

Demystifying Neuro-Symbolic AI for Software-Hardware Co-Design

Zishen Wan

PhD Student @ School of ECE, Georgia Tech

Advisors: Prof. Arijit Raychowdhury, Prof. Tushar Krishna

MLBench Workshop @ ASPLOS, March 30, 2025

Executive Summary

- Understand neuro-symbolic workloads from architecture and system perspective.
- Identify optimization opportunities for neuro-symbolic systems.
- Demonstrate orders of scalability and efficiency improvement of neuro-symbolic workload via **co-designed** system.

Neural Networks in Our Daily Life

Image Recognition

Speech Recognition

Language Translation

Autonomous Vehicle

Medical Diagnosis

Financial Services

WHAT IS A RECOMMENDER SYSTEM FOR DIGITAL PUBLISHING?

Recommendation Systems

ChatGPT

But... Is That Enough?

(i) Remove all gray spheres. How many spheres are there? (3), (ii) Take away 3 cubes. How many objects are there? (7), (iii) How many blocks must be removed to get 1 block? (2)

Complex Question Answering NN accuracy: 50%

Interactive Learning NN accuracy: 71%

Scenario

Imagine that a stranger will give Hank one thousand dollars to break all the windows in his neighbor's house without his neighbor's permission. Hank carries out the stranger's request.

Imagine that there are five people who are waiting in line to use a single-occupancy bathroom at a concert venue. Someone at the back of the line needs to throw up immediately. That person skips to the front of the line instead of waiting in the back.

At a summer camp, there is a pool. Right next to the pool is a tent where the kids at the camp have art class. The camp made a rule that there would be no cannonballing in the pool so that the art wouldn't get ruined by the splashing water. Today, there is a bee attacking this kid, and she needs to jump into the water quickly. This kid cannonballs into the pool.

> Ethical Decision Making NN accuracy: 65%

Abstract Reasoning NN accuracy: 53%

 $\langle \rangle$

?

IMO 2015 P3

"Let ABC be an acute triangle. Let (O) be its circumcircle, H its orthocenter, and F the foot of the altitude from A. Let M be the midpoint of BC. Let Q be the point on (O) such that $QH \perp QA$ and let K be the point on (O) such that $KH \perp$ KQ. Prove that the circumcircles (O₁) and (O₂) of triangles FKM and KQH are tangent to each other."

Automated Theorem Proving NN accuracy: 20%

Farmer John has N cows ($2 \le N \le 10^5$). Each cow has a breed that is either Guernsey or Holstein. As is often the case, the cows are standing in a line, numbered $1 \cdots N$ in this order.

Over the course of the day, each cow writes down a list of cows. Specifically, cow i's list contains the range of cows starting with herself (cow i) up to and including cow E_i ($i \le E_i \le N$).

FJ has recently discovered that each breed of cow has exactly one distinct leader. FJ does not know who the leaders are, but he knows that each leader must have a list that includes all the cows of their breed, or the other breed's leader (or both).

Help FJ count the number of pairs of cows that could be leaders. It is guaranteed that there is at least one possible pair.

🧩 Problem

Competitive Programming NN accuracy: 8.7%

But... Is That Enough?

(i) Remove all gray spheres. How many spheres are there? (3), (ii) Take away 3 cubes. How many objects are there? (7), (iii) How many blocks must be removed to get 1 block? (2)

IMO 2015 P3

"Let ABC be an acute triangle. Let (O) be its circumcircle, H its orthocenter, and F the foot of the altitude from A. Let M be the midpoint of BC. Let Q be the point on (O) such that QH \perp QA and let K be the point on (O) such that KH \perp KQ. Prove that the circumcircles (O₁) and (O₂) of triangles FKM and KQH are tangent to each other."

Automated Theorem Proving NN accuracy: 20%

Interactive Learning NN accuracy: 71%

Complex Question Answering NN accuracy: 50% Neuro-Symbolic Al

Farmer John has N cows ($2 \le N \le 10^5$). Each cow has a breed that is either Guernsey or Holstein. As is often the case, the cows are standing in a line numbered $1 \cdots N$ in this order.

Over the course of the day, each cow writes down a list of cows. Specifically, cow i's list contains the range of cows starting with herself (cow i) up to and including cow E_i ($i \le E_i \le N$).

FJ has recently discovered that each breed of cow has exactly one distinct leader. FJ does not know who the leaders are, but he knows that each leader must have a list that includes all the cows of their breed, or the other breed's leader (or both).

Help FJ count the number of pairs of cows that could be leaders. It is guaranteed that there is at least one possible pair.

🧩 Problem

Ethical Decision Making Co NN accuracy: 65%

Competitive Programming NN accuracy: 8.7%

MLBench @ ASPLOS25

What is Neuro-Symbolic AI?

Towards Cognitive and Trustworthy AI Systems

Neural Network

Slide Adapted from MIT 6.S191: Neurosymbolic AI

Symbolic Al

Slide Adapted from MIT 6.S191: Neurosymbolic AI

Question: Are there an **equal number** of large things and metal spheres?

