic Workloads (b) Hardware Devices

Neuro-symbolic workload exhibits high latency compared to neural models;
Symbolic component is executed inefficiently across off-the-shelf CPU/GPUs
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Workload Profiling — Memory & Operator

100% 100% [T dL
(D] | ]
bD . -
8 n /M

o 80% 5 80% § >
) 3} =
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= (¥ o i
B 60% = 60% | f— —
O —
o S n N
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2 40% S 40% | [2= E
2 20% g 20%
| m g
o e = 0%
Ix1 2x2 3x3

(¢) Reasoning Task Sizes (d) Neurosymbolic Workloads

Symbolic components exhibit large memory footprint;
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Workload Profiling — Memory & Operator

100% 100% [T A1 Y. f A
0 o % s H 100% / / / >
]
g [ | m 4 = \\\' / @)
o 80% 5 8% e > o 80%| k&4 1N ZIIE
%0 L I en o B o =
= 2 + - 8 NN NS S IERE
8 60% = 60% | [ = 3 60% | N IS N [ [© 8
5 8= — — o NN S TRER:
P R M —
~ s = 0 2 N NN S IER
PR R R
2 40% S 40%| fi= . w 40% [ R [ SIES
P s N
-5 = £ NN NN S |2 &
g > P L WS RN 8 <=
2 20% S 20% 5 20%]| [N S ||~ ©
g (a7 SOV NN N [
Ko % m 0 s WSS RN
0% | 2 O% N [N RO \ )
Ix1 2x2 3x3 T_Vpe Size COIOINUIHbg}?SI'tion
(c) Reasoning Task Sizes (d) Neurosymbolic Workloads (6)  Reasoning Task Attibutes

Symbolic components exhibit large memory footprint;
Symbolic operations are dominated by vector-symbolic circular convolutions
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Workload Profiling — Kernel Behavior

segmm_nn relu_nn vectorized elementwise

Runtime Percentage (%)
Compute Throughput (%)
ALU Utilization (%)

L1 Cache Hit Rate (%)
L2 Cache Hit Rate (%)
L1 Cache Throughput (%)
L2 Cache Throughput (%)
DRAM BW Utilization (%)

Why system Inefficiency?
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Workload Profiling — Roofline Analysis

segmm_nn relu_nn vectorized elementwise z
_ 8 ZeroC
Runtime Percentage (%) 18.2 10.4 37.5 12.4 = 10! / (Neum
e PrAE
Compute Throughput (%) 95.1 92.9 3.0 2.3 g @
a
. S 100 VSAIT,
ALU Utilization (%) 90.1 48.3 5.9 4.5 : 10 Mi = A
L1 Cache Hit Rate (%) 1.6 51.6 29.5 33.3 = (Neu “’
[l 10_1 PrAE NVSA
. ) (D]
L2 Cache Hit Rate (%) 86.8 65.5 48.6 34.3 % Symb Sm
c
L1 Cache Throughput (%) 79.7 82.6 28.4 10.8 810 \gii%nle < 6@
> |
L2 Cache Throughput (%) 19.2 17.5 29.8 22.8 < il
102 107 109 10' 102  10°
DRAM BW Utilization (%) 14.9 24.2 90.9 78.4 (¢)  Operation Intensity (FLOPS/Byte)

Symbolic exhibits low ALU utilization, low cache hit rate, massive data transfer, low data
reuse, resulting in hardware underutilization and inefficiency
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(?) Research Question:

How to enhance the efficiency and scalability
of neuro-symbolic systems?

CSLSC @ UIUC Zishen Wan | School of ECE | Georgia Institute of Technology
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Our Methodology

Goals
2
= | % This Work
O
< \
&
@)
O]
2
: /B
g
@) Neurosymbolic AI
Energy and Latency

Efficiency, Performance ?
Scalability, Interpretability
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Our Methodology

Goals Challenges
> Challenge-1:
% 72{ This Work Large memory
< footprint )
2 N | e
O { '
0 Challenge-2:
I*é @3 + ‘ﬁc}i Sym{aolic operation
an inefficiency
8 Neurosymbolic AI |
Energy and Latency Challenge-3:
. Hardware
Efjiciency, Performance f underutilization
Scalability, Interpretability )
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Our Methodology

Goals Challenges Methodology

E 72{ This Work L(cjll;;;lle;egni;lr;/ — iy 1t
B : Efficient factorization
< \ footprint )
sl N |\ V7 /]
O N
0 Challenge-2:
I*é @3 + ‘ﬁoi Sym{aolic operation
an inefficiency
8 Neurosymbolic AI | S——

Energy and Latency Challenge-3:

. Hardware
Efjiciency, Performance f underutilization

Scalability, Interpretability
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Our Methodology

Goals Challenges Methodology

£ % This Work L(jzl;a;lzlegn;k — Key Idea-1:

) 15 WO & mory Efficient factorization
< \ footprint ) | )
gl N | V7 =

&) ) ‘
0 Challenge-2: Key Idea-2:

I*é @3 + 6@% Symbolic operation Reconfigurable arch
an inefficiency for neural & symbolic

8 Neurosymbolic Al - | M—¥ a

Energy and Latency Challenge-3:
. Hardware
Efficiency, Performance f underutilization

Scalability, Interpretability

CSLSC @ UIUC Zishen Wan | School of ECE | Georgia Institute of Technology



Cognitive Capability

Efficiency, Performance
Scalability, Interpretability

Our Methodology

Goals

% This Work

N
o

Neurosymbolic Al

Energy and Latency

CSLSC @ UIUC

Challenges

Methodology

Challenge-1:
Large memory
footprint

Key Idea-1:
Efficient factorization

Challenge-2:
Symbolic operation =

inefficiency

Key Idea-2:
Reconfigurable arch
for neural & symbolic

Challenge-3:
Hardware —
underutilization

Key Idea-3:
Adaptive scheduler
for neural & symbolic

\ 7

Zishen Wan | School of ECE | Georgia Institute of Technology




Cognitive Capability
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Challenges

Methodology
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Large memory
footprint

Key Idea-1:
Efficient factorization

Challenge-2:
Symbolic operation =

inefficiency

Key Idea-2:
Reconfigurable arch
for neural & symbolic

Challenge-3:
Hardware —
underutilization

Key Idea-3:
Adaptive scheduler
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Architecture

Reconfigurable
 Neuro/Symbolic PE |

" Bubble-Streaming |
Dataflow

" Spatial-Temporal |
Mapping

Scaling Up/Out

Adaptive

\ 7

Scheduling
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Our Methodology

Goals
2
= | % This Work
O
< \
5]
@)
D)
2
Z @“ﬁ%
g
O Neurosymbolic Al
Energy and Latency

Efficiency, Performance

Scalability, Interpretability

Challenges

Methodology

Challenge-1:

footprint

Large memory

Key Idea-1:
Efficient factorization

Challenge-2:
Symbolic operation =

inefficiency

»1 Reconfigurable arch

Key Idea-2:

for neural & symbolic

Challenge-3:
Hardware —
underutilization

»| Adaptive scheduler

Key Idea-3:

for neural & symbolic

\

Architecture

Reconfigurable
Neuro/Symbolic PE

Bubble-Streaming
Dataflow

Deployment

Configurations:
hardware & system

v

| Spatial-Temporal |
Mapping

Scaling Up/Out

Adaptive

Evaluate: across cognitive

N\

tasks, scales, complexities,
hardware configs

7

Y

{ N

Scheduling

Target: efficient and
scalable human-fluid

intelligence and cognition

CSLSC @ UIUC
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Hardware Architecture Overview

