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Executive Summary

* Understand neuro-symbolic workloads from architectural and
system perspectives.

* |dentify optimization opportunities for neuro-symbolic systems.

* Demonstrate scalability and efficiency improvement of neuro-
symbolic workload via co-designed system.
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Neural Networks in Our Daily Life
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Chat GPT

How can | help you today?

Medical Diagnosis Financial Services Recommendation Systems ChatGPT
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But... Is That Enough?

get 1 block? (2)

Complex Question Answering

NN accuracy: 50%

Interactive Learning
NN accuracy: 71%

(i) Remove all gray spheres. How many
spheres are there? (3), (ii) Take away 3 QO
cubes. How many objects are there? (7), —

(iii) How many blocks must be removed to , .} ‘ o []
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Abstract Reasoning
NN accuracy: 53%

Scenario

Imagine that a stranger will give Hank one thousand dol-
lars to break all the windows in his neighbor’s house
without his neighbor’s permission. Hank carries out the
stranger’s request.

Imagine that there are five people who are waiting in line
to use a single-occupancy bathroom at a concert venue.
Someone at the back of the line needs to throw up imme-
diately. That person skips to the front of the line instead
of waiting in the back.

At a summer camp, there is a pool. Right next to the pool
is a tent where the kids at the camp have art class. The
camp made a rule that there would be no cannonballing in
the pool so that the art wouldn’t get ruined by the splashing
water. Today, there is a bee attacking this kid, and she
needs to jump into the water quickly. This kid cannonballs .
into the pool.

Ethical Decision Makin
NN accuracy: 65%

IMO 2015 P3

“Let ABC be an acute triangle. Let
(O) be its circumcircle, H its
orthocenter, and F the foot of the
altitude from A. Let M be the
midpoint of BC. Let Q be the point
on (O) such that QH L QA and let K
be the point on (O) such that KH L
KQ. Prove that the circumcircles
(O,) and (O,) of triangles FKM and
KQH are tangent to each other.”

Automated Theorem Proving
NN accuracy: 20%

Farmer John has N cows (2 < N < 10°). Each cow has a breed that is either
Guernsey or Holstein. As is often the case, the cows are standing in a line,
numbered 1--- N in this order.

Over the course of the day, each cow writes down a list of cows. Specifically,
cow ’s list contains the range of cows starting with herself (cow i) up to and
including cow E; (i < E; < N).

FJ has recently discovered that each breed of cow has exactly one distinct leader.
FJ does not know who the leaders are, but he knows that each leader must have
a list that includes all the cows of their breed, or the other breed’s leader (or
both).

Help FJ count the number of pairs of cows that could be leaders. It is guaranteed

that there is at least one possible pair. T
%' Problem

Competitive Programming
NN accuracy: 28.7%

HPCA 2025
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But... Is That Enough?

Neuro-Symbolic Al
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What is Neuro-Symbolic Al?

L i /Symbolic\ o
Recognition imi Explainability
Flexibility ! i Knowledge !
Scalability i/—\i ‘% Data Efficient i

Towards Cognitive and Trustworthy Al Systems
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Neuro-Symbolic Al Example: Visual Reasoning

Question: Are there an equal number of
large things and metal spheres?

Slide Adapted from MIT 6.5191: Neurosymbolic Al
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Neuro-Symbolic Al Example: Visual Reasoning

Question: Are there an equal number of
large things and metal spheres?

Slide Adapted from MIT 6.5191: Neurosymbolic Al
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Neuro-Symbolic Al Example: Visual Reasoning

Question: Are there an equal number of
large things and metal spheres?

3 large 3 metal
things! spheres!
O

O

Slide Adapted from MIT 6.5191: Neurosymbolic Al
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Neuro-Symbolic Al Example: Visual Reasoning

Question: Are there an equal number of
large things and metal spheres?

‘

[ Equal? Yes! ’\
a J
-

3 metal ]

i spheres!
O

O

Slide Adapted from MIT 6.5191: Neurosymbolic Al
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Neuro-Symbolic Al Example: Visual Reasoning

Question Understanding

Question: Are there an equal number of
large things and metal spheres?

~

/v [Equal? Yes! ‘\
J

3 large O i 3 metal
things! 0O i spheres!
O

O

Visual Perception Logical Reasoning
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Other Examples

= Google DeepMind

AlphaGeometry: An Olympiad-level Al system

" ‘.
O.‘
‘

AIphaGeometry adopts a neuro-symbolic

approach

AlphaGeometry is a neuro-symbolic system made up of a neural language model
and a symbolic deduction engine, which work together to find proofs for complex
geometry theorems. Akin to the idea of “thinking, fast and slow”, one system
provides fast, “intuitive” ideas, and the other, more deliberate, rational decision-

making.

for geometry

17 JANUARY 2024

Trieu Trinh and Thang Luong

< Share

A simple problem

A

LN,

B &

Theorem premises:
Let ABC be any triangle with AB=AC
Prove that angle (£) ABC= ZBCA

AlphaGeometry
[% Language model J
Add a Not
construct -----..-- . solved

Solution

> « Construct D: midpoint BC

Solved |
Q Symbolic engine J L

« AB=AC, BD=DC, AD=AD = ZABD= £ZDCA
« £ABD= £DCA, B C D collinear =
Z ABC=ZBCA

LLM: construct auxmary points and lines

Symbolic: deductive reasoning

Trinh et al, “Solving Olympiad Geometry without Human Demonstrations”, Nature 2024

HPCA 2025
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Eval on 30 Int. Math Olympics (IMO) problems:
 GPT-4:
* AlphaGeometry (Neuro-Symbolic): 25/30
Human Gold Medalist:

8/30

26/30
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Relationship to Human Minds

c e
The International .
Bestseller AlphaGeometry adopts a neuro-symbolic
" approach

e AlphaGeometry is a neuro-symbolic system made up of a neural language model
Thinking, e and a symbolic deduction engine, which work together to find proofs for complex
Fast and Slow geometry theorems. Akin to the idea of “thinking, fast and slow”, one system

‘ _ A provides fast, “intuitive” ideas, and the other, more deliberate, rational decision-
i i .
making.