Slide Adapted from MIT 6.S191: Neurosymbolic AI

MLBench @ ASPLOS25

Question: Are there an **equal number** of large things and metal spheres?

Slide Adapted from MIT 6.S191: Neurosymbolic AI

MLBench @ ASPLOS25

Slide Adapted from MIT 6.S191: Neurosymbolic AI

MLBench @ ASPLOS25

Slide Adapted from MIT 6.S191: Neurosymbolic AI

MLBench @ ASPLOS25

Other Examples

AlphaGeometry adopts a neuro-symbolic approach

AlphaGeometry is a neuro-symbolic system made up of a neural language model and a symbolic deduction engine, which work together to find proofs for complex geometry theorems. Akin to the idea of "<u>thinking, fast and slow</u>", one system provides fast, "intuitive" ideas, and the other, more deliberate, rational decisionmaking.

LLM: construct auxiliary points and lines Symbolic: deductive reasoning

Eval on 30 Int. Math Olympics (IMO) problems:

- GPT-4: 0/30
- AlphaGeometry (Neuro-Symbolic): 25/30
- Human Gold Medalist: 26/30

Trinh et al, "Solving Olympiad Geometry without Human Demonstrations", Nature 2024

Relationship to Human Minds

System 1: thinking **fast** (intuitive perception)

Daniel Kahneman (1934-2024)

Relationship to Human Minds

Daniel Kahneman (1934-2024) 'A lifetime's worth of wisdom' Steven D. Levitt, co-author of *Freakonomics*

The International Bestseller

System 1: thinking **fast** (intuitive perception)

✓ Reasoning, Transparent
✓ Scalable, Learnable

System 2: thinking slow (logical reasoning)

Relationship to Human Minds

Bestseller

Daniel Kahneman (1934 - 2024)

This talk: Demystify Neuro-Symbolic AI for SW/HW Co-Design

This talk: Demystify Neuro-Symbolic AI for SW/HW Co-Design

Zishen Wan, Che-Kai Liu, Hanchen Yang, Ritik Raj, Chaojian Li, Haoran You, Yonggan Fu, Cheng Wan, Ananda Samajdar, Celine Lin, Tushar Krishna, Arijit Raychowdhury, **"Workload and Characterization of Neuro-Symbolic AI",** in **ISPASS 2024**

Lots of Neuro-Symbolic Algorithms

Neuro-Symbolic AI Workload Category

Inspired by Henry Kautz's terminology

Representative Neuro-		Logic Neural	Logic Tensor		
Symbolic AI Workloads		Network [30]	Network [34]		
Abbreviation		LNN	LTN		
Neuro-Symbolic Category		Neuro:Symbolic→Neuro	NeuroSymbolic		
Learning Approach		Supervised	Supervised/Unsupervised		
Deployment Scenario	Application	Learning and reasoning, Full theorem prover	Querying, learning, reasoning (relational and embedding learning, query answering)		
	Advantage vs. Neural Model	Higher interoperability, resilience to incomplete knowledge, generalization	Higher data efficiency, comprehensibility, out-of- distribution generalization		
	Dataset	LUBM benchmark [40], TPTP benchmark [41]	UCI [42], Leptograpsus crabs [43], DeepProbLog [44]		
Computation Pattern	Datatype	FP32	FP32		
	Neuro	Graph	MLP		
	Symbolic	FOL/Logical operation	FOL/Logical operation		

Representative Neuro-		Logic Neural	Logic Tensor	Neuro-Vector-Symbolic	
Symbolic AI Workloads		Network [30]	Network [34]	Architecture [4]	
Abbreviation		LNN	LTN	NVSA	
Neuro-Symbolic Category		Neuro:Symbolic→Neuro	NeuroSymbolic	Neuro Symbolic	
Learning Approach		Supervised	Supervised/Unsupervised	Supervised/Unsupervised	
Deployment Scenario	Application	Learning and reasoning, Full theorem prover	Querying, learning, reasoning (relational and embedding learning, query answering)	Fluid intelligence, Abstract reasoning	
	Advantage vs. Neural Model	Higher interoperability, resilience to incomplete knowledge, generalization	Higher data efficiency, comprehensibility, out-of- distribution generalization	Higher joint representations efficiency, abstract reasoning capability, transparency	
	Dataset	LUBM benchmark [40], TPTP benchmark [41]	UCI [42], Leptograpsus crabs [43], DeepProbLog [44]	RAVEN [21], I-RAVEN [22], PGM [45]	
Computation Pattern	Datatype	FP32	FP32	FP32	
	Neuro	Graph	MLP	ConvNet	
	Symbolic FOL/Logical operation		FOL/Logical operation	VSA/Vector operation	