CSLSC @ UIUC

(a) Overall Architecture

(b) Scalable Compute Array

y
/ | SRAMA
Host SoC /
/ o] Wil 4
CPU DRAM / |
Controller / ¥
/ =
Memory bus Ctrl bus // %
DRAM / 5 5 5
Jt Memory bus v /‘ _‘I,:'- D
iR
Neuro-Symbolic Accelerator]
Reconfigurable Neuro/ as]
Symbolic Compute Array é
#Memory bus $ Ctrl bLs‘ = —"D D
Workload | |} v v
Scheduler | \ :
¥ A
SRAM Y 4 cotbus \\
| Memory \
~ | Controller \\
#Memory busV Ctrl bus \ : ;
\ || 4
Custom SIMD Unit \ D D

(c) Reconfig. Neuro/Symbolic PE

L “next

ACC

¥|_/
6 top_in_A,,, Jtop_in_B,,,

Zishen Wan | School of ECE | Georgia Institute of Technology
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Reconfigurable Neuro/Symbolic PE

top_in AQ) top_in B )

D PASS
left_in N
[ A ] B
>(%)< D
left|in,,,

[Yj top_in_A,,, O fop_in_B,,,

Micro-architecture of
reconfigurable neuro/symbolic PE

[Reconfigurable neuro/symbolic PE incurs low area overhead compared to systolic array PEﬂ
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Reconfigurable Neuro/Symbolic PE

top_in AQ) top_in B )

I
I
I Load Mode GEMM Mode (Neuro, Symbolic) Circular Convolution Mode (Symbolic) I
D : PASS : top_in_ AQ top_in_ A U top_in_A top_in_B § |
left_in ‘ N—— I PASS »_ PASS |
| A | B I left_in b  — :
()~ D | Ca] B A]| [B] Al [B] ,
Zeﬁ__innext I = : r;(\ ! o . Q I
: : © left|in,,,, © :
I . ACC ACC |
I
: ) N I
[YJ top_in_A,,, O top_in B, | @) ‘mp 1 A (b) ‘top—in—Anext (©) ﬁtOp_in_A,,ex, @lop_in B, |
—  — Tnex —  —  nex I
| o o e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e
Micro-architecture of Operation mode of
reconfigurable neuro/symbolic PE reconfigurable neuro/symbolic PE

Reconfigurable neuro/symbolic PE incurs low area overhead compared to systolic array PE;
The PE is reconfigurable for three operation modes: load, neuro, symbolic
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What is Circular Convolution?

Al B1 Al1B1+A2B2+A3B3
A2 |®| B2| = Al1B3+A2B1+A3B2
\A3/ B3 A1B2+A2B3+A2B1

Al Al Al

X X X

Bl ‘\ B2 ‘\

B2 B3 B3 B1
VA~ W A3 V3 % W A3
Al1B1+A2B2+A3B3 Al1B3+A2B1+A3B2 Al1B2+A2B3+A2B1
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Bubble Streaming Dataflow

Vector-Symbolic Circular Convolution Example (3 CircConv): TPU-like Systolic Array: Implement as three GEMV Multiplication Cycles:

CircConv #1: (A1, A2, A3)® (B1, B2, B3) [. .»! .»!»

CircConv #2: (C1, C2, C3)® (D1, D2, D3)

CircConv #3: (E1, E2, E3) @ (F1, F2, F3) .—" .—" .—"
[E—Hpat-oal-for] (53— +{es}-fea}-ea) [Fa——[es}-{e2}-fEA)

CircCony #1 Computation: “CircConv #1 “CireConv #2 “CircConv #3

(Al,A2,A3)® (B1,B2,B3) = TPU: Finish at (3n+15) = 24 cycles

(A1B1+A2B2+A3B3, A1B3+A2B1+A3B2, A1B2+A2B3+A2B1)

éor symbolic operation: \
e TPU-like array suffers from low
parallelism & high memory access;

o J
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Bubble Streaming Dataflow

Vector-Symbolic Circular Convolution Example (3 CircConv): TPU-like Systolic Array: Implement as three GEMV Multiplication

————————————————————————————————————

CircConv #1: (A1, A2, A3)® (B1, B2, B3) ‘. .* ! .*F*

CircConv #2: (C1, C2, C3)® (D1, D2, D3)

CircConv #3: (E1, E2, E3) ® (F1, F2, F3) .—" .—‘ ' .—‘

CircConv #1 Computation: jiasd g sl g fal | A5 g S g 55} HE3 (B2 ~|EL].
C C #1 C C #2 C C #3
(A1,A2,A3)® (B1,B2,B3) = ircConv ircConv ircConv

TPU: Finish at (3n+15) = 24 cycles
(A1B1+A2B2+A3B3, A1B3+A2B1+A3B2, A1B2+A2B3+A2B1)
CogSys: Bubble Streaming Dataflow

™\

éor symbolic operation:

Bl .o 959258 elalg g

e TPU-like array suffers from low % 5 % § % § 5 é 5:5:% S
parallelism & high memory access; | BRI 5§ § & & & 8 & & §15:18 &

* Bubble streaming dataflow 1.:
improve parallelism, arithmetic :I
\__ intensity, and data reuse. ) BEEHEEENGEN G EEE E

CogSys: Finish at (n+5) = 8 cycles

CSLSC @ UIUC Zishen Wan | School of ECE | Georgia Institute of Technology
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Bubble Streaming Dataflow

Vector-Symbolic Circular Convolution Example (CircConv #1): — Roofline TPU(2'* PEs)/This Work(2!4 PEs)
(A1, A2,A3) ®(Bl, B2, B3) = (AIB1+A2B2+A3B3, AIB3+A2B1+A3B2, A1B2+A2B3+A2B1) — Roofline RTX GPU
Cycle n+1 Cycle n+2 Cycle n+3 Cycle nt+4 Cycle nt+5 O 1 CircConv, d=2048 (TPU)
% 1000 CircConv, d=2048 (TPU)
SRAM @) 1 CircConv, d=2048 (GPU)
T ¥ 1000 CircConv, d=2048 (GPU)
| Egl‘ @) 1 CircConv, d=2048 (This Work)
¥ 1000 CircConv, d=2048 (This Work)
@@@ < 1000 CircConv, d=20480 (This Work)
AIBI[]|J @
) ol g 130 TFLOPS
[B;ZI S 10?
=3
@ =) 23 TFLOPS
3 510! &
Q
IS
1 g
1
P S 210°
L] 5 e
(¥
®g] 9 101
S
[ 1 '§ d: vector dimension
. . . . . > 10" 10 10! 102
Stat Reg. P Reg. St Reg. Partial Sum Reg. MAC Unit < . . )
D sony e C] e e D reamine Bee C] SR [:] " Arithmetic Intensity (FLOPS/Byte)

Bubble streaming dataflow flow improve parallelism, arithmetic intensity, and data reuse
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Our Methodology

Goals
2
= | % This Work
O
< \
5]
@)
D)
2
Z @“ﬁ%
g
O Neurosymbolic Al
Energy and Latency

Efficiency, Performance
Scalability, Interpretability

Challenges

Methodology

Challenge-1:

footprint

Large memory

Key Idea-1:
Efficient factorization

Challenge-2:
Symbolic operation =

inefficiency

Key Idea-2:
»| Reconfigurable arch
for neural & symbolic

Challenge-3:
Hardware —
underutilization

Key Idea-3:
Adaptive scheduler
for neural & symbolic

Architecture

Reconfigurable
 Neuro/Symbolic PE |

" Bubble-Streaming |
Dataflow

\. J

| Spatial-Temporal |
Mapping

( A

Scaling Up/Out

\. J

Adaptive
Scheduling

Deployment

Configurations:
hardware & system

v

Evaluate: across cognitive
tasks, scales, complexities,
hardware configs

Y

{ N

Target: efficient and
scalable human-fluid

N\

7

intelligence and cognition

CSLSC @ UIUC

Zishen Wan | School of ECE | Georgia Institute of Technology
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System Optimization - Adaptive Scheduling

