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| Executive Summary

* Understand neuro-symbolic workloads from architecture and
system perspective.

* |dentify optimization opportunities for neuro-symbolic systems.

 Demonstrate orders of scalability and efficiency improvement of
neuro-symbolic workload via co-designed system.
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| Neural Networks in Our Daily Life
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get 1 block? (2)

Complex Question Answering
NN accuracy: 50%

Interactive Learning
NN accuracy: 71%

(i) Remove all gray spheres. How many
spheres are there? (3), (ii) Take away 3 QO
cubes. How many objects are there? (7),
(iii) How many blocks must be removed to

But... Is That Enough?

o Ce ‘o- 0@
A @

0

©

e » -0 ~°

O A

Abstract Reasoning

NN accuracy: 53%

Scenario

Imagine that a stranger will give Hank one thousand dol-
lars to break all the windows in his neighbor’s house
without his neighbor’s permission. Hank carries out the
stranger’s request.

Imagine that there are five people who are waiting in line
to use a single-occupancy bathroom at a concert venue.
Someone at the back of the line needs to throw up imme-
diately. That person skips to the front of the line instead
of waiting in the back.

At a summer camp, there is a pool. Right next to the pool
is a tent where the kids at the camp have art class. The
camp made a rule that there would be no cannonballing in
the pool so that the art wouldn’t get ruined by the splashing
water. Today, there is a bee attacking this kid, and she
needs to jump into the water quickly. This kid cannonballs .
into the pool.

Ethical Decision Maki‘ng
NN accuracy: 65%

00‘ <

IMO 2015 P3

“Let ABC be an acute triangle. Let
(O) be its circumcircle, H its
orthocenter, and F the foot of the
altitude from A. Let M be the
midpoint of BC. Let Q be the point
on (O) such that QH L QA and let K
be the point on (O) such that KH L
KQ. Prove that the circumcircles
(0,) and (O,) of triangles FKM and
KQH are tangent to each other.”

Automated Theorem Proving
NN accuracy: 20%

Farmer John has N cows (2 < N < 10°). Each cow has a breed that is either
Guernsey or Holstein. As is often the case, the cows are standing in a line,
numbered 1--- N in this order.

Over the course of the day, each cow writes down a list of cows. Specifically,
cow #’s list contains the range of cows starting with herself (cow 7) up to and
including cow E; (i < E; < N).

FJ has recently discovered that each breed of cow has exactly one distinct leader.
FJ does not know who the leaders are, but he knows that each leader must have
a list that includes all the cows of their breed, or the other breed’s leader (or
both).

Help FJ count the number of pairs of cows that could be leaders. It is guaranteed

that there is at least one possible pair. ——————
% Problem

Competitive Programming
NN accuracy: 8.7%

MLBench @ ASPLOS25
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| But... Is That Enough?

Neuro-Symbolic Al
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| What is Neuro-Symbolic Al?

. /Symbolic\
Recognition

E Explainability
Flexibility !

Knowledge |

Scalability Data Efficient

Towards Cognitive and Trustworthy Al Systems
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| Neural Network
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Slide Adapted from MIT 6.5191: Neurosymbolic Al
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| Symbolic Al

MLBench @ ASPLOS25

apple

origin structure

/ ZERN \

apple tree body stem
N
shape size color taste
/ I [\ X
round hand red green apple

Slide Adapted from MIT 6.5191: Neurosymbolic Al
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| Neuro-Symbolic Al Example: Visual Reasoning

Question: Are there an equal number of
large things and metal spheres?

Slide Adapted from MIT 6.5191: Neurosymbolic Al
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| Neuro-Symbolic Al Example: Visual Reasoning

Question: Are there an equal number of
large things and metal spheres?

Slide Adapted from MIT 6.5191: Neurosymbolic Al
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| Neuro-Symbolic Al Example: Visual Reasoning

Question: Are there an equal number of
large things and metal spheres?

3 large 3 metal
things! spheres!

O

O

Slide Adapted from MIT 6.5191: Neurosymbolic Al
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| Neuro-Symbolic Al Example: Visual Reasoning

Question: Are there an equal number of
large things and metal spheres?

‘

[ Equal? Yes! ’\
a J
-

3 metal
i spheres!
O

O

Slide Adapted from MIT 6.5191: Neurosymbolic Al
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| Neuro-Symbolic Al Example: Visual Reasoning

Question Understanding

Question: Are there an equal number of
large things and metal spheres?

~

/v [Equal? Yes! ‘\
J

3 large O i 3 metal
things! 0O i spheres!
O

O

Visual Perception Logical Reasoning

MLBench @ ASPLOS25 Zishen Wan | School of ECE | Georgia Institute of Technology 13



| Neuro-Symbolic Al Example: Visual Reasoning

(c) Structural Scene Representation

ID Size  Shape Material  Color y 7
y 1 Small Cave Metal Pumle 045 -1.10 035
VI S I o n 2 Large Cuoe Meul Gieen 2.8 -0.04 0.70
3 Lere=  Cube Metal Green 320 063  0.70
(CNN / Transformers) - Representation
5 Large  Cube Metal Green 1.58  -1.60 0.70
/)

—

Language

(RNN / Transformers)

MLBench @ ASPLOS25
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| Other Examples

= Google DeepMind Q

AlphaGeometry: An Olympiad-level Al system
for geometry

17 JANUARY 2024

Trieu Trinh and Thang Luong

< Share

AlphaGeometry adopts a neuro-symbolic
approach

AlphaGeometry is a neuro-symbolic system made up of a neural language model
and a symbolic deduction engine, which work together to find proofs for complex
geometry theorems. Akin to the idea of “thinking, fast and slow”, one system
provides fast, “intuitive” ideas, and the other, more deliberate, rational decision-
making.