Daniel Kahneman
Winner of the Nobel Prize O

Daniel Kahneman
(1934-2024)
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Relationship to Human Minds

ol b @ Neural
The Inter national FleXIble Scalable
Bestseller
X Black-box, Data
System 1: thinking fast
T~ (intuitive perception)
Thinking, |
Fastand Slow
IE - e g
Daniel Kahneman
Winner of the Nobel Prize 0

Daniel Kahneman
(1934-2024)
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Relationship to Human Minds

S f((.)o Neural ‘% Symbolic

ggsi ggltlzl;naﬁonal Flexible, Scalable Reasoning, Transparent
X Black-box, Data X Scalable, Learnable

System 1: thinking fast System 2: thinking slow

L (intuitive perception) (logical reasoning)

Thinking, |

Fastand Slow

Daniel Kahneman

Winner of the Nobel Prize 0

Daniel Kahneman
(1934-2024)
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Relationship to Human Minds

The International
Bestsellgr

Thinkiﬂé; -

Daniel Kahneman
Winner of the Nobel Prize

Daniel Kahneman
(1934-2024)

Fast and Slow | |

0

@ Neural i M[ é%ﬁ Symbolic

& Flexible, Scalable Fr

Reasoning, Transparent

X Black-box, Data y
System 1: thinking fast

X Scalable, Learnable
System 2: thinking slow

(intuitive perception) D (logical reasoning)

r

Neurosymbolic System

Human-like Cognition, Reasoning, Transparent
Scalable, Flexible, Learning, Data-efficient

~
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However.. From Computing Perspective

= 100% \ s

S Better @ Neural f%ﬁ Symbolic

g? , ™ Flexible, Scalable M & Reasoning, Transparent
= 80% X Black-box, Data (X Scalable, Learnable

<QC) System 1: thinking fast System 2: thinking slow
':4‘@ 60% (intuitive perception) D (logical reasoning)

- ~ : ~
0 Neurosymbolic System

= 40% Human-like Cognition, Reasoning, Transparent
go 101 100 10! 102 Scalable, Flexible, Learning, Data-efficient )
O Latency (s): @ TPU ©GPU
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However.. From Computing Perspective

' 100% \ s

S Better @ Neural o\ f%ﬁ Symbolic

§ . ™ Flexible, Scalable (™4 @ Reasoning, Transparent
§ 80% X Black-box, Data X Scalable, Learnable

<‘E Sy.sten? .] : thinking fast System. 2: thinking slow
A2 0% (intuitive perception) D (logical reasoning)
e Neural e ™
V mo Neurosymbolic System

= 40% Human-like Cognition, Reasoning, Transparent
§° 101 100 10! 102 Scalable, Flexible, Learning, Data-efficient )
O Latency (s): @ TPU ©GPU
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However.. From Computing Perspective

100%

80%

60%

40%

Cognitive Task Accuracy (%)

HPCA 2025

Better
o ([
Symbolic
Neural (e.g., rules, logic,
mo coded knowledge)
10-1 100 10! 10?

Latency (s): @ TPU ©GPU

@ Neural k Mf f%ﬁ Symbolic

™ Flexible, Scalable (™4 @ Reasoning, Transparent
X Black-box, Data X Scalable, Learnable

System 1: thinking fast System 2: thinking slow
(intuitive perception) D (logical reasoning)

g Neurosymbolic System

Human-like Cognition, Reasoning, Transparent
Scalable, Flexible, Learning, Data-efficient

~
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However.. From Computing Perspective

100%

80%

60%

40%

Cognitive Task Accuracy (%)
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Better Sl
Neurosymbolic
o
Symbolic
Neural (e.g., rules, logic,
mo coded knowledge)
10-1 100 10! 102

Latency (s): @ TPU ©GPU

@ Neural k Mf f%ﬁ Symbolic

™ Flexible, Scalable (™4 @ Reasoning, Transparent
X Black-box, Data X Scalable, Learnable

System 1: thinking fast System 2: thinking slow
(intuitive perception) D (logical reasoning)

g Neurosymbolic System

Human-like Cognition, Reasoning, Transparent
Scalable, Flexible, Learning, Data-efficient

~
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However.. From Computing Perspective

80%

60%

40%

Cognitive Task Accuracy (%)

HPCA 2025

100% ][

3 CogSys  <— O[]
reconfigurable ]
support for  Neurosymbolic
neural & symbolic
T N em
Symbolic
Neural (e.g., rules, logic,
mo coded knowledge)
10-1 100 101 102

Latency (s): @ TPU © GPU

@ Neural k a
N

& Flexible, Scalable Fr

X Black-box, Data
System 1: thinking fast

é%b Symbolic

Reasoning, Transparent

(X Scalable, Learnable

System 2: thinking slow

(intuitive perception) D (logical reasoning)

r

Neurosymbolic System

Human-like Cognition, Reasoning, Transparent
Scalable, Flexible, Learning, Data-efficient

~

J

Zishen Wan | School of ECE | Georgia Institute of Technology 21



(2) Research Question:

What’s the system implications of neuro-symbolic
workloads?

Why neuro-symbolic workloads are inefficient on
off-the-shelf hardware?