Representative Neuro-		Logic Neural	Logic Tensor	Neuro-Vector-Symbolic	Vector Symbolic Architecture	Neural Logic	Zero-shot Concept Recog-	Probabilistic Abduction
Symbolic AI Workloads		Network [30]	Network [34]	Architecture [4]	Image2Image Translation [7]	Machine [38]	nition and Acquisition [37]	and Execution [23]
Abbreviation		LNN	LTN	NVSA	VSAIT	NLM	ZeroC	PrAE
Neuro-Symbolic Category		$Neuro:Symbolic {\rightarrow} Neuro$	NeuroSymbolic	Neuro Symbolic	Neuro Symbolic	Neuro[Symbolic]	Neuro[Symbolic]	Neuro Symbolic
Learning Approach		Supervised	Supervised/Unsupervised	Supervised/Unsupervised	Supervised	Supervised/Unsupervised	Supervised	Supervised/Unsupervised
Deployment Scenario N	Application	Learning and reasoning, Full theorem prover	Querying, learning, reasoning (relational and embedding learning, query answering)	Fluid intelligence, Abstract reasoning	Unpaired image-to-image translation	Relational reasoning, Decision making	Cross-domain classification and detection, Concept acquisition	Fluid intelligence, Spatial-temporal reasoning
	Advantage vs. Neural Model	Higher interoperability, resilience to incomplete knowledge, generalization	Higher data efficiency, comprehensibility, out-of- distribution generalization	Higher joint representations efficiency, abstract reasoning capability, transparency	Address semantic flipping and hallucinations issue in unpaired image translation tasks	Higher generalization, logic reasoning, deduction, explainability capability	Higher generalization, concept acquisition and recognition, compositionality capability	Higher generalization, transparency, interpre- tability, and robustness
	Dataset	LUBM benchmark [40], TPTP benchmark [41]	UCI [42], Leptograpsus crabs [43], DeepProbLog [44]	RAVEN [21], I-RAVEN [22], PGM [45]	GTA [47], Cityscapes [48], Google Maps dataset [49]	Family graph reasoning, sorting, path finding [46]	Abstraction reasoning [50], Hierarchical-concept corpus [51]	RAVEN [21], I-RAVEN [22], PGM [45]
Computation- Pattern	Datatype	FP32	FP32	FP32	FP32	FP32	INT64	FP32
	Neuro	Graph	MLP	ConvNet	ConvNet	Sequential tensor	Energy-based network	ConvNet
	Symbolic	FOL/Logical operation	FOL/Logical operation	VSA/Vector operation	VSA/Vector operation	FOL/Logical operation	Graph, vector operation	VSA/Vector operation

Representative Neuro-		Logic Neural	Logic Tensor	Neuro-Vector-Symbolic	Vector Symbolic Architecture	Neural Logic	Zero-shot Concept Recog-	Probabilistic Abduction
Symbolic AI Workloads		Network [30]	Network [34]	Architecture [4]	Image2Image Translation [7]	Machine [38]	nition and Acquisition [37]	and Execution [23]
Abbreviation		LNN	LTN	NVSA	VSAIT	NLM	ZeroC	PrAE
Neuro-Symbolic Category		$Neuro:Symbolic {\rightarrow} Neuro$	NeuroSymbolic	Neuro Symbolic	Neuro Symbolic	Neuro[Symbolic]	Neuro[Symbolic]	Neuro Symbolic
Learning Approach		Supervised	Supervised/Unsupervised	Supervised/Unsupervised	Supervised	Supervised/Unsupervised	Supervised	Supervised/Unsupervised
Deployment Scenario	Application	Learning and reasoning, Full theorem prover	Querying, learning, reasoning (relational and embedding learning, query answering)	Fluid intelligence, Abstract reasoning	Unpaired image-to-image translation	Relational reasoning, Decision making	Cross-domain classification and detection, Concept acquisition	Fluid intelligence, Spatial-temporal reasoning
	Advantage vs. Neural Model	Higher interoperability, resilience to incomplete knowledge, generalization	Higher data efficiency, comprehensibility, out-of- distribution generalization	Higher joint representations efficiency, abstract reasoning capability, transparency	Address semantic flipping and hallucinations issue in unpaired image translation tasks	Higher generalization, logic reasoning, deduction, explainability capability	Higher generalization, concept acquisition and recognition, compositionality capability	Higher generalization, transparency, interpre- tability, and robustness
	Dataset	LUBM benchmark [40], TPTP benchmark [41]	UCI [42], Leptograpsus crabs [43], DeepProbLog [44]	RAVEN [21], I-RAVEN [22], PGM [45]	GTA [47], Cityscapes [48], Google Maps dataset [49]	Family graph reasoning, sorting, path finding [46]	Abstraction reasoning [50], Hierarchical-concept corpus [51]	RAVEN [21], I-RAVEN [22], PGM [45]
Computation Pattern	Datatype	FP32	FP32	FP32	FP32	FP32	INT64	FP32
	Neuro	Graph	MLP	ConvNet	ConvNet	Sequential tensor	Energy-based network	ConvNet
	Symbolic	FOL/Logical operation	FOL/Logical operation	VSA/Vector operation	VSA/Vector operation	FOL/Logical operation	Graph, vector operation	VSA/Vector operation

RAVEN example test

Hersche, et al. "A neuro-vector-symbolic architecture for solving Raven's progressive matrices". In Nature Machine Intelligence, 2023

MLBench @ ASPLOS25

Hersche, et al. "A neuro-vector-symbolic architecture for solving Raven's progressive matrices". In Nature Machine Intelligence, 2023