A simple problem AlphaGeometry Solution

A A

i ‘ % Language model ] ji

B C s Not B D C
construct -.-.-.... .| solved
Theorem premises: :-~; ------------------- > « Construct D: midpoint BC
Let ABC be any triangle with AB=AC . . Solved | « AB=AC, BD=DC, AD=AD = ZABD= £DCA
Prove that angle (£) ABC= «BCA Q Symbolic engine « £ABD= £ZDCA, B C D collinear =
{ J L ZABC=ZBCA

LLM: construct auxiliary points and lines
Symbolic: deductive reasoning

Eval on 30 Int. Math Olympics (IMO) problems:
 GPT-4: 0/30
* AlphaGeometry (Neuro-Symbolic): 25/30
* Human Gold Medalist: 26/30

Trinh et al, “Solving Olympiad Geometry without Human Demonstrations”, Nature 2024

MLBench @ ASPLOS25
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| Relationship to Human Minds

S e @ Neural
The International Flexible, Scalable
Bestseller
X Black-box, Data
System 1: thinking fast
T~ (intuitive perception)
Thinking, |
Fast and Slow
IE - " -
Daniel Kahneman
Winner of the Nobel Prize 0

Daniel Kahneman
(1934-2024)
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| Relationship to Human Minds

it @ Neural ‘% Symbolic

The International .

Bestseller  Flexible, Scalable ™ Reasoning, Transparent
X Black-box, Data X Scalable, Learnable

System 1: thinking fast System 2: thinking slow

- (intuitive perception) (logical reasoning)

Thinking, |

Fast and Slow

Daniel Kahneman

Winner of the Nobel Prize 0

Daniel Kahneman
(1934-2024)
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| Relationship to Human Minds

‘A lifetime’s worth of wisdom’ \ [ o

b T e TS @ Neural M ‘% Symbollc

e ™ Flexible, Scalable [7™4H @ Reasoning, Transparent
X Black-box, Data X Scalable, Learnable

System 1: thinking fast System 2: thinking slow
(intuitive perception) D (logical reasoning)

Thinkirié; p

Fast and Slow | |

~
gﬁ% Neurosymbolic System

Human-like Cognition, Reasoning, Transparent
Scalable, Flexible, Learning, Data-efficient

Daniel Kahneman 0

Winner of the Nobel Prize

Daniel Kahneman
(1934-2024)
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However.. From Computing Perspective

= 100% \ s

S Better @ Neural f%ﬁ Symbolic

g? , ™ Flexible, Scalable M & Reasoning, Transparent
= 80% X Black-box, Data (X Scalable, Learnable

<QC) System 1: thinking fast System 2: thinking slow
':4‘@ 60% (intuitive perception) D (logical reasoning)

- ~ : ~
0 Neurosymbolic System

= 40% Human-like Cognition, Reasoning, Transparent
go 101 100 10! 102 Scalable, Flexible, Learning, Data-efficient )
O Latency (s): @ TPU ©GPU
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However.. From Computing Perspective

' 100% \ s

S Better @ Neural o\ f%ﬁ Symbolic

§ . ™ Flexible, Scalable (™4 @ Reasoning, Transparent
§ 80% X Black-box, Data X Scalable, Learnable

<‘E Sy.sten? .] : thinking fast System. 2: thinking slow
A2 0% (intuitive perception) D (logical reasoning)
e Neural e ™
V mo Neurosymbolic System

= 40% Human-like Cognition, Reasoning, Transparent
§° 101 100 10! 102 Scalable, Flexible, Learning, Data-efficient )
O Latency (s): @ TPU ©GPU
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However.. From Computing Perspective

MLBench @ ASPLOS25

o 100%
S Better

e

g 80%

— (i}

5

O

< S [
= 60% Symbolic

ﬁ Neural (e.g., rules, logic,
<1>) mo coded knowledge)
Ig 40%

2 10-1 100 10! 10?

O Latency (s): @ TPU ©GPU

N r )
@D Neural o\ é%h Symbolic
Flexible, Scalable ™5 H € Reasoning, Transparent
X Black-box, Data X Scalable, Learnable

System 1: thinking fast System 2: thinking slow
(intuitive perception) D (logical reasoning)

g Neurosymbolic System

Human-like Cognition, Reasoning, Transparent
Scalable, Flexible, Learning, Data-efficient

~
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However.. From Computing Perspective

100%

80%

60%

40%

Cognitive Task Accuracy (%)

Better Sl
Neurosymbolic
o
Symbolic
Neural (e.g., rules, logic,
mo coded knowledge)
10-1 100 10! 102

Latency (s): @ TPU ©GPU

MLBench @ ASPLOS25

@ Neural k Mf f%ﬁ Symbolic

™ Flexible, Scalable (™4 @ Reasoning, Transparent
X Black-box, Data X Scalable, Learnable

System 1: thinking fast System 2: thinking slow
(intuitive perception) D (logical reasoning)

g Neurosymbolic System

Human-like Cognition, Reasoning, Transparent
Scalable, Flexible, Learning, Data-efficient

~
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This talk: Demystify Neuro-Symbolic Al for SW/HW Co-Design

Neuro-Symbolic AI Algorithms

|
g | ™ e \ e \
2
Characterize Neuro-Symbolic _ £ | 5
Workloads S 2 || NeuralNetwork |V Symbolic T | Probabilistic
:E éﬁ : Scalable, Flexible, Interpretable, Explainable, Robust to
En % : kHandle inconsistency | L Data-efficient ) | uncertainty
O 8 Fr——-~----—----—-----——-~- b -~
i = : f N Symbolic Al Workload Ch terizati )
. . . = S euro-Symbolic orkloa aracterization
Identify Potential Inefficiency % & |
s S Hardware Compute Platforms Metrics
Rea sons E e Runtime, Memory, Compute
|0 e @ ot
= £ Aot Operators, Operation Graph,
s 3 CPU GPU  Accelerator Roofline, Sparsity, etc
= é‘? AN Y
Optimize Neuro-Symbolic &3 — b N
g | Neuro-Symbolic AI Workload Optimization
[} L |
SVStemS Vid CO'D95|gn § : Software [<+>| System [+—|Architecture[+«—| Technology
I\ J

MLBench @ ASPLOS25 Zishen Wan | School of ECE | Georgia Institute of Technology 23



I This talk: Demystify Neuro-Symbolic Al for SW/HW Co-Design

Neuro-Symbolic AI Algorithms

|
g e ™ r ) r D
. . g = °.°.°.
Characterize Neuro-Symbolic _ £ !
Workloads S 2 || NeuralNetwork |V Symbolic T | Probabilistic
:,E %ﬁ : Scalable, Flexible, Interpretable, Explainable, Robust to
E” % : kHandle inconsistency| L Data-efficient ) | uncertainty
. v |_ ________________________________________
SE ‘ .
I d en ti fy PO te n t | 3 | I ne ffl C | en Cy é s : Neuro-Symbolic AI Workload Characterization
1 Eb
§ _3 : Hardware Compute Platforms Metrics
Rea SOoNsS g oh : ' ﬁ : _ | Runtime, Memory, Compute
= £ T @ ~ | Operators, Operation Graph,
s 3 CPU GPU  Accelerator Roofline, Sparsity, etc
= g AN Y,
B M peececcccccccccccccccee | ccccm e e e cm e - =
= @ : — A
2 : Neuro-Symbolic AT Workload Optimization
§ : Software [+>| System [+—|Architecture[«—| Technology
I\ J