HPCA 2025 Zishen Wan | School of ECE | Georgia Institute of Technology
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Workload Profiling — Runtime
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(@) Neurosymbolic Workloads

Neuro-symbolic workload exhibits high latency compared to neural models;
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Workload Profiling — Runtime
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(@) Neurosymbolic Workloads (b) Hardware Devices

Neuro-symbolic workload exhibits high latency compared to neural models;
Symbolic component is executed inefficiently across off-the-shelf CPU/GPUs

HPCA 2025 Zishen Wan | School of ECE | Georgia Institute of Technology 24



Workload Profiling — Memory & Operator

? 100% %100% i . L . )
S g . e
S|l o 80% 5 80% >
E &b o E =
= ) — S
/p) o A o) —
B 60% < 60%| | — —
o g & g
5} 3 n N
P & B 5
o L 40% S 40% u =
5| E =
o =
Z 2 20% S 20%
calsls :
— 0% | = 0%
Ix1 2x2 3x3
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Symbolic components exhibit large memory footprint;
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Workload Profiling — Memory & Operator
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Symbolic components exhibit large memory footprint;
Symbolic operations are dominated by vector-symbolic circular convolutions
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Workload Profiling — Kernel Behavior

segmm_nn relu_nn vectorized elementwise

Runtime Percentage (%)
Compute Throughput (%)
ALU Utilization (%)

L1 Cache Hit Rate (%)
L2 Cache Hit Rate (%)
L1 Cache Throughput (%)
L2 Cache Throughput (%)
DRAM BW Utilization (%)

Why system Inefficiency?

HPCA 2025 Zishen Wan | School of ECE | Georgia Institute of Technology 27



Workload Profiling — Kernel Behavior

segmm_nn relu_nn vectorized elementwise

Runtime Percentage (%) 18.2 10.4 37.5 12.4
Compute Throughput (%) 95.1 92.9 3.0 2.3
ALU Utilization (%) 90.1 48.3 5.9 4.5

L1 Cache Hit Rate (%)
L2 Cache Hit Rate (%)
L1 Cache Throughput (%)
L2 Cache Throughput (%)
DRAM BW Utilization (%)

Symbolic exhibits low ALU utilization,

HPCA 2025 Zishen Wan | School of ECE | Georgia Institute of Technology 28



Workload Profiling — Kernel Behavior

segmm_nn
Runtime Percentage (%) 18.2
Compute Throughput (%) 95.1
ALU Utilization (%) 90.1
L1 Cache Hit Rate (%) 1.6
L2 Cache Hit Rate (%) 86.8

L1 Cache Throughput (%)
L2 Cache Throughput (%)
DRAM BW Utilization (%)

relu_nn

10.4
92.9
48.3
51.6
65.5

vectorized

37.5
3.0
5.9

29.5

48.6

elementwise

12.4
2.3
4.5

33.3

34.3

Symbolic exhibits low ALU utilization, low cache hit rate,

HPCA 2025
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Workload Profiling — Kernel Behavior

segmm_nn relu_nn vectorized elementwise

Runtime Percentage (%) 18.2 10.4 37.5 12.4
Compute Throughput (%) 95.1 92.9 3.0 2.3
ALU Utilization (%) 90.1 48.3 5.9 4.5

L1 Cache Hit Rate (%) 1.6 51.6 29.5 33.3
L2 Cache Hit Rate (%) 86.8 65.5 48.6 34.3
L1 Cache Throughput (%) 79.7 82.6 28.4 10.8
L2 Cache Throughput (%) 19.2 17.5 29.8 22.8
DRAM BW Utilization (%) 14.9 24.2 90.9 78.4

Symbolic exhibits low ALU utilization, low cache hit rate, massive data transfer, low data
reuse, resulting in hardware underutilization and inefficiency

HPCA 2025 Zishen Wan | School of ECE | Georgia Institute of Technology 30



Workload Profiling — Roofline Analysis

segmm_nn

Runtime Percentage (%)
Compute Throughput (%)
ALU Utilization (%)

L1 Cache Hit Rate (%)
L2 Cache Hit Rate (%)
L1 Cache Throughput (%)
L2 Cache Throughput (%)
DRAM BW Utilization (%)

18.2
95.1
90.1
1.6
86.8
79.7
19.2
14.9

relu_nn

10.4
92.9
48.3
51.6
65.5
82.6
17.5
24.2

vectorized

37.5
3.0
5.9

29.5

48.6

28.4

29.8

90.9

elementwise

12.4
2.3
4.5

33.3

34.3

10.8

22.8

78.4
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[=] Symbolic

[-7] Neuro

\

Attainable Performance (TFLOPS/s)
=)

102 10! 10° 10! 102 10°
Arithmetic Intensity (FLOPS/Byte)

Symbolic exhibits low ALU utilization, low cache hit rate, massive data transfer, low data
reuse, resulting in hardware underutilization and inefficiency

HPCA 2025
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(?) Research Question:

How to enhance the efficiency and scalability
of neuro-symbolic systems?

HPCA 2025 Zishen Wan | School of ECE | Georgia Institute of Technology
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Our Methodology

Goals
2
= | % CogSys
E \
5]
@)
O]
2
sl B
g
O Neurosymbolic Al
Energy and Latency

Efficiency, Performance ?
Scalability, Interpretability
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Our Methodology

Goals Challenges
> Challenge-1:
% 72{ CogSys Large memory
< footprint )
= AN [/ S L
O { '
0 Challenge-2:
I*é @3 + ‘ﬁc}i Sym{aolic qperation
an inefficiency
8 Neurosymbolic AI |
Energy and Latency Challenge-3:
. Hardware
Efficiency, Performance f underutilization
Scalability, Interpretability )
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Our Methodology

Goals Challenges Methodology

E % CogSys L(c:zlrlgll;e;egni;lr:y — Gy LL6es ¢
B : Efficient factorization
< footprint )
2l N |l )~
O N
0 Challenge-2:
I*é @3 + ‘ﬁoi Sym{aolic operation
an inefficiency
8 Neurosymbolic Al | S——

Energy and Latency Challenge-3:

. Hardware
Efjiciency, Performance f underutilization

Scalability, Interpretability
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Our Methodology