Hersche, et al. "A neuro-vector-symbolic architecture for solving Raven's progressive matrices". In Nature Machine Intelligence, 2023

Hersche, et al. "A neuro-vector-symbolic architecture for solving Raven's progressive matrices". In Nature Machine Intelligence, 2023

Hersche, et al. "A neuro-vector-symbolic architecture for solving Raven's progressive matrices". In Nature Machine Intelligence, 2023
Example: Neuro-Vector-Symbolic Architecture

- Neuro-Symbolic Category: Neuro | Symbolic Learning Approach: Supervised and Unsupervised **Application**: Fluid Intelligence, Abstract reasoning **Advantages over Neural Model:** Accuracy Higher joint representation efficiency **ResNet:** • Higher abstract reasoning capability GPT-4:
 - Higher transparency lution
- Dataset: RAVEN, I-RAVEN, PGM
- **Computational Components:**
 - Neuro: ConvNet •
 - Symbolic: vector-symbolic operation, circular convolution

Hersche, et al. "A neuro-vector-symbolic architecture for solving Raven's progressive matrices". In Nature Machine Intelligence, 2023

rule Neuro-Symbolic: 98%

53%

84%

Example: Neuro-Vector-Symbolic Architecture (NVSA)

Representa	tive Neuro-	Logic Neural	Logic Tensor	Neuro-Vector-Symbolic	Vector Symbolic Architecture	Neural Logic	Zero-shot Concept Recog-	Probabilistic Abduction
Symbolic A	I Workloads	Network [30]	Network [34]	Architecture [4]	Image2Image Translation [7]	Machine [38]	nition and Acquisition [37]	and Execution [23]
Abbre	viation	LNN	LTN	NVSA	VSAIT	NLM	ZeroC	PrAE
Neuro-Symb	olic Category	$Neuro:Symbolic {\rightarrow} Neuro$	NeuroSymbolic	Neuro Symbolic	Neuro Symbolic	Neuro[Symbolic]	Neuro[Symbolic]	Neuro Symbolic
Learning	Approach	Supervised	Supervised/Unsupervised	Supervised/Unsupervised	Supervised	Supervised/Unsupervised	Supervised	Supervised/Unsupervised
	Application	Learning and reasoning, Full theorem prover	Querying, learning, reasoning (relational and embedding learning, query answering)	Fluid intelligence, Abstract reasoning	Unpaired image-to-image translation	Relational reasoning, Decision making	Cross-domain classification and detection, Concept acquisition	Fluid intelligence, Spatial-temporal reasoning
Deployment Scenario	Advantage vs. Neural Model	Higher interoperability, resilience to incomplete knowledge, generalization	Higher data efficiency, comprehensibility, out-of- distribution generalization	Higher joint representations efficiency, abstract reasoning capability, transparency	Address semantic flipping and hallucinations issue in unpaired image translation tasks	Higher generalization, logic reasoning, deduction, explainability capability	Higher generalization, concept acquisition and recognition, compositionality capability	Higher generalization, transparency, interpre- tability, and robustness
	Dataset	LUBM benchmark [40], TPTP benchmark [41]	UCI [42], Leptograpsus crabs [43], DeepProbLog [44]	RAVEN [21], I-RAVEN [22], PGM [45]	GTA [47], Cityscapes [48], Google Maps dataset [49]	Family graph reasoning, sorting, path finding [46]	Abstraction reasoning [50], Hierarchical-concept corpus [51]	RAVEN [21], I-RAVEN [22], PGM [45]
Commentation	Datatype	FP32	FP32	FP32	FP32	FP32	INT64	FP32
Computation	Neuro	Graph	MLP	ConvNet	ConvNet	Sequential tensor	Energy-based network	ConvNet
rattern	Symbolic	FOL/Logical operation	FOL/Logical operation	VSA/Vector operation	VSA/Vector operation	FOL/Logical operation	Graph, vector operation	VSA/Vector operation

Workload Characterization - Runtime

Profiling setup: CPU+GPU system, using pytorch profiler, seven neuro-symbolic workloads

• End-to-end runtime latency analysis:

Neuro-symbolic workload exhibits high latency compared to neural models;

Workload Characterization - Runtime

Profiling setup: CPU+GPU system, using pytorch profiler, seven neuro-symbolic workloads

• End-to-end runtime latency analysis:

Neuro-symbolic workload exhibits **high latency** compared to neural models; Symbolic component is executed **inefficiently** across off-the-shelf CPU/GPUs

• Compute operator analysis:

• Compute operator analysis:

Conv	- 0.00%	0.00%	0.00%	0.00%	30.7%	35.7%	0.00%	0.00%	59.5%	0.00%	31.6%	0.00%	28.6%	28.0%	r >60%
MatMul	- 0.51%	0.00%	62.5%	0.00%	34.8%	0.52%	24.5%	0.00%	30.0%	0.00%	28.2%	0.00%	36.0%	0.91%	- 45%
Vector/Ele- ment wise	- 43.6%	19.3%	26.8%	73.1%	22.0%	49.9%	34.6%	22.9%	6.75%	65.3%	33.7%	74.9%	20.1%	56.3%	- 30%
Data Transform	- 16.4%	17.3%	7.20%	2.40%	3.11%	6.82%	16.0%	3.85%	2.94%	20.8%	3.96%	2.13%	4.72%	8.11%	- 3078
Data Movement	- 39.5%	39.4%	3.48%	6.36%	9.40%	7.12%	24.9%	14.36%	0.84%	13.87%	2.52%	22.9%	10.6%	6.69%	- 15%
Other	0.00%	24.0%	0.00%	18.1%	0.00%	0.00%	0.00%	58.9%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	- 0%
	LNN (Neuro)	LNN (Symb)	LTN (Neuro)	LTN (Symb)	NVSA (Neuro)	NVSA (Symb)	NLM (Neuro)	NLM (Symb)	VSAIT (Neuro)	VSAIT (Symb)	ZeroC (Neuro)	ZeroC (Symb)	PrAE (Neuro)	PrAE (Symb)	- 070

• Compute operator analysis:

• Compute operator analysis:

• Compute operator analysis:

Conv -	0.00%	0.00%	0.00%	0.00%	30.7%	35.7%	0.00%	0.00%	59.5%	0.00%	31.6%	0.00%	28.6%	28.0%	►>60%
MatMul -	0.51%	0.00%	62.5%	0.00%	34.8%	0.52%	24.5%	0.00%	30.0%	0.00%	28.2%	0.00%	36.0%	0.91%	- 45%
Vector/Ele ment wise	43.6%	19.3%	26.8%	73.1%	22.0%	49.9%	34.6%	22.9%	6.75%	65.3%	33.7%	74.9%	20.1%	56.3%	- 30%
Data - Transform	16.4%	17.3%	7.20%	2.40%	3.11%	6.82%	16.0%	3.85%	2.94%	20.8%	3.96%	2.13%	4.72%	8.11%	- 3070
Data - Movement	39.5%	39.4%	3.48%	6.36%	9.40%	7.12%	24.9%	14.36%	0.84%	13.87%	2.52%	22.9%	10.6%	6.69%	- 15%
Other -	0.00%	24.0%	0.00%	18.1%	0.00%	0.00%	0.00%	58.9%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	09/
	LNN (Neuro)	LNN (Symb)	LTN (Neuro)	LTN (Symb)	NVSA (Neuro)	NVSA (Symb)	NLM (Neuro)	NLM (Symb)	VSAIT (Neuro)	VSAIT (Symb)	ZeroC (Neuro)	ZeroC (Symb)	PrAE (Neuro)	PrAE (Symb)	- 070

Neural dominated by MatMul and Conv operations;

MLBench @ ASPLOS25

• Compute operator analysis:

Conv -	0.00%	0.00%	0.00%	0.00%	30.7%	35.7%	0.00%	0.00%	59.5%	0.00%	31.6%	0.00%	28.6%	28.0%	->60%
MatMul -	0.51%	0.00%	62.5%	0.00%	34.8%	0.52%	24.5%	0.00%	30.0%	0.00%	28.2%	0.00%	36.0%	0.91%	- 45%
Vector/Ele ment wise	43.6%	19.3%	26.8%	73.1%	22.0%	49.9%	34.6%	22.9%	6.75%	65.3%	33.7%	74.9%	20.1%	56.3%	- 30%
Data - Transform	16.4%	17.3%	7.20%	2.40%	3.11%	6.82%	16.0%	3.85%	2.94%	20.8%	3.96%	2.13%	4.72%	8.11%	- 5078
Data - Movement	39.5%	39.4%	3.48%	6.36%	9.40%	7.12%	24.9%	14.36%	0.84%	13.87%	2.52%	22.9%	10.6%	6.69%	- 15%
Other -	0.00%	24.0%	0.00%	18.1%	0.00%	0.00%	0.00%	58.9%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	09/
	LNN (Neuro)	LNN (Symb)	LTN (Neuro)	LTN (Symb)	NVSA (Neuro)	NVSA (Symb)	NLM (Neuro)	NLM (Symb)	VSAIT (Neuro)	VSAIT (Symb)	ZeroC (Neuro)	ZeroC (Symb)	PrAE (Neuro)	PrAE (Symb)	- 070

Neural dominated by MatMul and Conv operations; Symbolic dominated by vector/element-wise and logical operations

One example of dominated symbolic operation is vector-symbolic circular convolutions

	Neuro Ke	ernel	Symbo	lic Kernel
	segmm_nn	relu_nn	vectorized	elementwise
Runtime Percentage (%)				
Compute Throughput (%)				
ALU Utilization (%)				
L1 Cache Hit Rate (%)				
L2 Cache Hit Rate (%)				
L1 Cache Throughput (%)				
L2 Cache Throughput (%)				
DRAM BW Utilization (%)				

Why system Inefficiency?