Zishen Wan, Che-Kai Liu, Hanchen Yang, Ritik Raj, Chaojian Li, Haoran You, Yonggan
Fu, Cheng Wan, Ananda Samajdar, Celine Lin, Tushar Krishna, Arijit Raychowdhury,
“Workload and Characterization of Neuro-Symbolic Al”, in ISPASS 2024
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| Lots of Neuro-Symbolic Algorithms

(b) NVSA frontend: perception

(c) NVSA backend: reasoning

P
Trainable P12
ResNet-18

32
Probabilistic PO
scene e
inference

S P
Detect | |Execute | [ 233) | Answer
rules rules i

Candidate {30, }

Probabilistic Abduction

MLP, ConvNet, Transformer, etc

: (Whiskers ® Tail ® (Laser pointer - Chases)) = Cat ] Q(m+ ) g@ (A)
(Cat ® Dog) - Pet| =
et wEbs) T TEY B
G(z-)
t

[ Chases ]

[Laser pointer]

Logical Neural Network Logical Tensor Network

e . AlphaGeometry
% = [m s 1d }
s |
T{Q FJ
Image Translation via VSA AlphaGeometry

| Deep Hinge-Loss Markov Random Field |

[ Symbolic Inference I

o)
@8]
el

y* = argmin B(-) |T
y

‘ Neural Inference |

¥

[

¥

Neural Probabilistic Soft Logic

PR

/
\1/
Reduce |\ Reduce |\
B - MLP — |- 2o 20 .
,,,,,,,,,,, — — ::1:7:17;7:1:
Expand '/ Expand '/
v

fy
!’\ !’\
Reduce | | Reduce | |
______________ |MLP e L
= My ——————1
Expand Expand ,,"
\ \
\ |
!’\

Neural Logical Machine

[ Symbolic ] Vector, Fuzzy logic, Knowledge graph, Decision tree, etc

MLBench @ ASPLOS25

Zishen Wan | School of ECE | Georgia Institute of Technology
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Neuro-Symbolic Al Workload Category

r ) r ) M (o)
Symbolic Neuro o =
> [NeuroJ > g [Symbolicﬂ g ™ é i g g
$ ) . J )
Symbolic [Neuro] Neuro [Symbolic] Neuro | Symbolic

[Symbolid (2) ¥ (o] & (2
e - FiEIE
Neuro:Symbolic->Neuro Neurog, noic

Inspired by Henry Kautz’s terminology
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| Selected Neuro-Symbolic Workloads

LNN NVSA NLM Input (pre-conditions) Output (conclusions) || PrAE
[ (Whiskers ® Tail ® (Laser point — Chases)) — Cat ] [(Cat @ Dog) - Pet] Scenc images | Neural Symbolic VSA OPs for rules SIOTIIH\P;OPEYSSS —_— * MLP — L Scene images
0 T 8. atche xpand '\, xpand,
o s 6 Reduce . Reduce ,
T E o Object Properties ._|| — -Permutation MLP >... =
@ © S 28| || £ Moveabiers — 10 e o .
e . >
VSA vectors E.g. On(x, y) Expand . Reduce :
—> . > _ |—|
[ Whiskers ] [ Tail ] [ Laser pointer ] [ Chases ] [ Cat ] [ Dog ] : g CNN
- ZeroC Z [ Scene Inf.
LTN Neural Symbolic —
Symbolic .| (VSA domain) |:> —
g X my m, ms
sy oLy .
Connectives: r line
m perp
. 0SS , T
Quantifiers: « sim() per’& /Tar + E(x,m3,m3, Tpar)
N
G(x2) Jv o 5 p + E(x,my,m3,7perp) :

e E = E(x,my, mz, Tpery Answer
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| Selected Neuro-Symbolic Workloads

LNN
[ (Whiskers ® Tail @ (Laser point — Chases)) — Cat ] [(Cat @ Dog) - Pet]

@5 6

[ Whiskers ] [ Tail ] [ Laser pointer ] [ Chases ] [ Cat

-
—
o
(=]
(=]
—

LTN Symbolic
|| (Fuzzy FOLs)
Connectives:
S AV o sat
L, Quan;gers.
Representative Neuro- Logic Neural Logic Tensor
Symbolic AI Workloads Network [30] Network [34]
Abbreviation LNN LTN
Neuro-Symbolic Category | Neuro:Symbolic—Neuro Neurogymbolic
Learning Approach Supervised Supervised/Unsupervised

Querying, learning, reasoning
(relational and embedding
learning, query answering)
Higher interoperability, Higher data efficiency,
resilience to incomplete | comprehensibility, out-of-

knowledge, generalization| distribution generalization
LUBM benchmark [40], UCI [42], Leptograpsus

Learning and reasoning,

Aoblicati
pplication Full theorem prover

Deployment

Advantage vs.
Scenario g

Neural Model

Dataset
atase TPTP benchmark [41] |crabs [43], DeepProbLog [44]
Computation Datatype FP32 FP32
p Neuro Graph MLP
Pattern

Symbolic FOL/Logical operation FOL/Logical operation




| Selected Neuro-Symbolic Workloads

NVSA
Scene images | Neural SymbOIiC VSA OPs for rules
Gy St
1h= e °3
N —
g E)—>{e] 273
~ ) )
H a
VSA vectors —

Representative Neuro-

Symbolic AT Workloads

Logic Neural
Network [30]

Logic Tensor
Network [34]

Neuro-Vector-Symbolic

Architecture [4]

Abbreviation LNN LTN NVSA
Neuro-Symbolic Category | Neuro:Symbolic—Neuro Ne“mSymbolic Neuro|Symbolic
Learning Approach Supervised Supervised/Unsupervised Supervised/Unsupervised

Querying, learning, reasoning
(relational and embedding
learning, query answering)