<+Neura]l we——— Symbolic ———»<¢Neural »r¢——— Symbolic ———»
|

g I : :
ML Accele-& : :
rators = :
=
@) = ARSI
Time
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System Optimization - Adaptive Scheduling

<+Neural we¢——— Symbolic ———»r<¢Neural »r¢—— Symbolic ———»

o ___ | © Neuro and symbolic : | @ Neuro engine inefficient for |
ML Accele-S [77] | |  operate sequentially =[| | symbolickemels |
rators N [l — Low throughput and ssEssl __—» [ ow utilization and high |
T [ttt 0::: performance EEEEENEE latency [
(a) D fessedeisiobiecd ] ] ] —— > Y [T T T T[] >

Time

- s
CSLSC @ UluC Zishen Wan | School of ECE | Georgia Institute of Technology
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System Optimization - Adaptive Scheduling

<+Neural re——— Symbolic ———»<«Neural »¢—— Symbolic ———»

g | @ Neuro and symbolic : | @ Neuro engine inefficient for :
(o . .
ML Accele-g [} | | operate sequentially Tjes | symbolickemels |
t I o S — Low throughput and HH —> Low utilization and high |
rators = Eelelaleleletete EENEEEEEE |
T [atatedtetoblete® performance EEjEasjnss latency
B R 50 ek KK -
(a) o S EEREE ..—.__g_l—l .
Time
e
=
This work & @ Efficient symbolic execution
(w/o adSCH) = — Low latency for symbolic operations
—
-
—>
Time

CSLSC @ UluC Zishen Wan | School of ECE | Georgia Institute of Technology



System Optimization - Adaptive Scheduling

<+ Neural r¢e—— Symbolic ——»<¢Neural - ¢—— Symbolic ———»

o | @ Neuro and symbolic : | @ Neuro engine inefficient for |
ML Accele-S [77] | |  operate sequentially =[| | symbolickemels |
rators D [iifiid=m — Low throughput and SsEEsl__ —»Low utilization and high |
T pesfssges _performance SEREEEEE)  latency i
(a) DR 5 S S EEjERE Il-—|_@_|'—] .
Time
&
This work & @ Efficient symbolic execution .
(/o adSCH) = — Low latency for symbolic operations
)
—
Time
e
This work -%
(W/ adSCH) =
~—
- .,
(b) Time

CSLSC @ UluC Zishen Wan | School of ECE | Georgia Institute of Technology
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System Optimization - Adaptive Scheduling

<+ Neural re—— Symbolic ——»<Neural »¢—— Symbolic ——»
@ Neuro and symbolic ' | @ Neuro engine inefficient for

|
g |
ML Accele- % : operate sequentially | symbolic kernels |
rators = 4+ —» Low throughput and — Low utilization and high |
g performance latency |
S W
(@ | 1,
= 1me
=
This work § @ Efficient symbolic execution _
= —» Low latency for symbolic operations
(w/o adSCH) £
‘ >
@ Interleaved neuro/symbolic processing Time
T k g — High parallelism and throughput
1S WOr =
<
w/ adSCH) =
( H) E |
‘ ' >
(b) Time

Adaptive scheduling enables interleaved

CSLSC @ UluC Zishen Wan | School of ECE | Georgia Institute of Technology
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System Optimization - Adaptive Scheduling

<+Neura] r¢&——— Symbolic ———»<«Neural »r¢&——— Symbolic ———»

o | @ Neuro and symbolic : | @ Neuro engine inefficient for |
ML Accele--= [ | ' operate sequentially ===5| | symbolic kernels n
S el ! —» Low throughput and SE4SSSl . »1 ow utilization and high |
rators = [T mus{nn s EE il
= I 050K 00 X performance SSNSDSRam  latency '
(a) D Beretereteteeie | ol i o et
——
Time
g
This work & @ Efficient symbolic execution _
(wlo adSCH) = — Low latency for symbolic operations
=
B
@) Interleaved neuro/symbolic processing Time
. g1 — High parallelism and throughput
This work = €) Reconfigurable neuro/symbolic engine
(w/ adSCH) X — Low latency and high efficiency
S
3 - >
(b) Time

Adaptive scheduling enables interleaved and reconfigurable neuro/symbolic processing
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System Optimization - Adaptive Scheduling

<Neura] r¢—— Symbolic ———»<¢Neural »r¢——— Symbolic ———» A (] Dr N Ciluninowise
= __ | @ Neuro and symbolic : | @ Neuro engine inefficient for = —t )
ML Accele-= 7] | ' operate sequentially “= 1 symbolic kernels . <|OOCO| symbolic ops
ccele Rl o e | 1 | ym s : | = | | I ie:
t N et —» Low throughput and - —> Low utilization and high | B O partition
TalOIS = Resuedens: erformance mummnnl | ' 7 B
(@) 5 bk 4 e ;[ EEEE
o033 i :
o Time DO E| Cell-wise .
=k EEEE neuro/symbolic
This work g | @ Efficient symbolic execution . O0O00 partition
/0 adSCH) = s — Low latency for symbolic operations A
> O
@ Interleaved neuro/symbolic processing Time z |2 2 B E
! 8 Lol — High parallelism and throgghput DEEE
This work -5 [ ) gh=chs © Reconfigurable neuro/symbolic engine
(W/ adSCH) oS oo ey T T —> Low latency and high efficiency E = EE
= 5 o s TH P FH @ Partitioned array for neuro/symbolic L1000
O < e s 1 1 — High compute & bandwidth utilization o
(b) Time (©)

Adaptive scheduling enables interleaved and reconfigurable neuro/symbolic processing
with partitioned array
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System Optimization - Adaptive Scheduling

<+Neural e¢——— Symbolic ———»<«Neural »r¢&——— Symbolic ———» A ] I:Ir 1] Column-wise
o : @ Neuro and symbolic : @ Neuro engine inefficient for : = : : | :
ML Accele--2 [ | operate sequentially == 1 symbolic kernels | g LI symbolic ops
CCClC-5 | : — : ym : : e .
t i — — Low throughput and oE —> Low utilization and high | =1 IO partition
TAROES = performance sasums|  latency ' 2 RN
(@) = o e (S
, Time 100007 Cell-wise .
S RHEEE neuro/symbolic
This work § O Efficient symbolic execution . O0000 partition
/o adSCH) = — Low latency for symbolic operations A
(/o adSCH) E ST
. > O
@ Interleaved neuro/symbolic processing Time | DEEE
: g M W45 — High parallelism and throgghput . . . .
This work p=f o o Y HH i € Reconfigurable neuro/symbolic engine
/ adSCH) N Vil iim=e=k= — Low latency and high efficiency OOaad
\picdeCal) ] 050 0005 EE(imalin @ Partitioned array for neuro/symbolic EEEE
o fesasspesatafersts I — High compute & bandwidth utilization i
(b) Time (©)

Adaptive scheduling enables interleaved and reconfigurable neuro/symbolic processing
with partitioned array, improving parallelism, latency, efficiency, and utilization
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Our Methodology

Goals Challenges Methodology Architecture Deployment
2 * s Work LChallenge-l: % Key Idea-1: Reconli;l%urable Configurations:
2 is Wor U7 OOy Efficient factorization . J hardware & system
) \ footprint J - —
sl N | eV I —— _ Bubble-Streaming +
O f ) Dataflow - ~
2 Challenge-2: Key Idea-2: - - Evaluate:across cognitive
= @) + ‘% Symbolic operation —%| Reconfigurable arch Spatial-Temporal tasks, scales, complexities,
& inefficiency for neural & symbolic L Mapping hardware configs
8 NeurosymbolicAT | \  _ __ J T ——— /| p " = * g
( \ Scaling Up/Out
Energy and Latency Challenge-3: Key Idea-3: L 5P J i Target: efficient and R
Efficiency, Performance fard'vlv_are. T tiv? ichedt;)le; Adaptive | scalable human-fluid