Goals Challenges Methodology

) J CogSys L(; l;ga;l’e?zlegn:;lr; | Key Idea-1:

B : Efficient factorization
< footprint ) | )
= I NI i/ S L S ——

&) S 4
0 Challenge-2: Key Idea-2:

I*é @3 + 6@% Symbolic operation Reconfigurable arch
an inefficiency for neural & symbolic

8 Neurosymbolic Al — [N S a

Energy and Latency Challenge-3:
. Hardware
Efjiciency, Performance f underutilization

Scalability, Interpretability
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Cognitive Capability

Efficiency, Performance
Scalability, Interpretability

Our Methodology

Goals

72( CogSys

N
o

Neurosymbolic Al

Energy and Latency

HPCA 2025

Challenges

Methodology

Challenge-1:
Large memory
footprint

Key Idea-1:
Efficient factorization

Challenge-2:
Symbolic operation =

inefficiency

Key Idea-2:
Reconfigurable arch
for neural & symbolic

Challenge-3:
Hardware —
underutilization

Key Idea-3:
Adaptive scheduler
for neural & symbolic

\ 7
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Cognitive Capability

Efficiency, Performance
Scalability, Interpretability

Our Methodology

Goals

72( CogSys

N
o

Neurosymbolic Al

Energy and Latency

HPCA 2025

Challenges

Methodology

Challenge-1:
Large memory
footprint

Key Idea-1:
Efficient factorization

Challenge-2:
Symbolic operation =

inefficiency

Key Idea-2:
Reconfigurable arch
for neural & symbolic

Challenge-3:
Hardware —
underutilization

Key Idea-3:
Adaptive scheduler
for neural & symbolic

Architecture

Reconfigurable
 Neuro/Symbolic PE |

" Bubble-Streaming |
Dataflow

" Spatial-Temporal |
Mapping

Scaling Up/Out

Adaptive

\ 7

Scheduling
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Our Methodology

Goals
2
= 7&( CogSys
E \
5]
O
D)
2
Z @“ﬁ%
g
O Neurosymbolic Al
Energy and Latency

Efficiency, Performance

Scalability, Interpretability

Challenges

Methodology

Challenge-1:

footprint

Large memory

Key Idea-1:
Efficient factorization

Challenge-2:
Symbolic operation =

inefficiency

»1 Reconfigurable arch

Key Idea-2:

for neural & symbolic

Challenge-3:
Hardware —
underutilization

»| Adaptive scheduler

Key Idea-3:

for neural & symbolic

\

Architecture

Reconfigurable
Neuro/Symbolic PE

Bubble-Streaming
Dataflow

Deployment

Configurations:
hardware & system

v

| Spatial-Temporal |
Mapping

Scaling Up/Out

Adaptive

Evaluate: across cognitive

N\

tasks, scales, complexities,
hardware configs

7

Y

{ N

Scheduling

Target: efficient and
scalable human-fluid

intelligence and cognition

HPCA 2025
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Hardware Architecture Overview

HPCA 2025

(a) Overall Architecture

(b) Scalable Compute Array

y
/ | SRAMA
Host SoC /
/ o] Wil 4
CPU DRAM / |
Controller / ¥
/ =
Memory bus Ctrl bus // %
DRAM / 5 5 5
Jt Memory bus v /‘ _‘I,:'- D
iR
Neuro-Symbolic Accelerator]
Reconfigurable Neuro/ as]
Symbolic Compute Array é
#Memory bus $ Ctrl bLs‘ = —"D D
Workload | |} v v
Scheduler | \ :
¥ A
SRAM Y 4 cotbus \\
| Memory \
~ | Controller \\
#Memory busV Ctrl bus \ : ;
\ || 4
Custom SIMD Unit \ D ﬁ T
SRAM C

(c) Reconfig. Neuro/Symbolic PE

L “next

ACC

¥|_/
6 top_in_A,,, Jtop_in_B,,,
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Reconfigurable Neuro/Symbolic PE

top_in AQ) top_in B )

D PASS
left_in N
[ A ] B
>(%)< D
left|in,,,

[Yj top_in_A,,, O fop_in_B,,,

Micro-architecture of
reconfigurable neuro/symbolic PE

[ Reconfigurable neuro/symbolic PE incurs low area overhead based on systolic array PE; ]
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Reconfigurable Neuro/Symbolic PE

top_in AQ) top_in B )

I
I
I Load Mode GEMM Mode (Neuro, Symbolic) Circular Convolution Mode (Symbolic) I
D : PASS : top_in_ AQ top_in_ A U top_in_A top_in_B § |
left_in ‘ N—— I PASS »_ PASS |
| A | B I left_in b  — :
()~ D | Ca] B A]| [B] Al [B] ,
Zeﬁ__innext I = : r;(\ ! o . Q I
: : © left|in,,,, © :
I . ACC ACC |
I
: ) N I
[YJ top_in_A,,, O top_in B, | @) ‘mp 1 A (b) ‘top—in—Anext (©) ﬁtOp_in_A,,ex, @lop_in B, |
—  — Tnex —  —  nex I
| o o e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e
Micro-architecture of Operation mode of
reconfigurable neuro/symbolic PE reconfigurable neuro/symbolic PE

Reconfigurable neuro/symbolic PE incurs low area overhead based on systolic array PE;
The PE is reconfigurable for three operation modes: load, neuro, symbolic
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What is Circular Convolution?

HPCA 2025

A1B1+A2B2+A3B3

A1l (B1] A1B1+A2B2+A3B3
A2 |o| B2| = | A1B3+A2B1+A3B2
A3 | B3 A1B2+A2B3+A2B1
Al Al
X X
B2 \
B3 Bl
VA~ Y A3
A1B3+A2B1+A3B2 A1B2+A2B3+A2B1

Zishen Wan | School of ECE | Georgia Institute of Technology
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Bubble Streaming Dataflow

Vector-Symbolic Circular Convolution Example (3 CircConv): TPU-like Systolic Array: Implement as three GEMV Multiplication Cycles:

CircConv #1: (A1, A2, A3)® (B1, B2, B3) [. .»! .»!»