Higher data efficiency,
comprehensibility, out-of-
distribution generalization

Learning and reasoning,
Full theorem prover

Fluid intelligence,

Applicati
pplication Abstract reasoning

Deployment
Scenario

Higher interoperability,
resilience to incomplete
knowledge, generalization

Higher joint representations
efficiency, abstract reasoning
capability, transparency

Advantage vs.
Neural Model

Dataset LUBM benchmark [40], UCI [42], Leptograpsus RAVEN [21],
TPTP benchmark [41] |crabs [43], DeepProbLog [44]| I-RAVEN [22], PGM [45]
Computation Datatype FP32 FP32 FP32
Petteri Neuro Graph MLP ConvNet
Symbolic FOL/Logical operation FOL/Logical operation VSA/Vector operation




| Selected Neuro-Symbolic Workloads

E.g

NLM
Global Properties

. AllMatched()

Object Properties |

E.g. Moveable(x)

Expand '\,

Expand
Reduce

Input (pre-conditions)

Reduce >

Reduce

Output (conclusions)

e ][ ——
Expand

PrAE

Scene images

\AA

Expand,

'4> Reduce .
Object Relations _I —’
Bgony | L_H B T
—> : —
Neural Symbolic ZeroC
Feature . (VSA domain) F |:> |
vectors x my
.
P Q
« sim() + E(x, my, m3,7p4;) E :
te E = E(x,my,mz, Tperp Answer
Representative Neuro- Logic Neural Logic Tensor Neuro-Vector-Symbolic |Vector Symbolic Architecture Neural Logic Zero-shot Concept Recog- | Probabilistic Abduction
Symbolic AI Workloads Network [30] Network [34] Architecture [4] Image2Image Translation [7] Machine [38] nition and Acquisition [37] and Execution [23]
Abbreviation LNN LTN NVSA VSAIT NLM ZeroC PrAE
Neuro-Symbolic Category | Neuro:Symbolic—Neuro Neurogympolic Neuro|Symbolic Neuro|Symbolic Neuro[Symbolic] Neuro[Symbolic] Neuro|Symbolic
Learning Approach Supervised Supervised/Unsupervised Supervised/Unsupervised Supervised Supervised/Unsupervised Supervised Supervised/Unsupervised
Cross-domain classification

Application

Learning and reasoning,
Full theorem prover

Querying, learning, reasoning
(relational and embedding
learning, query answering)

Fluid intelligence,
Abstract reasoning

Unpaired image-to-image
translation

Relational reasoning,
Decision making

and detection, Concept
acquisition

Fluid intelligence,
Spatial-temporal reasoning

Depl t
cpoyimen Advantage vs.

Higher interoperability,

Higher data efficiency,

Higher joint representations
efficiency, abstract reasoning

Address semantic flipping and
hallucinations issue in unpaired

Higher generalization,
logic reasoning, deduction,

Higher generalization, concept
acquisition and recognition,

Higher generalization,
transparency, interpre-

Scenario Neural Model resilience to incomplete | comprehensibility, out-of-
knowledge, generalization| distribution generalization capability, transparency image translation tasks explainability capability compositionality capability tability, and robustness
Distiset LUBM benchmark [40], UCI [42], Leptograpsus RAVEN [21], GTA [47], Cityscapes [48], | Family graph reasoning, Abstraction reasoning [50], RAVEN [21],
TPTP benchmark [41] |crabs [43], DeepProbLog [44]| I-RAVEN [22], PGM [45] Google Maps dataset [49] | sorting, path finding [46] Hierarchical-concept corpus [51]/I-RAVEN [22], PGM [45]
. Datatype FP32 FP32 FP32 FP32 FP32 INT64 FP32
Computation _
Petteri Neuro Graph MLP ConvNet ConvNet Sequential tensor Energy-based network ConvNet
VSA/Vector operation VSA/Vector operation FOL/Logical operation Graph, vector operation VSA/Vector operation

Symbolic

FOL/Logical operation

FOL/Logical operation




| Example: Neuro-Vector-Symbolic Architecture (NVSA)

NVSA
Scene images | Neural Symbolic VSA OPs for rules
LLIE] | 23
g G gy
~
o H a
VSA vectors
Representative Neuro- Logic Neural Logic Tensor Neuro-Vector-Symbolic |Vector Symbolic Architecture Neural Logic Zero-shot Concept Recog- | Probabilistic Abduction
Symbolic AI Workloads Network [30] Network [34] Architecture [4] Image2Image Translation [7] Machine [38] nition and Acquisition [37] and Execution [23]
Abbreviation LNN LTN NVSA VSAIT NLM ZeroC PrAE
Neuro-Symbolic Category | Neuro:Symbolic—Neuro Neurogymbolic Neuro|Symbolic Neuro|Symbolic Neuro[Symbolic] Neuro[Symbolic] Neuro|Symbolic
Learning Approach Supervised Supervised/Unsupervised Supervised/Unsupervised Supervised Supervised/Unsupervised Supervised Supervised/Unsupervised
. . Learning and reasoning, Querylrllg, Amng) reaso.nmg Fluid intelligence, Unpaired image-to-image Relational reasoning, Cross-domalln clasalication Fluid intelligence,
Application (relational and embedding . . .. . and detection, Concept . :
Full theorem prover ; . Abstract reasoning translation Decision making P Spatial-temporal reasoning
learning, query answering) acquisition
Deployment Advantasge vs Higher interoperability, Higher data efficiency, Higher joint representations | Address semantic flipping and | Higher generalization, | Higher generalization, concept | Higher generalization,
Scenario Neural 1510 dei resilience to incomplete | comprehensibility, out-of- |efficiency, abstract reasoning hallucinations issue in unpairedlogic reasoning, deduction, acquisition and recognition, transparency, interpre-
knowledge, generalization| distribution generalization capability, transparency image translation tasks explainability capability compositionality capability tability, and robustness
Dataset LUBM benchmark [40], UCI [42], Leptograpsus RAVEN [21], GTA [47], Cityscapes [48], | Family graph reasoning, Abstraction reasoning [50], RAVEN [21],
TPTP benchmark [41] |crabs [43], DeepProbLog [44]| I-RAVEN [22], PGM [45] Google Maps dataset [49] | sorting, path finding [46] [Hierarchical-concept corpus [51]]I-RAVEN [22], PGM [45]
. Datatype FP32 FP32 FP32 FP32 FP32 INT64 FP32
Computation =
Petteiia Neuro Graph MLP ConvNet ConvNet Sequential tensor Energy-based network ConvNet
Symbolic FOL/Logical operation FOL/Logical operation VSA/Vector operation VSA/Vector operation FOL/Logical operation Graph, vector operation VSA/Vector operation




| Example: Neuro-Vector-Symbolic Architecture

RAVEN example test
Context panels
(1,1) O @ |03
o o O
40 \:

G (g ~—{lee ? QQ\
A ‘

=

Candidate panels

(1) ’ﬂh// (4)
O &

\

Yo/l @)
O
Qo

)] (8)

OO0 LX)

Hersche, et al. “A neuro-vector-symbolic architecture for solving Raven’s progressive matrices”. In Nature Machine Intelligence, 2023
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| Example: Neuro-Vector-Symbolic Architecture

lution

layer + Tanh =t
Candidate panels / X o
L

0 ’ﬂk// @ i J
O * 0

RAVEN example test NVSA frontend: perception
Context panels 4 (| : — S)
Type Size Colour | [Position
(1) O .' 1.3) EE
. & O Y
) aq | . 2.3) = - —
P Frozen W
<49 \\ ( Trainable k
N ResNet-18 w, —\ @
G @ e 2 163 | o
& ' Convo- Fully d B Ws — |@
~ . . - connected | = w, — |O 3
O

g

Yo/l @)
O
Qo

(5) (®) Neuro Perception

OO0 LX)

I o

Hersche, et al. “A neuro-vector-symbolic architecture for solving Raven’s progressive matrices”. In Nature Machine Intelligence, 2023
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| Example: Neuro-Vector-Symbolic Architecture

RAVEN example test NVSA frontend: perception
Context panels 4 (1 : — S)
, . Type Size Colour | |Position
i) O .' .3) Eﬁ
o o O Y
2,1 e d | s (2,3) = p . & NVSA backend: reasoning
< Frozen W pan - 3
48 \\ ( Trainable ) pi-2
e ResNet-18 w —|o
(3,1 O - > WG{)\ [ |[e] p3.2)
* Fully q w; — |0 Probabilistic
& o Il . D e le:t?;z' connected | = W, — 10 scene Cu— Detlect Exefute > Alnsvg.er
layer + Tanh —w; — |0 inference o rutes rutes PR
Candidate panels / A ] ; g )
e {— Wi, —j m PO, ..., PO
n| ¢ @ s “
e Ooo . : :
) e 8O (®) Neuro Perception Symbolic Reasoning
[ J L s

I o

Hersche, et al. “A neuro-vector-symbolic architecture for solving Raven’s progressive matrices”. In Nature Machine Intelligence, 2023
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| Example: Neuro-Vector-Symbolic Architecture

(8)

RAVEN example test
| Context panels
(1,1) Q @@ |03
oo O
4® N\«
B @ R ? J @3)
Candidate panels /
& i
a ’ /
€O O * @
L Qoo
(5) @ —OH
00 ®eo

* Neuro-Symbolic Category: Neuro | Symbolic
* Learning Approach: Supervised and Unsupervised

Hersche, et al. “A neuro-vector-symbolic architecture for solving Raven’s progressive matrices”. In Nature Machine Intelligence, 2023

MLBench @ ASPLOS25

Zishen Wan | School of ECE | Georgia Institute of Technology 35



| Example: Neuro-Vector-Symbolic Architecture

RAVEN example test

Neuro-Symbolic Category: Neuro | Symbolic

Context panels

" .o |oo * Learning Approach: Supervised and Unsupervised
los | @ | * Application: Fluid Intelligence, Abstract reasoning
) o4 o e * Advantages over Neural Model: Accuracy
L/ 4@ N\ | * Higher joint representation efficiency ResNet: 53%
3 oo | 9 TG * Higher abstract reasoning capability = GPT-4: 84%
= e Higher transparency Neuro-Symbolic: 98%
e __— -+ Dataset: RAVEN, I-RAVEN, PGM
0| ¢ L—1 (a)
€O O A
® | 0o
(5) I @ —O (8)
*060 \ A

Hersche, et al. “A neuro-vector-symbolic architecture for solving Raven’s progressive matrices”. In Nature Machine Intelligence, 2023
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| Example: Neuro-Vector-Symbolic Architecture

1) g 8@ (13
o o O
2N @< e (2.3)
L/ 4@ I\
(3,1 O PR 9 l(3,3)
o | .
Candidate panels /
L e
€O O ° @
@ Qoo
(5) | @ —O!
60 ®e

RAVEN example test

Context panels

(8)

Neuro-Symbolic Category: Neuro | Symbolic
Learning Approach: Supervised and Unsupervised
Application: Fluid Intelligence, Abstract reasoning

Advantages over Neural Model: Accuracy
* Higher joint representation efficiency ResNet: 53%
* Higher abstract reasoning capability = GPT-4: 84%

* Higher transparency
Dataset: RAVEN, |-RAVEN, PGM
Computational Components:

* Neuro: ConvNet

* Symbolic: vector-symbolic operation, circular convolution

Neuro-Symbolic: 98%

Hersche, et al. “A neuro-vector-symbolic architecture for solving Raven’s progressive matrices”. In Nature Machine Intelligence, 2023
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| Example: Neuro-Vector-Symbolic Architecture (NVSA)

LNN NVSA NLM Input (pre-conditions) Output (conclusions) || PrAE
S . . . . .
[ (Whiskers ® Tail ® (Laser point — Chases)) — Cat ] [(Cat @ Dog) - Pet] cenc images | Neural Symbolic VSA OPs for rules gloTllll\P;lr(ip}frg(e)s — *- .. Scene images
- - a o g atche xpanc xpand
] = 8 (®) 05 Reduce /\ Reduce/\
= Q11 b 2 9 Object Properties —»| Permutation MLP > ...
B B |2 ] | e e
] ? é 2 -8 Reduce _y Reduce .
® 0O | o L] B o ) — ]
VSA vectors = E.g. On(x, y) . Expand . . Reduce L
[ Whiskers ] [ Tail ] [ Laser pointer ] [ Chases ] [ Cat ] [ Dog ] '
- ZeroC
LTN Neural Symbolic —
Symbolic .| (VSA domain) |:> —
7 x my m, ms
russ FoL .
1 . l.
Conie(\:/tlv_e,s‘ sat l my M mme +
- 2
. Loss g T
Quantifiers: — perzx /Tar + E(x,m3,m3, Tpar)
N
G(x2) v cma( M3 p + E(x,my,m3,7perp) n
ve tne E = E(x, My, My, Tperp Answer