Scalability, Interpretability? underutitization o7 et o yn e . Scheduling | ‘intelligence and cognitionJ
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Evaluation — Hardware Performance

—
% 102 | 9052 93.26 Jetson TX2
56.76
S [[] Xavier NX
g
5 10! [ ] Xeon CPU
é [ JRTX GPU
2 10° B This work
RAVEN I-RAVEN PGM CVR SVRT
=) =)
70 17.5
o HIS
j0 5% 1005 ¢
72 hE
oo 2 %.'5 o =
0 = =
Z
7 000 e 000 -
S ‘0, gi\* 80“
N P ey Y O
eCtOr DI % \q/ 0& (b,\ & ,{b\‘\
@  sion(q) o o

CSLSC @ UIUC

Zishen Wan | School of ECE | Georgia Institute of Technology

4x - 90x speedup
compared to CPU/GPU

(
Symbolic operation:

75x speedup to TPU
18x speedup to GPU

\_

\

J
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Evaluation — Hardware Performance

TPU-like (128X 128)
MTIA-like (16X32X32)
GEMMINI-like (64 X16X16
This Work (16X32X32)

NVSA LVRF MIMONet
Neuro-Only

[E—Y
-
[\

9\

2.32

“
o<

1.00
0.95
&4 1.00
1.00
0.95

&4 1.00
1.87
1.00

0.80
1.00

ek
-
o

Norm. Runtime (X)
=

Compared with ML accelerators: similar neuro latency,
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Evaluation — Hardware Performance

127.50

X 102 | ED TPU-like (128%128) 2 5

Qé MTIA-like (16X32X32) < . e %

s GEMMINI-like (64X16X16] [ | o =

2 10 This Work (16X32X32) 2 S 5
E 0| 288 45588 =355 = z =
g () - —E LA -

NVSA LVRF MIMONet NVSA LVRF MIMONet
Neuro-Only Symbolic-Only

Compared with ML accelerators: similar neuro latency, 7-120x symbolic speedup,
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Evaluation — Hardware Performance

X 102 | ED TPU-like (128%128) : 5 127.50

Qé MTIA-like (16X32X32) < . . 2 - 5

s GEMMINI-like (64X16X16) | ]= = = % 2’

2 10 This Work (16X32X32) 2 & s | . -

E 0| SS88 45588 =358 = z 2 | NS aE = 3
> & " _Ei " " * X —El

NVSA LVRF MIMONet NVSA LVRF MIMONet NVSA LVRF MIMONet
Neuro-Only Symbolic-Only End-to-End Neuro+Symbolic

Compared with ML accelerators: similar neuro latency, 7-120x symbolic speedup,
2-16x end-to-end neuro-symbolic speedup
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@ Key Observations:

Compared with systolic arrays that only support neural, our
design provides reconfigurable support for neural and
symbolic operations with only 4.8% area overhead.

Our design achieves 0.3s latency per cognition task, with
1.18W power consumption.
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[@DAC’25]

(2) Research Question:

How to automate this neuro-symbolic
architecture design process?

CSLSC @ UIUC Zishen Wan | School of ECE | Georgia Institute of Technology 62



Automated End-to-End FPGA Deployment

Dataflow Architecture Generation Sec.V

Compile

Sec. V. B Sec. V. B
Program ( Dataflow Graph \
Trace
> (-json) >
Sec. V. C
[ Vector Conv| [ GEMM ]
HW-Mapping | <« ‘
> Co-explore \ j

L1 5 5 1 1 31 31 3113
NViIda

Workload
[] User-provided files
[] NSFlow-integrated NSAI
[J NSFlow-generated W(;rll)()l’())ad
—> Data/Control flow \/\
Data
Hardware Excutables
Y
Host
Binary

Bitstream

Gener;led Configs

A 4

Accelerator

Compile

Host Code
(.cpp)

RTL basic
blocks

Q)

Synthesizg

v++

HW Design Sec. IV Parameterized+ Instantiation

Accelerator Design

Systolic

Array | [STMP

BRAM| |[URAM

Ctrl

Compile

CSLSC @ UIUC

pusjuoxy

puaydeg

Frontend: dataflow arch generator

- Step 1: Extract execution trace

- Step 2: Generate dataflow graph

- Step 3: HW-mapping co-exploration

Backend: FPGA deployment

- Step 1: Pre-define hardware template
- Step 2: Configure design parameters
- Step 3: Synthesize and compile RTL
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Frontend — Dataflow architecture Generation

graph () :

$maxpool_1[16,64,160,160]

%conv2d_1[16,64,160,160]

%$inv_binding circular_1[1,4,256]

%$inv_binding_circular_2[1,4,256]

$match_prob_1[1]

$match_prob_multi_batched_1[1]:

$sum_1[1]

// Neuro Operation — CNN (Resnetl8)
%$relu_1[16,64,160,160]

[16,64,160,160]))
(%relu_1[16,64,160,1é0]))

(3maxpool_1[16,64,160,16071))

// Symbolic Operations
// Inverse binding of two block codes vectors by

blockwise cicular correlation

inv_binding_circular] (args =
vec_1[1,4,256]1))

inv_binding_circular] (args =
vec_4[1,4,256]))

= (%inv_binding circular_1[1,4,256],
[1,4,256]))

of query vectors

match_prob_multi_batched] (args = (%
inv_binding_circular_2[1,4,256],

match_prob_multi_batched_1[1]))

call_module[relu] (args =

call_module[maxpool] (args

(%bnl

call_module[conv2d] (args =

call_function[nvsa.
(%$vec_0[1,4,256], %

call_function[nvsa.
($vec_31[1,4,256], %

// Compute similarity between two block codes vectors
call_function[nvsa.match_prob] (args

$vec_2

// Compute similarity between a dictionary and a batch
call_function[nvsa.

svec_5[7,4,256]))
call_function[torch.sum] (args = (%

match_prob_1[1],

$clamp_1[1]))

$clamp_1[1] call_function[torch.clamp] (args = (%sum_1
[11))
Smul_1[1] call_ function[operator.mul] (args = (%

Extract workload execution trace

Loop 1 Loop 1 Loop 1
' ' - RN
| Ll | 1 | L 1 | " Ll | ! Derive runtime
\ + E + E + ; functions and é
| \L2 | ; | Ly | | Ly | 1 calculate memory
. \ . . I footprint for VSA :
) . ! and NN operations.,
‘] I e et
L Z e - =Loop2_ \- - ~ .
1 Sununns Vv 1L, ]
- : 012,50 H W, Nofo) }— 1 25 3 [ L1 A r—
. 1 nntps 5 V7
. ' +
“ 1 s
KA Gy Al Vi L) tun(ly, H, W, N/[1])
. ! +
kY  H, W, N2 *
., . t,(vs v[2]) 7 L3 t,u(l3, H, W, N,2])
. s 5 :
‘.’: . =fvsaH, W, N,) __________v_ftnn(ILpV’Nl)
* . ﬁ
: \4
________ < TS ——— - 1,2,3
1 Perform DFS inthe | © 1 Perform BFS and attach } | , EngageLoop2and 1
1 execution graph, and | ! 1 same-level operations to , !  attach it onto Loop 1 at : Vié
!identify critical path foral : !V operations on the critical1 : 1 the time when its i
: single run. 1 : path. 1+ I compute unit is .
oo om - - S amemmeomoamm o= L ) mm Em s w Em s PR

Generate dataflow graph &
two-stage HW-mapping co-exploration

CSLSC @ UIUC

Zishen Wan | School of ECE | Georgia Institute of Technology
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Backend — FPGA Deployment

Cycle 1 Cycle 2 . Cycle3 1 Cycle4 %

Iswmllswl

On-chip Cache

aAndepy

Keixy O110ISAS

Example: (A1, A2, A3)Q(B1, B2, B3) = (A1B1 + A2B2 + A3B3, A1B3 + A2B1 + A3B2, A1B2 + A2B3 + A2B1)
|:| Stationary Reg. |:| Passing Reg |:| Streaming Reg. |:| Partial Sum Reg. @MAX

Pre-defined architecture template

CSLSC @ UIUC

Dataflow & configure design parameters

Zishen Wan | School of ECE | Georgia Institute of Technology
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Summary

* Neuro-symbolic Al is a compositional method to

improve agent reasoning and interpretability.