CircConv #2: (C1, C2, C3)® (D1, D2, D3)

CircConv #3: (E1, E2, E3) @ (F1, F2, F3) .—" .—" .—‘:
[E—Hpat-oal-for] (53— +{es}-fea}-ea) [Fa——[es}-{e2}-fEA)

CircCony #1 Computation: “CircConv #1 “CireConv #2 “CircConv #3

(Al,A2,A3)® (B1,B2,B3) = TPU: Finish at (3n+15) = 24 cycles

(A1B1+A2B2+A3B3, A1B3+A2B1+A3B2, A1B2+A2B3+A2B1)

éor symbolic operation: \
e TPU-like array suffers from low
parallelism & high memory access;

o J
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Bubble Streaming Dataflow

Vector-Symbolic Circular Convolution Example (3 CircConv): TPU-like Systolic Array: Implement as three GEMV Multiplication

————————————————————————————————————

CircConv #1: (A1, A2, A3)® (B1, B2, B3) ‘. .* ! .*F*

CircConv #2: (C1, C2, C3)® (D1, D2, D3)

CircConv #3: (E1, E2, E3) ® (F1, F2, F3) .—" .—‘ ' .—‘

CircConv #1 Computation: jiasd g sl g fal | A5 g S g 55} HE3 (B2 ~|EL].
C C #1 C C #2 C C #3
(A1,A2,A3)® (B1,B2,B3) = ircConv ircConv ircConv

TPU: Finish at (3n+15) = 24 cycles
(A1B1+A2B2+A3B3, A1B3+A2B1+A3B2, A1B2+A2B3+A2B1)
CogSys: Bubble Streaming Dataflow

™\

éor symbolic operation:

Bl .o 959258 elalg g

e TPU-like array suffers from low % 5 % § % § 5 é 5:5:% S
parallelism & high memory access; | BRI 5§ § & & & 8 & & §15:18 &

* Bubble streaming dataflow 1.:
improve parallelism, arithmetic :I
\__ intensity, and data reuse. ) BEEHEEENGEN G EEE E

CogSys: Finish at (n+5) = 8 cycles

HPCA 2025 Zishen Wan | School of ECE | Georgia Institute of Technology
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Bubble Streaming Dataflow

Vector-Symbolic Circular Convolution Example (CircConv #1): (_ Roofline TPU(2'* PEs)/This Work(2'* PEs)\
(Al,A2,A3) @ (Bl, B2, B3) = (AIBI+A2B2+A3B3, A1B3+A2B1+A3B2, A1B2+A2B3+A2B1) — Roofline RTX GPU
Cycle nt+1 Cycle nt+2 Cycle n+3 Cycle nt+4 Cycle n+5 O 1 CircConv, d=2048 (TPU)
% 1000 CircConv, d=2048 (TPU)
( seam ] [ seam | [ seam | [ seam | [ srRAM | O  1CircConv, d=2048 (GPU)
) | ) | ) | ) | M) ¥ 1000 CircConv, d=2048 (GPU)
[ ] ) L L % 1000 CireGom, d=2048 (Tris Work
Bﬂ*@‘@ EQ@@ Bﬂ&@ Eﬂ@*ﬂ Eﬂ@D & 1000 CircCon, d=20480((This Work))

A1BL[]|] AB3[]|J aB2[]|J 1 — [l
- L - L p B . - T 130 TFLOPS
52 ’ B1]| , B3| 52| 102
®LB_1| ®B2 @El ®B3 @Bz 23 TFLOgP%S
| | 7 § 10!

=
joo)
)

|
)|

A1B1+A2H2 A1B3+A2H1 +A2H?3
. ad \ J-/ - J
—~ ~ ) -~

€
=
P | JEW)
C
N s
| “
5 -
C

—_
S
>

=
EHEl-

EHE

I:] [AIB1+A2B2 A1B3+A2B1 A1B2+A2B3
| I +A3B3 » +A3B2 | P +A2B1 |

L L

C] Stationary Reg. C] Passing Reg. C] Streaming Reg. [:] Partial Sum Reg. D MAC Unit

_
=

|

d: vector dimension
10! 10° 10! 102
Arithmetic Intensity (FLOPS/Byte)

Attainable Performance (TFLOPS/s)

Bubble streaming dataflow flow improve parallelism, arithmetic intensity, and data reuse
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Our Methodology

Goals
2
= Co
2 W CogSys
) \
5
o
O
2
s/ B
g
O Neurosymbolic Al
Energy and Latency

Efficiency, Performance
Scalability, Interpretability

Challenges

Challenge-1:

footprint

Large memory

Methodology

Key Idea-1:
Efficient factorization

Challenge-2:

inefficiency

Challenge-3:

underutilization

Symbolic operation —

Hardware —

Key Idea-2:
| Reconfigurable arch
for neural & symbolic

Key Idea-3:
»|  Adaptive scheduler
for neural & symbolic

Architecture

[ Reconfigurable |
PE

L J

Bubble-Streaming |

Dataflow
[ Spatial-Temporal |
Mapping

Scaling Up/Out

Adaptive

Scheduling

J

Deployment

Configurations:
hardware & system

Y :

-

Evaluate: across cognitive

tasks, scales, complexities,
hardware configs

L J

v

Target: efficient and
scalable human-fluid

Lintelligence and cognitionJ

HPCA 2025
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Algorithm Optimization — Efficient Factorization

Original Codebook

/,_8\ S -_X1C1P1lel_-
&8s —X,C,PN,S,—
23 =
Tt § _X1C1P1N1§s<_
% S| —X,CPN,§—

S R
g % -_)chPpNnS_&‘r-
3 13560KB
&3 11.7s
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Algorithm Optimization — Efficient Factorization