	Neuro Ke	ernel	Symbolic Kernel		
	segmm_nn	relu_nn	vectorized	elementwise	
Runtime Percentage (%)	18.2	10.4	37.5	12.4	
Compute Throughput (%)	95.1	92.9	3.0	2.3	
ALU Utilization (%)	90.1	48.3	5.9	4.5	
L1 Cache Hit Rate (%)					
L2 Cache Hit Rate (%)					
L1 Cache Throughput (%)					
L2 Cache Throughput (%)					
DRAM BW Utilization (%)					

Symbolic exhibits low ALU utilization,

	Neuro Ke	ernel	Symbolic Kernel		
	segmm_nn	relu_nn	vectorized	elementwise	
Runtime Percentage (%)	18.2	10.4	37.5	12.4	
Compute Throughput (%)	95.1	92.9	3.0	2.3	
ALU Utilization (%)	90.1	48.3	5.9	4.5	
L1 Cache Hit Rate (%)	1.6	51.6	29.5	33.3	
L2 Cache Hit Rate (%)	86.8	65.5	48.6	34.3	
L1 Cache Throughput (%)					
L2 Cache Throughput (%)					
DRAM BW Utilization (%)					

Symbolic exhibits low ALU utilization, low cache hit rate,

	Neuro Ke	ernel	Symbo	lic Kernel
	segmm_nn	relu_nn	vectorized	elementwise
Runtime Percentage (%)	18.2	10.4	37.5	12.4
Compute Throughput (%)	95.1	92.9	3.0	2.3
ALU Utilization (%)	90.1	48.3	5.9	4.5
L1 Cache Hit Rate (%)	1.6	51.6	29.5	33.3
L2 Cache Hit Rate (%)	86.8	65.5	48.6	34.3
L1 Cache Throughput (%)	79.7	82.6	28.4	10.8
L2 Cache Throughput (%)	19.2	17.5	29.8	22.8
DRAM BW Utilization (%)	14.9	24.2	90.9	78.4

Symbolic exhibits low ALU utilization, low cache hit rate, **massive data transfer**, resulting in hardware underutilization and inefficiency

			Neuro Ke	ernel	Symbo	lic Kernel	$aabaa 10^2$
0 -			segmm_nn	relu_nn	vectorized	elementwise	Compute-bound
 -	Rı	untime Percentage (%)	18.2	10.4	37.5	12.4	2 Zero
	Со	mpute Throughput (%)	95.1	92.9	3.0	2.3	8 Memory-
- 17		ALU Utilization (%)	90.1	48.3	5.9	4.5	bound VSAIT
~	L	1 Cache Hit Rate (%)	1.6	51.6	29.5	33.3	(Neuro
	L	_2 Cache Hit Rate (%)	86.8	65.5	48.6	34.3	(Symb)
4 -	L1	Cache Throughput (%)	79.7	82.6	28.4	10.8	VSAIT VSAIT
	L2	Cache Throughput (%)	19.2	17.5	29.8	22.8	¥ 10 ⁻² ((Symb))
မာ – သ	DR	RAM BW Utilization (%)	14.9	24.2	90.9	78.4	(c) $\frac{10^{-2}}{\text{Operation Intensity (FLOPS/Byte)}}$

Neuro operations are **compute-bounded**, symbolic operations are **memory-bounded**.

Workload Characterization – Control Flow

• Data Dependence Graph analysis:

Neuro and symbolic components interaction requires complex control flow

Neural Network	Neuro-Symbolic

MLBench @ ASPLOS25

	Neural Network	Neuro-Symbolic					
Runtime	[Neural Network] < [Neural-Symbolic]						

	Neural Network	Neuro-Symbolic
Runtime	[Neural Network	x] < [Neural-Symbolic]
Compute Kernels	Neural kernels (Conv, MatMul, etc)	Heterogenous neural and symbolic kernels (vector, element, MatMul, graph, logic, etc)

	Neural Network	Neuro-Symbolic
Runtime	[Neural Network] < [Neural-Symbolic]	
Compute Kernels	Neural kernels (Conv, MatMul, etc)	Heterogenous neural and symbolic kernels (vector, element, MatMul, graph, logic, etc)
Hardware Efficiency	Efficient on GPU/TPU	Inefficient on CPU/GPU/TPU (low ALU utilization, low L1 cache hit rate, high data movement, etc)

	Neural Network	Neuro-Symbolic
Runtime	[Neural Network] < [Neural-Symbolic]	
Compute Kernels	Neural kernels (Conv, MatMul, etc)	Heterogenous neural and symbolic kernels (vector, element, MatMul, graph, logic, etc)
Hardware Efficiency	Efficient on GPU/TPU	Inefficient on CPU/GPU/TPU (low ALU utilization, low L1 cache hit rate, high data movement, etc)
System Bound	Compute-bound / Memory-bound	Memory-bound

	Neural Network	Neuro-Symbolic
Runtime	[Neural Network] < [Neural-Symbolic]	
Compute Kernels	Neural kernels (Conv, MatMul, etc)	Heterogenous neural and symbolic kernels (vector, element, MatMul, graph, logic, etc)
Hardware Efficiency	Efficient on GPU/TPU	Inefficient on CPU/GPU/TPU (low ALU utilization, low L1 cache hit rate, high data movement, etc)
System Bound	Compute-bound / Memory-bound	Memory-bound
Dataflow	Simple flow control, High parallelism	Complex flow control, Low parallelism