* In these work,

CSLSC @ UIUC

Model: Characterize workload implications

Architecture: Reconfigurable neuro-symbolic PE,
dataflow, mapping

System: adaptive workload scheduling
FPGA: automated end-to-end FPGA deployment
ASIC SoC: programmable neuro-symbolic SoC

Achieve efficient and scalable neuro-symbolic
execution across agentic reasoning tasks

-

@3 Neural ) i .?%ﬁ Symbolic

™ Flexible, Scalable f7™H € Reasoning, Transparent
X Black-box, Data (X Scalable, Learnable

System 1: thinking fast System 2: thinking slow
(intuitive perception) (logical reasoning)

@} Neurosymbolic System

Human-like Cognition, Reasoning, Transparent
Scalable, Flexible, Learning, Data-efficient

% This Work

X
¥

Neurosymbolic Al

Cognitive Capability

Energy and Latency

Efficiency, Performance ?
Scalability, Interpretability
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Autonomous Machines (Agentic System)

: [ Cognition Capability ]

Human-like reasoning

Trustworthy decision making
E) Human-agent interaction

U [ Autonomy Capability ]

Perception, Localization,
Mapping, Planning, Control,
Learning-based navigation

My Research:
Cross-Layer Approach

Application

Requirements

( )

Real-Time
| Performance |

Hardware Silicon

Energy
 Efficiency

\

Design
| Scalability |

4 .. )
Safety-Critical

| Reliability

CSLSC @ UIUC Zishen Wan | School of ECE | Georgia Institute of Technology
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[ASPLOS’25]

Research Question:

Can autonomous agents collaboratively conduct
complex long-horizon multi-objective tasks?

What’s system characteristics of embodied agents?
How to improve system efficiency?
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Embodied Autonomous Agent System

Alice
(LLM)
“Hi, Bob. I
found 3 target objects ‘ Bob
in the kitchen, (Human/Al)
1 rememb?r “OK, thanks for your
you w:;e ho:dfng - el WEiel s = information, I'll go to
empty container, s transport them.”
can you come here to nI!’ E
pick them up while I o /
20 to explore other -
= pple Tea tray
rooms?

* Task: long-horizon multi-objective task and motion planning
 Examples: household tasks, transport objects, make meal, set up table, cook...
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Demo: Long-Horizon Multi-Objective Pla

CSLSC @ UIUC

Bob

o

ey

Zishen Wan | School of ECE | Georgia Institute of Technology
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Embodied Al Agent Workflow

CSLSC @ UIUC

Environment

Embodied Agent
General Paradigm

Communication

vl’ ® @

Module (C) &%

Planning Module

Execution
Module (E)

Memory Module (M)
Sensing Observation Memory
> L - Retrieved
Module (S) Action Memory } Memory
Dialogue Memory
A

(R)

Reflection Module ]<_

Zishen Wan | School of ECE | Georgia Institute of Technology
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Long-Horizon Task

Performance

Embodied Al Agent System Characterization

Goals

This Work
(ReCA)

Q
Q

Latency and Energy

Efficiency, Performance T
Scalability

CSLSC @ UIUC

Goal: Improve runtime efficiency, performance, and scalability of
cooperative embodied Al agent systems

Zishen Wan | School of ECE | Georgia Institute of Technology
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Long-Horizon Task

Performance

Embodied Al Agent System Characterization

Goals

This Work
(ReCA)

Q
Q

Latency and Energy

Efficiency, Performance T
Scalability

CSLSC @ UIUC

Challenges

Challenge-1:

Long planning &
communication latency
Challenge-2:

Low cooperative efficiency
& memory inconsistency
Challenge-3:
Limited scalability with
large number of agents
Challenge-4:
Sensitivity of low-level
planning and execution

COO

Goal: Improve runtime efficiency, performance, and scalability of

perative embodied Al agent systems

Zishen Wan | School of ECE | Georgia Institute of Technology
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Embodied Al Agent System Optimization

Long-Horizon Task
Performance

Goals Challenges Methodology
Challenge-1: ) Key Idea-1: ngh—leve1 planning Low-level execution Alsorithm
This Work Long planning & |  Local LLM & Planning- A Ny —> RS glevel
(ReCA) | communication latency ) |\ guided multisiep execution ) Tusk ime: 18min 585 () Task time: 6min $ &)
Challenge-2:
Low cooperative efficiency
© | & memory inconsistency |
t) Q Challenge-3:
Q Limited scalability with
large number of agents
Latency and Energy \/=—=—================ N
Challenge-4:
Efficiency, Performance T Sensitivity of low-level
Scalability planning and execution

Goal: Improve runtime efficiency, performance, and scalability of
cooperative embodied Al agent systems
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Long-Horizon Task

Performance

Embodied Al Agent System Optimization

Goals

Challenges

Challenge-1:

This Work
(ReCA)

Q
Q

Key Idea-1:

Long planning &
communication latency

Challenge-2:

|  Local LLM & Planning-
guided multi-step execution

Key Idea-2:

Low cooperative efficiency
& memory inconsistency
" v

Challenge-3:
Limited scalability with

Latency and Energy

Efficiency, Performance T
Scalability

CSLSC @ UIUC

large number of agents

Challenge-4:
Sensitivity of low-level
planning and execution

J

| Dual memory structure: long-
term and short-term memory

Methodology

High-level planning Low-level execution

5N

Task time: 18min $$$

OOOd

—>

RS

Task time: 6min § @

* |®

Algorithm
level

Coop. efficiency: 66% @ Coop. efficiency: 83% @

Goal: Improve runtime efficiency, performance, and scalability of
cooperative embodied Al agent systems
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Long-Horizon Task

Performance

Embodied Al Agent System Optimization

Goals

Challenges

Challenge-1:

This Work
(ReCA)

Q
Q

Long planning &
communication latency

Challenge-2:
Low cooperative efficiency
& memory inconsistency

Challenge-3:
Limited scalability with

Latency and Energy

Efficiency, Performance T
Scalability

CSLSC @ UIUC

large number of agents

Challenge-4:
Sensitivity of low-level
planning and execution

>

Key Idea-1:
Local LLM & Planning-

guided multi-step execution

Key Idea-2:
Dual memory structure: long-

| term and short-term memory

Key Idea-3:
Hierarchical centralized/

decentralized coop. planning

Methodology

High-level planning Low-level execution

5N

Task time: 18min $$$

E]E]E]E]

—>

SN
Task time: 6min § @

/Q\ /Q\
T geudes

Success rate: 94%

Algorithm

level

level

Goal: Improve runtime efficiency, performance, and scalability of
cooperative embodied Al agent systems
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Long-Horizon Task

Performance

Embodied Al Agent System Optimization

Goals

Challenges

Challenge-1:

This Work
(ReCA)

Q
Q

Long planning &
communication latency

Challenge-2:

>

Low cooperative efficiency
& memory inconsistency
"

Challenge-3:

Limited scalability with

Latency and Energy

Efficiency, Performance T
Scalability

CSLSC @ UIUC

large number of agents

Challenge-4:

Sensitivity of low-level

planning and execution
"

J

Key Idea-1:
Local LLM & Planning-

guided multi-step execution

Key Idea-2:
Dual memory structure: long-
| term and short-term memory |

Methodology

High-level planning Low-level execution

8 N >
Task time: 18min $$$ @

E]E]E]E]

RS
Task time: 6min $

Algorithm

@ level

Key Idea-3:
Hierarchical centralized/

decentralized coop. planning

Key Idea-4:
Heterogeneous A-star

subsystem and GPU subsystem

—

Action latency: 8s @

/Q\ /Q\
T geudes

Success rate: 94%

:..:

Action latency: 1s

level

-

Hardware

@ level

Goal: Improve runtime efficiency, performance, and scalability of
cooperative embodied Al agent systems
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Long-Horizon Task

Performance

Embodied Al Agent System Optimization

Goals

Challenges

Challenge-1:

This Work
(ReCA)

Q
Qe

Long planning &
communication latency

Challenge-2:

>

Low cooperative efficiency
& memory inconsistency
"

Challenge-3:

Limited scalability with

Latency and Energy

Efficiency, Performance T
Scalability

CSLSC @ UIUC

large number of agents

Challenge-4:

Sensitivity of low-level

planning and execution
"

J

Key Idea-1:
Local LLM & Planning-

Methodology

5N

guided multi-step execution

Key Idea-2:
Dual memory structure: long-
| term and short-term memory |

Task time: 18min $$$

E]E]E]E]

—>

High-level planning Low-level execution

RN
Task time: 6min $

Algorithm

@ level

Key Idea-3:
Hierarchical centralized/

decentralized coop. planning

Key Idea-4:
Heterogeneous A-star

subsystem and GPU subsystem

>

Action latency: 8s @

/Q\ /Q\
T geudes

Success rate: 94%

[ ROE

Action latency: 1s

level

-

Hardware

@ level

Deployment

Configurations:
ﬁ- system &

hardware

v

Evaluate: across

scenarios,
number of
agents, tasks,

environments, etc

vy __

7

\.

Target: real-time
and efficient
cooperative

embodied agents

J

Goal: Improve runtime efficiency, performance, and scalability of
cooperative embodied Al agent systems
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Evaluation Results

e
=)
5 98 15 5
- N
S|l N o | © 1 E
.\\\ S, >\ .
[72] N L b
29 Ny | N 9 &
My, Q I\\\ '\\\- 3
e 88 AN o g 6 = @
L \ \ N
“ %6 N N : 3 i
'M \ 3 '\\\: . ., g
S 84| L2 = | s < 0 &

Task 1 Task2 Task3 Task4 Task 5 Task 6

Task Descriptions
1 Find and place 3 forks and 1 plate into the dishwasher
Find and place 1 bottle of wine, 1 pancake, 1 pound cake, 1 juice, and 1 apple on the kitchen table
Find and place 3 forks into the dishwasher
Find and place 1 pudding, 1 juice, 1 apple, and 2 cupcakes on the coffee table

Find and place 1 bottle of wine, 2 cupcakes, and 1 pudding on the coffee table

N W

Find and place 1 bottle of wine, 1 juice, 1 apple, 1 cupcake, and 1 pound cake on the kitchen table

- .
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Autonomous Machines (Agentic System)

: [ Cognition Capability ]

Human-like reasoning

Trustworthy decision making
E) Human-agent interaction

[ Autonomy Capability ]

Perception, Localization,
Mapping, Planning, Control,
Learning-based navigation

My Research:
Cross-Layer Approach

Application

Requirements

( )

Real-Time
| Performance |

Hardware Silicon

Energy
 Efficiency

\

Design
| Scalability |

4 .. )
Safety-Critical

| Reliability
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[@CICC’22]

(2) Research Question:

How can we improve robotics autonomy’s real-time
performance and energy efficiency?
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Autonomy: Localization and Mapping

Software Optimization

(e.g., quantization, sparsity)  Camera

A

Simultaneous Localization

Feature
Tracks
and Mapping
(SLAM)
Estimated
States
(. R
Hardware Optimization

(e.g., optimized dataflow, Mapping
compute unit)

>

Lower processor

operating voltage Example: Simultaneous Localization and Mapping (SLAM)
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Key Domain-Specific Arch Design Techniques

Time-multiplexed Update modules

- =+ Feature (Row) - Stationary Dataflow

i ;. - [ VT |
Cholesky Decomposition Circuit ! | e 1
F2 F . . : [ ! —> |
F1 3 Jacobian Matrix ' (Evaluate + Update) i . | ii Staget [E[ U1 ] Tme |
01020304 g | ot =
I 1
Fil-4-4-4+» P Evaluate | _ | : :i : : i
1y ® 0 . . \
— P11 i | o i
1 : |
o) Fa[-d-4-1= | E B! Update#6 (U6) i: Stage 6 €] Us | |
[N
K1 K2 i i Hardware Reslources= E E P"OCGSSiINQ Timg i
. : ! i | . |
K: Keyframe F: Feature O: Observation |1 Baseline | oo pr || Baseline |a.97 ms!
i i h 1
X

Time- l31 39 LUT | Time- ! !

i ﬁl ‘ g | multi -47 0.69 ms
ultiplexed , | multiplexed ] H
and Pipeline 33X | 4860 FF | |and Pipeline 575 | .

mi
. . D P B 1! andPipelinel %X 1 4880FF 1\andPipelinel > 0 .
Data reuse and dataflow Time-multiplexing and pipelining
-V e T
— . ~ i —
Software Feature MLevenl()j?rgI;_—ME Marginalization 6 DoF poses +
Processing | Points a:lquar.th( )f Calculation 3D coordinantes
g gorl m : \ 4: \ J
Hard Runtime Reconfig. :|Runtime Reconfig. P State Vector
""""""""""""""""""""" of,;r:t?;ﬁ Sensors | + Clock Gating ;‘LS ISoI\;er :| + Clock Gating Mzrglnlallzz:tlon (Localization +
--------------------------------------- (RR + CG) ccelerator . (RR + CG) ccelerator

Co- :
observation :

™~ 7

EuRoC Dataset

|
]
|
I
]
]
|
]
]
}
:
|
Mapping) :
|
}
]
|
]
|
|
]
]
|
]
]

Feature | # Iterations | # Schur | # Update g 5.48W 3.45W
> — — Points | in NLS blocks | blocks Lookup Table SITT 1 -
Feature | ["0-200 6 47 97 0.3 kb 1.59x
Asynchronous Points > 500250 5 2 63 ( )
250-300| 4 35 42 ~ Automated Self-Update
............................................................ %~/ with New Environments
720 kb 4.1x reduction » 175.97 kb Baseline RR+CG |
Memory layout, symmetry, sparsity Runtime reconfigurability and clock gating
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@ Key Takeaways:

Domain-specific co-design and design-technology co-
optimization unlock system performance and efficiency

Autonomous machines need spatial-aware computing that
consider environment dynamics and heterogeneity
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Low-Voltage Processing Reduces Energy

SRAM Access Energy vs. Operating Voltage

Software Optimization

(e.g., quantization, sparsity)
A

o
ot

&
o
1

Do
ot
1

Energy per
SRAM Access (nJ)

>
Hardware Optimization

(e.g., optimized dataflow,
specialized compute unit)

g
o
1

065 070 075 080  0.85
Normalized Operating Voltage (Vi)

Lower processor Data measured from 14nm FinFET SRAM chips
operating voltage :

P & & Lower operating voltage
Energy « Voltage 2 quadratically reduces energy
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[@ASPLOS’243]

Low-Voltage Processing Bring Variations

Software Optimization

(e.g., quantization, sparsity) Research Question:

A

How can we safety achieve
aggressive energy-savings
>
Hardware Optimization under low-voltage for

(e.g., optimized dataflow, autonomous systems?
] specialized compute unit)

Lower processor
operating voltage

Energy o Voltage 2
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MUIlBERRY: Low-Vol Efficient Auto. Machines

* Design Objective: Aggressive energy-savings under low-voltage operation,

yvet computationally-resilient for swarm autonomous drone systems.
* Design Principle: Cross-layer swarm robust learning framework, integrates

algorithm-level error-aware learning with system-level collaborative
optimization and hardware-level thermal-voltage adaptive adjustment.