Original Codebook
/,_8\ S -_X1C1P1lel_-
&8s —X,C,PN,S,—
2% =
Tt § _X1C1P1N1§s<_
% S| —X,CPN,§— :>
S R
g % -_)chPpNnS_t&J_-
=S 13560KB
&5 11.7s

Our Proposed Factorization Strategy
(Attr. (X) Attr. (C) Atir. (P)  Attr. (N)  Attr. (S) |

—X,— _Cl_ —P— — W= i Sl_
_Xz_ _Cz_ _Pz_ _Nz_ _ Sz_
_):(3_ A C:3_ = 1?3_ - I\:I3_ = S:3_

—¢—J =p -] l-N—] [=8§,—|

v

Attribute vector
(To reasoning module)

{

Factorization disentangles large symbolic knowledge codebook into small volume of

attributes

J

HPCA 2025

Zishen Wan | School of ECE | Georgia Institute of Technology
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Algorithm Optimization — Efficient Factorization

Original Codebook Our Proposed Factorization Strategy
s [—XCPNS,—7| (At (X At (C) Atr(P) Atr(N) At (S) | z
‘q"r; S —X,CPN&— —C—1 [—Bi—7 [-N— —S,— (3'8
AR : —C—| |=P,—| |-N~| |=S,—|| S E
- g —X,C,P\N;§;— C2 P2 N2 32 § en
S S| [ —XCENS— | E S (S W— (_— - E
23 : =G mmprsl (N gummm | 3 S
. = —XCPNS — . B . s =
Q L cop n—s - 8 0
S § 13560KB < 5
&= 11.7s =
q= |:> g= — X(t+1) = (g@f(C(1), P(t), N(©), (S())))XX"
sim<q, XCPN_S.> “X®COPONOS V ' A
Factor Similarity Factor
Unbinding Search Projection
Detailed Operations Steaﬁ Step @ Step .9

Factorization disentangles large symbolic knowledge codebook into small volume of
attributes
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Algorithm Optimization — Efficient Factorization

Original Codebook Our Proposed Factorization Strategy
g [(—XCcPNS,—7] [Atr () Atr(C) At (P) Aur(N) At (S) | O}
*3 S —X,C,PNS;— —C— == == —5,— (3'8
A : —C,—| [=P,—=| |-N~| |=8,=|| €&
=5 —X,CP\N§— C2 P2 N2 52 S &p
g §—> _XICIPINZSS_ :> o ;3_ - 3_ - :3_ o :3_ *g g
o3 ; == [P =N gl | S 8
E \Q? -_XchPpNn,Ss,_- ? "§ §
3 13560KB » 190KB 71.4X memory footprinty| < =
& & 11.7s ; C » 2.88s  4.1X runtime latencyy =
q = IZ> g= —» X(t+1) = (gOf(C(1), P(t), N(©), (S{))XX"
sim<q, XCPN,S.> ~XOCOPON®S ; ' i
Factor Similarity Factor
Unbinding Search Projection
Detailed Operations Steriﬂ Step @ Siep .9

Factorization disentangles large symbolic knowledge codebook into small volume of
attributes, thus reducing computational time and space complexity
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Our Methodology

Goals
=l %
= CogSys
E \
8
O
D)
2
Z @“ﬁ%
g
O Neurosymbolic Al
Energy and Latency

Efficiency, Performance
Scalability, Interpretability

Challenges

Methodology

Challenge-1:

footprint

Large memory

Key Idea-1:
Efficient factorization

Challenge-2:
Symbolic operation =

inefficiency

Key Idea-2:
»| Reconfigurable arch
for neural & symbolic

Challenge-3:
Hardware —
underutilization

Key Idea-3:
Adaptive scheduler
for neural & symbolic

Architecture

Reconfigurable
 Neuro/Symbolic PE |

" Bubble-Streaming |
Dataflow

\. J

| Spatial-Temporal |
Mapping

( A

Scaling Up/Out

\. J

Adaptive
Scheduling

Deployment

Configurations:
hardware & system

v

Evaluate: across cognitive
tasks, scales, complexities,
hardware configs

Y

{ N

Target: efficient and
scalable human-fluid

N\

7

intelligence and cognition
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System Optimization - Adaptive Scheduling

<+Neura]l we——— Symbolic ———»<¢Neural »r¢——— Symbolic ———»
|

g I : :
ML Accele-& : :
rators = :
=
@) = ARSI
Time
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System Optimization - Adaptive Scheduling

<+Neural we¢——— Symbolic ———»r<¢Neural »r¢—— Symbolic ———»

o ___ | © Neuro and symbolic : | @ Neuro engine inefficient for |
ML Accele-S [77] | |  operate sequentially =[| | symbolickemels |
rators N [l — Low throughput and ssEssl __—» [ ow utilization and high |
T [ttt 0::: performance EEEEENEE latency [
(a) D fessedeisiobiecd ] ] ] —— > Y [T T T T[] >

Time
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System Optimization - Adaptive Scheduling

<+Neural re——— Symbolic ———»<«Neural »¢—— Symbolic ———»

g | @ Neuro and symbolic : | @ Neuro engine inefficient for :
(o . .
ML Accele-g [} | | operate sequentially Tjes | symbolickemels |
t I o S — Low throughput and HH —> Low utilization and high |
rators = Eelelaleleletete EENEEEEEE |
T [atatedtetoblete® performance EEjEasjnss latency
B R 50 ek KK -
(a) o S EEREE ..—.__g_l—l .
Time
e
=
This work & @ Efficient symbolic execution
(w/o adSCH) = — Low latency for symbolic operations
—
-
—>
Time
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System Optimization - Adaptive Scheduling

ML Accele-
rators

(@

This work
(w/o adSCH)

This work
(w/ adSCH)

(b)