Representative Neuro-
Symbolic AT Workloads

Logic Tensor
Network [34]

Logic Neural
Network [30]

Vector Symbolic Architecture
Image2Image Translation [7]

Neuro-Vector-Symbolic
Architecture [4]

Neural Logic
Machine [38]

Zero-shot Concept Recog-

nition and Acquisition [37]

Probabilistic Abduction
and Execution [23]

Abbreviation LNN LTN NVSA VSAIT NLM ZeroC PrAE
Neuro-Symbolic Category | Neuro:Symbolic—Neuro Ne“r"Symbolic Neuro|Symbolic Neuro|Symbolic Neuro[Symbolic] Neuro[Symbolic] Neuro|Symbolic
Learning Approach Supervised Supervised/Unsupervised Supervised/Unsupervised Supervised Supervised/Unsupervised Supervised Supervised/Unsupervised
ing, learning, i Lo . .. . . . Cross-domain classificati o .
. . Learning and reasoning, Querynlxg, SEEnS reaso.nmg Fluid intelligence, Unpaired image-to-image Relational reasoning, S omalln S Fluid intelligence,
Application (relational and embedding . : .. . and detection, Concept . :
Full theorem prover ; . Abstract reasoning translation Decision making P Spatial-temporal reasoning
learning, query answering) acquisition
Deployment Higher interoperability, Higher data efficiency, Higher joint representations | Address semantic flipping and | Higher generalization, | Higher generalization, concept | Higher generalization,

Advantage vs.

Scenario Neural Model resilience to incomplete | comprehensibility, out-of- |efficiency, abstract reasoning hallucinations issue in unpairedlogic reasoning, deduction, acquisition and recognition, transparency, interpre-
knowledge, generalization| distribution generalization capability, transparency image translation tasks explainability capability compositionality capability tability, and robustness
Dataset LUBM benchmark [40], UCI [42], Leptograpsus RAVEN [21], GTA [47], Cityscapes [48], | Family graph reasoning, Abstraction reasoning [50], RAVEN [21],
TPTP benchmark [41] |crabs [43], DeepProbLog [44]| I-RAVEN [22], PGM [45] Google Maps dataset [49] | sorting, path finding [46] [Hierarchical-concept corpus [51]]I-RAVEN [22], PGM [45]
. Datatype FP32 FP32 FP32 FP32 FP32 INT64 FP32
Computation =
Petteiia Neuro Graph MLP ConvNet ConvNet Sequential tensor Energy-based network ConvNet

Symbolic

FOL/Logical operation FOL/Logical operation

VSA/Vector operation VSA/Vector operation

FOL/Logical operation

Graph, vector operation

VSA/Vector operation




| Workload Characterization - Runtime

Profiling setup: CPU+GPU system, using pytorch profiler, seven neuro-symbolic workloads

* End-to-end runtime latency analysis:

o ) 100%
:g X X
=) =) =) o e o0 v
@ & 80%| | = S 2 > B o S
S| £ g1 |4 S = i R
N )
2 60%
O
[
O
S| g 40% X
5| S £ S 2 T
= b 2 S ~
Z = 0 <t 0 < A\o =
m 20%) Ve <t o\c % n Oln.
|:| = N o)
c~ — —

LNN LTN NVSA NLM VSAIT ZeroC PrAE
Neuro-Symbolic AI Workloads

~
-}
~

Neuro-symbolic workload exhibits high latency compared to neural models;
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| Workload Characterization - Runtime

Profiling setup: CPU+GPU system, using pytorch profiler, seven neuro-symbolic workloads

* End-to-end runtime latency analysis:

) 4
o) 100% 53 555 'I"NLM Workload NVSA Workload
2o [5] [5] (5] (2] |5] L&) [2]]| 2
El & | @ S o S . 5 o 2103
~| = < re) N O 00 2
2|8 5
A 5 10
o | g 40% 2 =
é = S = - g g 10!
) <t o o
|:| é 20% $‘. g § % ‘§ i a4
c~ — — O
LNN LTN NVSA NLM VSAIT ZeroC PrAE TX2 NX 2080Ti TX2 NX  2080Ti
(a) Neuro-Symbolic Al Workloads (b) Hardware Devices

Neuro-symbolic workload exhibits high latency compared to neural models;
Symbolic component is executed inefficiently across off-the-shelf CPU/GPUs
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| Workload Characterization - Operator

 Compute operator analysis:

>60%

Conv - 0.00% 0.00% 0.00% 0.00%

MatMul - 0.51% 0.00% EPAFZ8 0.00% 0.52% 0.00% 0.00% 0.00% 0.91%

TraIr)lesl%?)rm_ 16.4% 17.3% 7.20% 2.40% 3.11% 6.82% 16.0% 3.85% 2.94% 20.8% 3.96% 2.13% 4.72% 8.11%

Data —-- 348% 6.36% 9.40% 7.12% - 14.36% 0.84% 13.87% 2.52%- 10.6% 6.69% -15%
Movement

Other - 0.00%- 0.00% ' 18.1% 0.00% 0.00% 0.00% EEIZY 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

45%

30%

| - 0%

LI\IIN LII\IN LTN L’i“N NVISA NVISA NILM NLM VSIAIT VSIAIT ZerloC ZelroC PrAE PrAE
(Neuro) (Symb) (Neuro) (Symb) (Neuro) (Symb) (Neuro) (Symb) (Neuro) (Symb) (Neuro) (Symb) (Neuro) (Symb)
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| Workload Characterization - Operator

 Compute operator analysis:

Conv

MatMul

Vector/Ele-
ment wise

Data
Transform

Data
Movement

Other

- 0.00% 0.00% 0.00% 0.00%

- 0.51% 0.00% EPAZR 0.00% 0.52% 0.00% 0.00% 0.00% 0.91%

4367 QEECHRTEVN 715 RN 4o |TXARERTNRERY oo XK 700 RN s

- 16.4% 17.3% 7.20% 2.40% 3.11% 6.82% 16.0% 3.85% 2.94% 20.8% 3.96% 2.13% 4.72% 8.11%