Reliability

* MulBERRY

AN
00

Voltage

Offline Learning

On-Device Robust Learning

Agent,
‘# k- @ Dynamic
OO V\e\l Server Para.
(D Payload [ V/F | S S
Optimization ()’l‘+ S Ve
@Collaborative : .
Sprint-or-Slack Oy~ I:>
Agenty e
A, ’g/k- @ Dynamic
L th > OO N Communication
. ST oY V/F Adjustment
injected random
bit-flips Learn with actual low-voltage bit-flips

Improvements

Robustness
Success Ratef

Efficiency

Processing ‘
Energy

Quality-of-Flight
Flight Energy{
#Missions 1

( )
Q Two-Stage Swarm

Robust Learning )

( Low-Voltage h

Q Payload
Optimization  J

Y4

Collaborative
Q@ Sprint-or-Slack
\ Operation )
N

Adaptive Swarm

Q Knowledge Sharing
\ J

CSLSC @ UIUC
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Evaluation: Efficiency Improve Across Scenarios

DJI Tello UAV i\ | .
Sparse Obstacle Medium Obstacle
Sparse Medium Dense
] B Environment| Flight Num.of | Flight Num.of| Flight Num. of
UAV 1 (Chip 1) UAV 2 (Chip 2) Energy (J) Missions |Energy (J) Missions |Energy (J) Missions

Baseline @1V 52.41 58.56 75.80 40.15 102.4 28.04
MulBERRY 42.02 71.63 61.42 49.01 85.77 33.79

UAV3(Chip3)  UAV 4 (Chip
MulBERRY is adaptive across drones, hardware chips, environments, agent numbers, tasks,
and consistently improves mission efficiency
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@ Key Takeaways:

Low-voltage operation leads to energy savings in both
compute and end-to-end mission energy

Optimizing autonomous system cyber components (compute)
impacts its physical performance
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Design Accelerators for Each Algorithm?

Robot Applications

'

\

—>

o E

Robot Algorithms

. 1/ »
{// I\/ Y]
] , /
il }
\ \ e
" -
»
-
b e
- ¢ -
- ¢
-

Localization

Vehicle

! Programmable Accelerators ! Dedicated Accelerators

sweeper Manipulator Drone

Strength: High generality
Weakness: Less effective in
exploiting specific sparse structures

Control

Planning

Strength: High performance
Weakness: High NRE costs; Stacking
accelerators requires large chip area

CSLSC @ UIUC
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Design Accelerators for Each Algorithm?

8 A
= @ Solution 2
=
£ @ Solution 1
& >
Non-recurring engineering (NRE) cost
Programmable Accelerators Dedicated Accelerators
Strength: High generality Strength: High performance
Weakness: Less effective in Weakness: High NRE costs; Stacking
exploiting specific sparse structures accelerators requires large chip area
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[@ASPLOS’24b]

(2) Research Question:

How can we improve robotics domain-specific
accelerators design adaptability and scalability?
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Orianna: Accelerator Generation Framework
for Optimization-Based Robotic Applications

U 4 ORIANNA
U .
= @ Solution 2
=
£ @ Solution 1
& >
Non-recurring engineering (NRE) cost
! Programmable Accelerators ! Dedicated Accelerators
Strength: High generality Strength: High performance
Weakness: Less effective in Weakness: High NRE costs; Stacking
exploiting specific sparse structures accelerators requires large chip area
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Orianna Framework

Robot
Applications

vehicles

drones

manipulators

Robot
Algorithms

planning

control

Factor Graph & MO-DFG

localization

_[ Factor Graph Library (§5) ]_

Unified Pose Representation (§4)

ORIANNA

Software

Use factor graph as
unified abstraction;
Build flexible factor

graph software library

Performance T

CSLSC @ UIUC

ORIANNA

> Compiler (85)

Latency & Resource
Constraints

ORIANNA
Compiler

Y

ORIANNA Accelerator (§6)

4 \

" Mat Mat
Y. i : Add | | Add
Controllerl Matrix Operation 1 |/ — —
- N »] el - & .
Instruction Map > T Vi Ceereian 2 K Mutti | | Muti
A . . \. Mat Mat
Ingtructlon . Trans | | Trans
Pre-designed Dispateh Matrix Operation N |\ N DMat DMat
eco eco

Hardware Templates - <

Accelerator

Compiler transforms diverse
algorithms into unified
factor graph instructions

and data flow graph

Generality & Scalability T

Different robotic algorithms

can be executed concurrently

on the Factor Graph
Accelerator

Resource Utilization T
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Evaluation - Benchmark

__

Variable dim
Mobile Robot LiDAR Collision-free
Factor
GPS Smooth
Manipulator Variable dim 2 4
Auto Vehicle Variable dim 3 6
Quadrotor Variable dim 6 12

CSLSC @ UluC Zishen Wan | School of ECE | Georgia Institute of Technology
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2,2
5,2
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Evaluation - Setup and Baseline

Xilinx ZC706 FPGA 167 MHz

Detailed Information short Title

16-core Intel 11th i7-11700

High-end desktop CPU CPU Intel
Processors Lower power mobile CPU 4-core ARM Cortex-A57 ARM
Embedded GPU 256-core NVIDIA Maxwell GPU
GPU —
Directly accelerates matrix
Accelerator for dense matrix operations operations used in VANILLA-HLS
Accelerators Optimization prOblemS
Accelerator utilizing factor graphs to Simple integration of three
L : STACK
accelerate individual algorithms accelerators —
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Evaluation - Performance vs Processor

128

. B - - B

Manipulator = MobileRobot  AutoVehicle Quadrotor
B ARM N Intel GPU mEORIANNA-IO ©E ORIANNA-O00O

W
N

Average Speedup (x)
(00

ORIANNA demonstrates a signicant speedup of 53.5x over ARM, 6.5x over
Intel and 28.6x over GPU.
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Large Design Space

Components Design Space

1Ll

3] =
= ACC =
— -

Onboard . s
NCS Ras-pi ~ Custom
Compute ™2 Accelerator

~QO (100 Millions)
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Large Design Space

Components

Design Space

Autonomy
Algorithms

_—
ox

> #

i

DroNet TrailNet CAD2RL Custom

~0 ( 100 Bll/lons) .
Onboard Ay
NCS Ras-Pi Custom
Compute as-rl Accelerator
~0 ( 100 Millions)
CSLSC @ UIuC
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Large Design Space

Components Design Space
'y == /| i .
Sensors o e e Research Question:
~0 (10)
Autonomy | = @ KR How can we design DSAs to
Algorithms | DroNet TrajiNet CAD2RL Custom . .
-0 (100 Billions) handle the increasing levels
ey | o HE T of system complexity?
[ NCS X2 Ras-Pi Custom
Compute Accelerator
~QO (100 Millions)
7;.*’ o~ *
UAV Mini‘j’UﬂAV Micro-UAV Nano-UAV
Platform
~O (10-100)
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Our Solution: AutoPilot

Components

Design Space

Sensors

RGB  RGB-D  Lidar
~0 (10)

Autonomy
Algorithms

- 2 & 06
DroNet TrailNet CAD2RL Custom
~O (100 Billions) .