HPCA 2025

<+ Neural r¢e—— Symbolic ——»<¢Neural - ¢—— Symbolic ———»

o | @ Neuro and symbolic : | @ Neuro engine inefficient for |
'% o :E:E : operate sequentially == E: J symbolic kernels |
N el — Low throughput and sekesl__ —»1ow utilization and high |
‘B [eadearbies performance SEEssEkEsl  Jatency !
D eletedatoltethtet sepmspEst————— @) [Frrieoon) >
Time
g
g @ Efficient symbolic execution
5-_.5 — Low latency for symbolic operations
-
—>
Time
e
o)
B
<
o
B
=)
—>
Time
Zishen Wan | School of ECE | Georgia Institute of Technology

56



System Optimization - Adaptive Scheduling

<+ Neural re—— Symbolic ——»<Neural »¢—— Symbolic ——»
@ Neuro and symbolic ' | @ Neuro engine inefficient for

|
g |
ML Accele- % : operate sequentially | symbolic kernels |
rators = 4+ —» Low throughput and — Low utilization and high |
g performance latency |
S W
(@ | 1,
= 1me
=
This work § @ Efficient symbolic execution _
= —» Low latency for symbolic operations
(w/o adSCH) £
>
@ Interleaved neuro/symbolic processing Time
T k g — High parallelism and throughput
1S WOr =
<
w/ adSCH) =
( H) E |
‘ ' >
(b) Time

Adaptive scheduling enables interleaved
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System Optimization - Adaptive Scheduling

<+Neura] r¢&——— Symbolic ———»<«Neural »r¢&——— Symbolic ———»

o | @ Neuro and symbolic : | @ Neuro engine inefficient for |
ML Accele--= [ | ' operate sequentially ===5| | symbolic kernels n
S el ! —» Low throughput and SE4SSSl . »1 ow utilization and high |
rators = [T mus{nn s EE il
= I 050K 00 X performance SSNSDSRam  latency '
(a) D Beretereteteeie | ol i o et
——
Time
g
This work & @ Efficient symbolic execution _
(wlo adSCH) = — Low latency for symbolic operations
=
B
@) Interleaved neuro/symbolic processing Time
. g1 — High parallelism and throughput
This work = €) Reconfigurable neuro/symbolic engine
(w/ adSCH) X — Low latency and high efficiency
S
3 - >
(b) Time

Adaptive scheduling enables interleaved and reconfigurable neuro/symbolic processing
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System Optimization - Adaptive Scheduling

<Neura] r¢—— Symbolic ———»<¢Neural »r¢——— Symbolic ———» A (] Dr N Ciluninowise
= __ | @ Neuro and symbolic : | @ Neuro engine inefficient for = —t )
ML Accele-= 7] | ' operate sequentially “= 1 symbolic kernels . <|OOCO| symbolic ops
ccele Rl o e | 1 | ym s : | = | | I ie:
t N et —» Low throughput and - —> Low utilization and high | B O partition
TalOIS = Resuedens: erformance mummnnl | ' 7 B
(@) 5 bk 4 e ;[ EEEE
o033 i :
o Time DO E| Cell-wise .
=k EEEE neuro/symbolic
This work g | @ Efficient symbolic execution . O0O00 partition
/0 adSCH) = s — Low latency for symbolic operations A
> O
@ Interleaved neuro/symbolic processing Time z |2 2 B E
! 8 Lol — High parallelism and throgghput DEEE
This work -5 [ ) gh=chs © Reconfigurable neuro/symbolic engine
(W/ adSCH) oS oo ey T T —> Low latency and high efficiency E = EE
= 5 o s TH P FH @ Partitioned array for neuro/symbolic L1000
O < e s 1 1 — High compute & bandwidth utilization o
(b) Time (©)

Adaptive scheduling enables interleaved and reconfigurable neuro/symbolic processing
with partitioned array
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System Optimization - Adaptive Scheduling

<+Neural e¢——— Symbolic ———»<«Neural »r¢&——— Symbolic ———» A ] I:Ir 1] Column-wise
o : @ Neuro and symbolic : @ Neuro engine inefficient for : = : : | :
ML Accele--2 [ | operate sequentially == 1 symbolic kernels | g LI symbolic ops
CCClC-5 | : — : ym : : e .
t i — — Low throughput and oE —> Low utilization and high | =1 IO partition
TAROES = performance sasums|  latency ' 2 RN
(@) = o e (S
, Time 100007 Cell-wise .
S RHEEE neuro/symbolic
This work § O Efficient symbolic execution . O0000 partition
/o adSCH) = — Low latency for symbolic operations A
(/o adSCH) E ST
. > O
@ Interleaved neuro/symbolic processing Time | DEEE
: g M W45 — High parallelism and throgghput . . . .
This work p=f o o Y HH i € Reconfigurable neuro/symbolic engine
/ adSCH) N Vil iim=e=k= — Low latency and high efficiency OOaad
\picdeCal) ] 050 0005 EE(imalin @ Partitioned array for neuro/symbolic EEEE
o fesasspesatafersts I — High compute & bandwidth utilization i
(b) Time (©)

Adaptive scheduling enables interleaved and reconfigurable neuro/symbolic processing
with partitioned array, improving parallelism, latency, efficiency, and utilization
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Our Methodology

Goals Challenges Methodology Architecture Deployment
2 * s Work LChallenge-l: % Key Idea-1: Reconli;l%urable Configurations:
B 15 Wor arge memory Efficient factorization - o hardware & system
) \ footprint J | J - —
sl N | eV I —— _ Bubble-Streaming +
O ) ( ) Dataflow | - ~
2 Challenge-2: Key Idea-2: - - Evaluate:across cognitive
= @) + ‘% Symbolic operation —1| Reconfigurable arch Spatial-Temporal tasks, scales, complexities,
& inefficiency for neural & symbolic L Mapping ) hardware configs
8 Neurosymbolic A1 —— R S a p o = * g
( ) f \ Scaling Up/Out
Energy and Latency Challenge-3: Key Idea-3: L 5P J i Target: efficient and R