This talk: Demystify Neuro-Symbolic AI for SW/HW Co-Design

This talk: Demystify Neuro-Symbolic AI for SW/HW Co-Design

Goals

Energy and Latency

Efficiency, Performance Scalability, Interpretability

Hardware Architecture Overview

Zishen Wan | School of ECE | Georgia Institute of Technology

Reconfigurable Neuro/Symbolic PE

Micro-architecture of reconfigurable neuro/symbolic PE

Reconfigurable neuro/symbolic PE incurs low area overhead based on systolic array PE;

Reconfigurable Neuro/Symbolic PE

Micro-architecture of reconfigurable neuro/symbolic PE

Operation mode of reconfigurable neuro/symbolic PE

Reconfigurable neuro/symbolic PE incurs **low area overhead** based on systolic array PE; The PE is reconfigurable for **three operation modes**: load, neuro, symbolic

What is Circular Convolution?

Zishen Wan | School of ECE | Georgia Institute of Technology
Bubble Streaming **Dataflow**

Vector-Symbolic Circular Convolution Example (3 CircConv): CircConv #1: (A1, A2, A3) \odot (B1, B2, B3) CircConv #2: (C1, C2, C3) \odot (D1, D2, D3) CircConv #3: (E1, E2, E3) \odot (F1, F2, F3)

CircConv #1 Computation:

 $(A1, A2, A3) \odot (B1, B2, B3) =$ (A1B1+A2B2+A3B3, A1B3+A2B1+A3B2, A1B2+A2B3+A2B1)

For symbolic operation:

 TPU-like array suffers from low parallelism & high memory access;

Bubble Streaming Dataflow

Vector-Symbolic Circular Convolution Example (3 CircConv): CircConv #1: (A1, A2, A3) \odot (B1, B2, B3) CircConv #2: (C1, C2, C3) \odot (D1, D2, D3) CircConv #3: (E1, E2, E3) \odot (F1, F2, F3)

CircConv #1 Computation:

 $(A1, A2, A3) \odot (B1, B2, B3) =$ (A1B1+A2B2+A3B3, A1B3+A2B1+A3B2, A1B2+A2B3+A2B1)

For symbolic operation:

- TPU-like array **suffers from** low parallelism & high memory access;
- Bubble streaming dataflow improve parallelism, arithmetic intensity, and data reuse.

Bubble Streaming **Dataflow**

Bubble streaming dataflow flow improve parallelism, arithmetic intensity, and data reuse

MLBench @ ASPLOS25

Zishen Wan | School of ECE | Georgia Institute of Technology

CogSys: Co-Design for Neuro-Symbolic Al

Original Codebook $(\text{ucurve} Size) = \begin{bmatrix} -X_1C_1P_1N_1S_1 - \\ -X_1C_1P_1N_1S_2 - \\ \vdots \\ -X_1C_1P_1N_1S_s - \\ -X_1C_1P_1N_2S_s - \\ \vdots \\ -X_1C_1P_1N_2S_s - \\ \end{bmatrix}$ 13560KB 11.7s

Factorization disentangles large symbolic knowledge codebook into small volume of attributes

Factorization **disentangles** large symbolic knowledge codebook into small volume of attributes

Factorization **disentangles** large symbolic knowledge codebook into small volume of attributes, thus **reducing computational time and space complexity**

CogSys: Co-Design for Neuro-Symbolic Al

Adaptive scheduling enables interleaved

Adaptive scheduling enables **interleaved** and **reconfigurable** neuro/symbolic processing

Adaptive scheduling enables **interleaved** and **reconfigurable** neuro/symbolic processing with **partitioned array**

Adaptive scheduling enables **interleaved** and **reconfigurable** neuro/symbolic processing with **partitioned array**, improving parallelism, latency, efficiency, and utilization

CogSys: Co-Design for Neuro-Symbolic Al

Evaluation – Setup and Accelerator Layout

Layout of Neuro-Symbolic Accelerator

Technology	28 nm	Frequency	600 MHz	
#Arrays	16	Voltage	1 V	
Size of Each Array	32x32	Power	1.48 W	
SRAM	4.5 MB	Area	4.9 mm ²	

- **Task**: Cognitive reasoning tasks
- Reasoning datasets:
 - RAVEN, I-RAVEN, PGM, CVR, SVRT
- Neuro-symbolic workloads:
 - NVSA, MIMONet, LVRF
- Hardware baseline:
 - Jetson TX2, Xavier NX, RTX GPU, Xeon CPU
 - ML accelerators (TPU, MTIA, Gemmini)

SR

Ctrl

Evaluation – Algorithm Performance

Dataset	N	Neurosymbolic Model			Non-neurosymbolic		
Accuracy	NIVCA	Our Design	Our Design	DecNet18	CDT 4	riuman	
	INVSA	(+Algo Opt.)	(+Quant.)	NESINCI10	UF 1-4		
RAVEN	98.5%	98.9%	98.7%	53.4%	89.0%	84.4%	
I-RAVEN	99.0%	99.0%	98.8%	40.3%	86.0%	78.6%	
PGM	68.3%	68.7%	68.4%	36.8%	56.0%	N/A	
#Parameters	38 MB	32 MB	8 MB	42 MB	1.7 TB	N/A	

- Better Reasoning Capability: neurosymbolic methods achieve high accuracy across reasoning tasks than NNs and human.
- Smaller Memory Footprint: neurosymbolic methods consume much less #parameter than NNs (e.g., LLM).