Onboard
Compute

== o 1
NCS TX2 Ras-Pi Custom

Accelerator

~QO (100 Millions)

UAV
Platform

’,‘:&‘ F o .

Mini.UAy  Micro-UAV  Nano-UAV
~0 (10-100)

CSLSC @ UIUC
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Our Solution: AutoPilot

Components Design Space
oo === Q
2onsers RGB  RGB-D  Lidar
~0 (10)
Autonomy = @ * 3
Algorithms | DroNet TraiiNet CAD2RL Custom

[@MICRO’23]

System-on-chip (SoC)

: O
J ; v/m
[ 2MB
¥OeeaaE | S Mini-uav
"000000 $ System

Nano-UAV ‘F%

System

-

Micro-UAV |
System

~0 (100 B/ll/ons) .
Onboard - E C:u's";o:m
Compute il Accelerator
~0 ( 100 Millions)
UAV Mini-UAy  Micro-UAV  Nano-UAV
Platform
~0 (10-100)
CSLSC @ UluC
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[@MICRO’23]

AutoPilot Framework

Bag of Arch Optimizatio

| | | * Frequency Scaling | |
I | <Update Policies> : * Technology Scaling : ;
I 1
' ' - p : : : Optimal Policy :
: : Design Space Exploration Engine | v I & |
| | ---------------------------------- | TaSK-Sy Stem Pareto <Select Design points>Architectural | Hardware Accelerator!
: E2E : | NN : Framiers Fine-Tuning : :
H No Obstacles
: Algc?ri_thm : Parameters : ;Z ::i : AR ,iJI;IN :
Tralning | 1| % Co-desi gim Policy
| ! . ' . §.o5 | H H § gn \ P\ |
' ‘ : oBgﬁfﬁiln L ik i with F-1 I— | |
: : P Parameters| Cycle Accurate R TIoN el [ Model | soc |
HW Simulator | % 10 20 30 40 50 60 | £ |
: Specification m : 77777 Parameters | | e 7y I ﬂ Architecture |
.S Rate > 90 | L | |
: i s rate:[30,60] FPS : |<S°C Power; <@max” N I
W S't{’r;%e‘g"’,‘ff mreg| ) <Performance, Power, Success Rate> : Compute Weight : i - o :
I | « Optimization Target: Velocity | | Modelling | b "
: 1 : <Filtering By: Success Rate> | | W |
—— . | - |
: : <Optimization target: Velocity> : | |
W ) ¢ N Y ]
1 v LAl LAl 7,

Automating SoC Design Space Exploration for Size, Weight, and Power Constrained
Autonomous UAVs
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—

I (Domain-specific)

4

* Success Rate > 90
* Sensor Frame rate:[30,60] FPS
e TDP: [1-10] Watt
* Thrust-to-Weight Ratio:[1.5 - 3]
* Optimization Target: Velocity

Input the specification

Specification

M
Specification

I

Phase

Specification

Success Rate >90 Sensor configuration =~ Compute configuration System configuration
Sensor Frame rate: [30, 60] FPS © Frame rate © TDP * Weight
TDP: [1-10] Watt " RGB * Latency * Thrust

' e LIDAR * Throughput . .

Thrust-to-Weight Ratio: [1.5-3]
Optimization Target: Velocity
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<Update Policies>

Parameters| Cycle Accurate

i NN
Parameters
Bayesian
Optimization N
HW Simulator
Parameters

<Performance, Power, Success Rate>

<Filtering By: Success Rate>

Training Started..

<Optimization target: Velocity>

Optimization

Phase

Horvor@odge

(Domain-agnostic)
Algorithm-Hardware
Co-Design Optimization

Sample the Model to

UpdasoBdae);esuan /\K7 »| Maximize Expected
Improvement
SW
Evaluate Safety Hyperparameters:
of the ANN on BayesOpt + Learning rate, , ...
various scenarios HW Number of layers
+ Number of PEs, ...
prsamernd Train the NN Create NN using
Performance H t
of the ANN on HW UESIDMSC I

Neutral Network

W)

Total power (

10

T P S S
.
.

L]
|
_eefg e o ‘\ )
2F f |
oo, :."b. ° ° o
A.':.o © %% l'..o‘:'.\ ? o % o
|

010 20 30 40 50 60 70
Accelerator Runtime (ms)

CSLSC @ UIUC
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Bag of Arch Optimizatio [ @ I S PASS’ 2 3]

_ * Frequency Scaling
e Technology Scaling

?
[@CAL'20]
\/
Task-System Pareto  Select Design points>Architectural
Frontiers Fine-Tuning
10 No Obstacles 100
° 0 sog
g o g Co-design
yber-Physica G B L
P2 i a0 Model
%

10 20 30 40 50 60
Runtime (ms) -
- Yy S

[
- ~
Mapping oo ponsh == ] | |7
4+ ~ Compute Weight RN
- Modelling

=TT 4
=" Mapping
se-="" Phase Sl
Vmax 4 Vmax 4 Vmax % Roofline Vmax T

= n / 2 =y
S /: 9 : 9 Body g
% I Compute Ceiling o ; Sensor Bound (9] Dynamic o
= b ! > 1 > >
O I I Q@ | Q@ Bound Q@
o i <+«—+—— Compute Bound © 1 © 38
(Va] i 1 2] 1 n

fc fs fk fs fk . i

Action Throughput (Hz) Action Throughput (Hz) Action Throughput (Hz) Action Throughput (Hz)
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Optimal Policy
+
Hardware Accelerator

AYA DNN
v“s;a‘-)&o
X '3* ". Policy

ﬂ SOC
‘Architecture
w

Deployment
Phase

Inspired by nature, we mimic this behavior on a 33-gram nano drone

Mini UAV Micro UAV Nano UAV
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CSLSC @ UIUC

[@ICRA’24]

RobotPerf

“If You Can’t Measure It, You Can’t Improve it” - Peter Drucker

W
Qe
I\ RN

* A Benchmarking Suite for Evaluating Robotics Computing Performance

2

+

Perception

/7
7
-
=
N
~
~
N
N

Localization

|||||I|||

Wiy
Nre
[
|
dipits

Control
///[— _—\\\ .( . . )
it Navigation
RobotPerf . & )
(your hardware) Benchmarks r

Manipulation

Collaborative efforts across 10+ universities & industries
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@ Key Takeaways:

Focusing on fragments in isolation leads to overlooking
interdependencies and system-wide implications

Prioritizing system morphology can lead to greater domain-
specific architecture adaptability and efficiency
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Autonomous Machines (Agentic System)

— [ Cognition Capability ] Cross-Layer Approach

Human-like reasoning

Trustworthy decision making '
E) Human-agent interaction@ i

U [ Autonomy Capability ]

Perception, Localization,
Mapping, Planning, Control,
Learning-based navigation

My Research:

Application

Requirements

( )

Real-Time
| Performance |

Hardware Silicon

Energy
 Efficiency

\

Design
| Scalability |

4 .. )
Safety-Critical

| Reliability
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Summary: Core Research Methodology

01. Application Discovery: Deeply understanding an application
through deep characterization to identify and address the
underlying problem space.

Application
Discovery

02. Systems Thinking: End-to-end design of complex systems,
where every element is considered as interconnected and part of
a larger, integrated whole.

Systems
Thinking

Co-Design
Intelligence

03. Co-Design Intelligence: Developing software, architecture,
and silicon prototype that incorporate insights from application
discovery and systems thinking to automatically design solutions.
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Vision for Future

90% basic functions 10% basic functions
10% end-user applications 90% end-user applications

Boie
Ao

getow

90% basic autonomy functions 10% basic functions (perception/planning/control)
10% end-user applications 90% AGI (reasoning, cognition, human-Al)

Our research

L) —

software-system-hardware
co-design intelligence
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