-- 3.48% 6.36% 9.40% 7.12% - 14.36% 0.84% 13.87% 2.52% - 10.6% 6.69%

- 0.00%- 0.00% ' 18.1% 0.00% 0.00% 0.00% EEIZY 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

LI\IIN LII\IN LTN L’i“N NVISA NVISA NILM NLM VSIAIT VSIAIT ZerloC ZelroC PrAE PrAE
(Neuro) (Symb) (Neuro) (Symb) (Neuro) (Symb) (Neuro) (Symb) (Neuro) (Symb) (Neuro) (Symb) (Neuro) (Symb)
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30%

- 15%
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| Workload Characterization - Operator

 Compute operator analysis:

>60%

Conv - 0.00% 0.00% 0.00% 0.00%

MatMul - 0.51% 0.00% EPAFZ8 0.00% 0.52% 0.00% 0.00% 0.00% 0.91%

TraIr)lesl%?)rm_ 16.4% 17.3% 7.20% 2.40% 3.11% 6.82% 16.0% 3.85% 2.94% 20.8% 3.96% 2.13% 4.72% 8.11%

Data —-- 348% 6.36% 9.40% 7.12% - 14.36% 0.84% 13.87% 2.52%- 10.6% 6.69% -15%
Movement

0.00% ' 18.1% 0.00% 0.00% 0.00% EEIZY 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

45%

30%

Other - 0.00%

- 0%

LI\IIN LII\IN LTN L’i“N NVISA NVISA NILM NLM VSIAIT VSIAIT ZerloC ZelroC PrAE PrAE
(Neuro) (Symb) (Neuro) (Symb) (Neuro) (Symb) (Neuro) (Symb) (Neuro) (Symb) (Neuro) (Symb) (Neuro) (Symb)
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| Workload Characterization - Operator

 Compute operator analysis:

Conv

MatMul

Vector/Ele-
ment wise

Data
Transform

Data
Movement

Other

1 0.00%

10.51%

>60%

0.00% 0.00% 0.00% 0.00% 0.00% MN8N 0.00%

0.00% JEYARYZN 0.00% 0.52% 0.00% 0.00% - 0.00% - 0.91%

17.3% 7.20% 2.40% 3.11% 6.82% 16.0% 3.85% 2.94% 20.8% 3.96% 2.13% 4.72%

45%

30%

16.4%

8.11%

- 3.48% 6.36% 9.40% 7.12% - 14.36% 0.84% 13.87% 2.52% - 10.6% 6.69%

- 15%

0.00% ' 18.1% 0.00% 0.00% 0.00% EEIZY 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

| I | I | | | I | | | | | | - 0%
LNN LNN LTN LTN NVSA NVSA NLM NLM VSAIT VSAIT ZeroC ZeroC PrAE PrAE
(Neuro) (Symb) (Neuro) (Symb) (Neuro) (Symb) (Neuro) (Symb) (Neuro) (Symb) (Neuro) (Symb) (Neuro) (Symb)
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| Workload Characterization - Operator

 Compute operator analysis:

>60%
Conv  0.00%] 0.00% 0.00% | 0.00% EEEEYZM|0.00% 0.00%
MatMul -0.51%| 0.00% 0.52% 0.00% 0.00% 0.00% 0.91% 45%
Vector/Ble-. 49.9% RELA 65.3% TR 20.1%
30%
Data 7.20% | 2.40% | 3.11%| 6.82% 3.85% | 2.94% |20.8% | 3.96% |2.13% | 4.72% | 8.11%
Transform
Data 3.48% | 6.36% | 9.40%]| 7.12% 14.36%| 0.84% [13.87%| 2.52% 10.6% [6.69% -15%
Movement
Other 0.00% | 18.1% | 0.00% | 0.00% | 0.00% EetKEZR 0.00% |0.00% | 0.00% |0.00% | 0.00% | 0.00%
| | | | | ] | | | | | | - 0%
LTN | LTN INVSA|NVSA | NLM | NLM | VSAIT|VSAIT| ZeroC | ZeroC | PrAE | PrAE
(Neuro)l (Symb) |(Neuro) (Symb) Neuro)| (Symb)|(Neuro)| (Symb)| (Neuro)| (Symb)|(Neuro) |(Symb)|(Neuro) |(Symb)
Neural dominated by MatMul and Conv operations;
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| Workload Characterization - Operator

 Compute operator analysis:

Conv

MatMul

Vector/Ele- |

ment wise

Data
Transform

Data
Movement

Other

- 0.00%

- 0.51%

- 16.4%

- 0.00%

LNN
(Neuro)

0.00%| 0.00%
0.00%
19.3%

7.20% | 2.40%

3.48% | 6.36%

0.00% | 18.1%

LTN | LTN

(Symb}) (Neuro)| (Symb

3.11%
9.40%
0.00%

NVSA
(Neuro)

6.82%
7.12%
0.00%

NVSA
(Symb

16.0%

NLM
(Neuro

3.85%

14.36%

59.5%

2.94%

0.84%

NILM VSIAIT
(Symb)| (Neuro

0.00%
0.00%
65.3%
20.8%
13.87%

0.00%

VSAIT

(Symb)]

0.00%
0.00%

74.9%

2.13%

3.96%

2.52%

ZeroC | ZeroC

4.72%
10.6%

0.00%

PrAE

0.91%

56.3%
8.11%
6.69%

0.00%

PrAE

(Neuro)| (Symb) (Neuro)| (Symb)

>60%

45%

30%

- 15%

- 0%

Neural dominated by MatMul and Conv operations; Symbolic dominated by
vector/element-wise and logical operations

MLBench @ ASPLOS25

Zishen Wan | School of ECE | Georgia Institute of Technology
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Workload Characterization - Operator

(3 Neuro E=] Symbolic)

I i I ;. 100% —
NVSA MIMONet LVRF PrAE / S
10° I ' H l B / - A / / 3
~ I | pun | 1 0 A ., == e =
80 A) N, NN T ‘
Z) ] / o NN SOSCN I SOSC P =
— L] Y b, WSS
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> ] ] Y S NN o s S .
a um I l uE l [ 1] / g \\\\* ‘\\\\\ .\\\\M .\\\\\ 6 =
) ]| 1] HEl] EE / O 60%1 s SOSON SONS  SSR s
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< NN ] Nl |EN 5 DN s O = g
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Rt | | ] | | ] [ | ] E R IS S SO S N
= 1] [ | jEE T TR s I I S ISR S P 0
. o AN A N o oSS )
S 10| 2= Lo T TR 8= oo IO I RS Bl RN 3 =
10 1] | | pEE | |EEY EE g 20% | B N R R 2 8
22 T | T TR Y I S S I S S
HN [ wy | jEE | | (a4 s IO S S
% m N ol S B L]
0 | N 0 N NN N o \ o
Coraj TX; Nx RTX Coryj TXZ NX RTX Coraj TXy Nx RTX Coral Ixy Nx RTx Type Size ColoNumpbesitic,