Efficiency, Performance fard'vlv_are. T tiv? ichedt;)le; Adaptive | scalable human-fluid

Scalability, Interpretabili ty? underutilization J k for neural & symbo ZCA | Scheduling | &intelligence and cognitionJ
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Evaluation — Setup and Accelerator Layout

Layout of Neuro-Symbolic Accelerator

 Reconfigurable

Task: Cognitive reasoning tasks

o * Reasoning datasets:
e fu B B
et M * RAVEN, [-RAVEN, PGM, CVR, SVRT
* Neuro-symbolic workloads:
Accelerator Specs ° NVSA, MlMONEt, L\VVRF

Technology | 28 nm || Frequency [600 MHz o H ardwar e b as elin e:

#Arrays 16 Voltage I .

__ » Jetson TX2, Xavier NX, RTX GPU, Xeon CPU
Size of Each

Py 32x32 Power 1.48 W o

ML accelerators (TPU, MTIA, Gemmini)
SRAM |4.5MB Area 4.9 mm?
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Evaluation — Algorithm Performance

Dataset Neurosymbolic Model Non-neurosymbolic Human
Accuracy NVSA Our Design | Our Design ResNet18| GPT4
(+Algo Opt.) | (+Quant.)
RAVEN | 98.5% 98.9% 98.7% 534% | 89.0% | 84.4%
[-RAVEN | 99.0% 99.0% 98.8% 40.3% | 86.0% | 78.6%
PGM 68.3% 68.7% 68.4% 36.8% | 56.0% | N/A
#Parameters | 38 MB 32 MB 8 MB 42MB | 1.7TB | N/A

('« Better Reasoning Capability: neurosymbolic methods achieve high accuracy across A
reasoning tasks than NNs and human.
* Smaller Memory Footprint: neurosymbolic methods consume much less
\_#parameter than NNs (e.g., LLM). )
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Evaluation — Hardware Performance

—
% 102 | 9052 93.26 Jetson TX2
56.76
S [[] Xavier NX
g
5 10! [ ] Xeon CPU
é [ JRTX GPU
2 10° B This work
RAVEN I-RAVEN PGM CVR SVRT
=) =)
70 17.5
o HIS
j0 5% 1005 ¢
72 hE
oo 2 %.'5 o =
0 = =
Z
7 000 e 000 -
S ‘0, gi\* 80“
N P ey Y O
eCtOr DI % \q/ 0& (b,\ & ,{b\‘\
@  sion(q) o o

Zishen Wan | School of ECE | Georgia Institute of Technology

HPCA 2025

4x - 90x speedup
compared to CPU/GPU

(
Symbolic operation:

75x speedup to TPU
18x speedup to GPU

\_

\

J
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Evaluation — Hardware Performance

X 102 | ED TPU-like (128%128) : 5 127.50

Qé MTIA-like (16X32X32) < . . 2 - 5

s GEMMINI-like (64X16X16) | ]= = = % 2’

2 10 This Work (16X32X32) 2 & s | . -

E 0| SS88 45588 =358 = z 2 | NS aE = 3
> & " _Ei " " * X —El

NVSA LVRF MIMONet NVSA LVRF MIMONet NVSA LVRF MIMONet
Neuro-Only Symbolic-Only End-to-End Neuro+Symbolic

Compared with ML accelerators: similar neuro latency, 7-120x symbolic speedup,
2-16x end-to-end neuro-symbolic speedup
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Evaluation — Ablation Study

\]P—‘
a3

[\
()]

Norm. Runtime (%)
o 3

RAVEN [-RAVEN

6l %
Yy 7

%

~ PGM

"1 w/o (adSCH, SO, nsPE)
[] w/o (adSCH, SO)

:l | E w/o (adSCH)

Neuro-Symbolic accelerator

Neurosymbolic Cognitive Solution

Algorithm @ Hardware

Normalized Runtime (%) on
RAVEN I-RAVEN PGM CVR SVRT

NVSA @ Xavier NX

100 100 100 100 100

Proposed Algorithm @ Xavier NX

89.5% 88.9% 90.7% 87.6% 88.4%

Proposed Algorithm @ Proposed Accelerator

1.76% 1.74% 1.78% 1.72% 1.69%

reconfigurable PE,
bubble streaming

~

Proposed scheduling,

dataflow are effective

-

HPCA 2025

\_

Algorithm-system-
hardware co-design
is critical

J
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@ Key Observations:

Compared with systolic arrays that only support neural, our
design provides reconfigurable support for neural and
symbolic operations with only 4.8% area overhead.

Our design achieves 0.3s latency per cognition task, with
1.18W power consumption.
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Flexible, Scalable K

"
v

| & Reasoning, Transpare

t

CogSys Summary [ - Newa

X Black-box, Data y

-
;%ﬁ Symbolic }
n

(X Scalable, Learnable

. . oy e System 1: thinking fast System 2: thinking sl
* Neuro-symbolic Al is a compositional method to (inuitive perception) o *llogical easoning)
improve reasoning and interpretability. [ §B% Neurosymbolic System ]
Human-like Cognition, Reasoning, Transparent
. Scalable, Flexible, Learning, Data-efficient
* In this work,
* Characterize system implications >
. . = 7&{ This Work
* Propose algorithm-system-hardware co-design £l \
* Algorithm: efficient factorization &
)
* System: adaptive scheduling = @H%
* Hardware Architecture: reconfigurable neuro/symbolic §0
. . O Neurosymbolic AI
PE, dataflow, mapping, and scaling strategy
. . . . E d Lat
» Achieve efficient and scalable neuro-symbolic nerey and RAEney
execution across reasoning tasks Efficiency, Performance 3

Scalability, Interpretability
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