Evaluation – Hardware Performance

Evaluation – Hardware Performance

Compared with ML accelerators: similar neuro latency, 7-120x symbolic speedup, 2-16x end-to-end neuro-symbolic speedup

Evaluation – Ablation Study

Neurosymbolic Cognitive Solution	Normalized Runtime (%) on			e (%) o		
Algorithm @ Hardware	RAVEN	I-RAVEN	PGM	CVR	SVRT	Algorithm-system-
NVSA @ Xavier NX	100	100	100	100	100	hardware co-design
Proposed Algorithm @ Xavier NX	89.5%	88.9%	90.7%	87.6%	88.4%	is critical
Proposed Algorithm @ Proposed Accelerator	1.76%	1.74%	1.78%	1.72%	1.69%	is critical

Wey Observations:

Compared with systolic arrays that only support neural, CogSys provides reconfigurable support for neural and symbolic operations with only 4.8% area overhead.

Our design achieves 0.3s latency per cognition task, with 1.18W power consumption.

How to **automate** this neuro-symbolic architecture **design** process?

End-to-End FPGA Deployment for Neuro-Symbolic AI

Hanchen Yang*, Zishen Wan*, Ritik Raj, Joongun Park, Ziwei Li, Ananda Samajdar, Arijit Raychowdhury, Tushar Krishna, **"NSFlow: An End-to-End** FPGA Framework with Scalable Dataflow Architecture for Neuro-Symbolic AI", to appear in DAC 2025

Frontend – Dataflow architecture Generation

graph():

```
// Neuro Operation - CNN (Resnet18)
%relu_1[16,64,160,160] : call_module[relu](args = (%bn1
     [16, 64, 160, 160]))
%maxpool_1[16,64,160,160] : call_module[maxpool](args =
      (%relu 1[16,64,160,160]))
%conv2d_1[16,64,160,160] : call_module[conv2d](args =
     (%maxpool_1[16,64,160,160]))
// Symbolic Operations
// Inverse binding of two block codes vectors by
    blockwise cicular correlation
%inv_binding_circular_1[1,4,256] : call_function[nvsa.
    inv_binding_circular](args = (%vec_0[1,4,256], %
    vec_1[1,4,256]))
%inv_binding_circular_2[1,4,256] : call_function[nvsa.
    inv_binding_circular](args = (%vec_3[1,4,256], %
    vec_4[1,4,256]))
// Compute similarity between two block codes vectors
%match_prob_1[1] : call_function[nvsa.match_prob](args
     = (%inv_binding_circular_1[1,4,256], %vec_2
     [1,4,256]))
// Compute similarity between a dictionary and a batch
     of query vectors
%match prob multi batched 1[1]: call function[nvsa.
    match_prob_multi_batched] (args = (%
    inv_binding_circular_2[1,4,256], %vec_5[7,4,256]))
%sum_1[1] : call_function[torch.sum](args = (%)
    match prob multi batched 1[1]))
%clamp_1[1] : call_function[torch.clamp](args = (%sum_1)
     [1]))
%mul_1[1] : call_function[operator.mul](args = (%
    match_prob_1[1], %clamp_1[1]))
. . .
```

Extract workload execution trace

Generate dataflow graph & two-stage HW-mapping co-exploration

Backend – FPGA Deployment

Pre-defined architecture template

Dataflow & configure design parameters

Looking Ahead: LLM + Neurosymbolic

Towards safe and trustworthy AI System: LLM + cognitive model for human moral judgment

Towards logical reasoning AI System: LLM + symbolic solver for scientific computing

Towards human-centered AI System:

LLM + knowledge base for conversational reasoning

Towards intelligent AI System:

LLM + concept graph for intelligent autonomous system

Zishen Wan | School of ECE | Georgia Institute of Technology

Summary

Motivation

- Neurosymbolic AI is a promising paradigm towards next-generation cognitive AI
- Challenge: inefficiency on off-the-shelf hardware

Approach

- Characterize neurosymbolic workloads
- Identify potential inefficiency reasons
- Optimize neurosymbolic system via co-design.

• Achieve

• Efficient and scalable neuro-symbolic execution across reasoning tasks.

Demystifying Neuro-Symbolic AI for Software-Hardware Co-Design

Zishen Wan

PhD Student @ School of ECE, Georgia Tech Advisors: Prof. Arijit Raychowdhury, Prof. Tushar Krishna

Web: https://zishenwan.github.io

Email: zishenwan@gatech.edu

MLBench Workshop @ ASPLOS, March 30, 2025