(b) Hardware Devices N | (e) Reasoning Task Attibutes

One example of dominated symbolic operation is vector-symbolic circular
convolutions

HPCA 2025 Zishen Wan | School of ECE | Georgia Institute of Technology 47



Workload Characterization — Kernel Behavior

segmm_nn relu_nn vectorized elementwise

Runtime Percentage (%)
Compute Throughput (%)
ALU Utilization (%)

L1 Cache Hit Rate (%)
L2 Cache Hit Rate (%)
L1 Cache Throughput (%)
L2 Cache Throughput (%)
DRAM BW Utilization (%)

Why system Inefficiency?

MLBench @ ASPLOS25 Zishen Wan | School of ECE | Georgia Institute of Technology 48



Workload Characterization — Kernel Behavior

segmm_nn relu_nn vectorized elementwise

Runtime Percentage (%) 18.2 10.4 37.5 12.4
Compute Throughput (%) 95.1 92.9 3.0 2.3
ALU Utilization (%) 90.1 48.3 5.9 4.5

L1 Cache Hit Rate (%)
L2 Cache Hit Rate (%)
L1 Cache Throughput (%)
L2 Cache Throughput (%)
DRAM BW Utilization (%)

Symbolic exhibits low ALU utilization,
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Workload Characterization — Kernel Behavior

segmm_nn relu_nn vectorized elementwise

Runtime Percentage (%) 18.2 10.4 37.5 12.4
Compute Throughput (%) 95.1 92.9 3.0 2.3
ALU Utilization (%) 90.1 48.3 5.9 4.5

L1 Cache Hit Rate (%) 1.6 51.6 29.5 33.3
L2 Cache Hit Rate (%) 86.8 65.5 48.6 34.3

L1 Cache Throughput (%)
L2 Cache Throughput (%)
DRAM BW Utilization (%)

Symbolic exhibits low ALU utilization, low cache hit rate,

MLBench @ ASPLOS25 Zishen Wan | School of ECE | Georgia Institute of Technology



Workload Characterization — Kernel Behavior

segmm_nn relu_nn vectorized elementwise

Runtime Percentage (%) 18.2 10.4 37.5 12.4
Compute Throughput (%) 95.1 92.9 3.0 2.3
ALU Utilization (%) 90.1 48.3 5.9 4.5

L1 Cache Hit Rate (%) 1.6 51.6 29.5 33.3
L2 Cache Hit Rate (%) 86.8 65.5 48.6 34.3
L1 Cache Throughput (%) 79.7 82.6 28.4 10.8
L2 Cache Throughput (%) 19.2 17.5 29.8 22.8
DRAM BW Utilization (%) 14.9 24.2 90.9 78.4

Symbolic exhibits low ALU utilization, low cache hit rate, massive data transfer,
resulting in hardware underutilization and inefficiency
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Workload Characterization — Kernel Behavior

Runtime Percentage (%)
Compute Throughput (%)
ALU Utilization (%)

L1 Cache Hit Rate (%)
L2 Cache Hit Rate (%)
L1 Cache Throughput (%)
L2 Cache Throughput (%)
DRAM BW Utilization (%)

segmm_nn
18.2
95.1
90.1
1.6
86.8
79.7
19.2
14.9

relu_nn
10.4
92.9
48.3
51.6
65.5
82.6
17.5
24.2

vectorized
37.5
3.0
5.9
29.5
48.6
28.4
29.8
90.9

elementwise

12.4

2.3

4.5
33.3
34.3
10.8
22.8
78.4

—_
()
[\

—_
=

10°

—_—

10-

Attainable Performance (TFLOPS/s)
=)

euro
/ PIAE (N
Memory Neuro
bound VSAIT.
(Neuro é} NVSA
NVSA
5 SymbI)
ZeroC
Symb '

/ PrAE

/ (Symb)

VSAIT
oo

10-2

10!

100 1

Compute bound

euro

10t 102 103

(c) Operation Intensity (FLOPS/Byte)

Neuro operations are compute-bounded, symbolic operations are memory-bounded.

MLBench @ ASPLOS25

Zishen Wan | School of ECE | Georgia Institute of Technology
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| Workload Characterization — Control Flow

* Data Dependence Graph analysis:

( InIv)ut ) ( Input ) ( Input )J«—{ Symbolic)
v L] Knowled
(Neural Iv\Ietwork) Neural - Neural rowiedse
( Symbolic ) Network Y Network
Structure
( Output ) ( Output ) ( Output )
NVSA, VSAIT, PrAE NLM, ZeroC, LTN LNN

[ Neuro and symbolic components interaction requires complex control flow
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| Neural Network vs. Neuro-Symbolic

_ Neural Network Neuro-Symbolic

MLBench @ ASPLOS25 Zishen Wan | School of ECE | Georgia Institute of Technology 54



| Neural Network vs. Neuro-Symbolic

_ Neural Network Neuro-Symbolic

Runtime [Neural Network] < [Neural-Symbolic]
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| Neural Network vs. Neuro-Symbolic

_ Neural Network Neuro-Symbolic

Runtime [Neural Network] < [Neural-Symbolic]
Compute Neural kernels Heterogenous neural and symbolic kernels
Kernels (Conv, MatMul, etc) (vector, element, MatMul, graph, logic, etc)
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| Neural Network vs. Neuro-Symbolic

_ Neural Network Neuro-Symbolic

Runtime [Neural Network] < [Neural-Symbolic]

Compute Neural kernels Heterogenous neural and symbolic kernels
Kernels (Conv, MatMul, etc) (vector, element, MatMul, graph, logic, etc)

Hardware Inefficient on CPU/GPU/TPU

Efficient on GPU/TPU (low ALU utilization, low L1 cache hit rate,

Efficiency high data movement, etc)
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| Neural Network vs. Neuro-Symbolic

_ Neural Network Neuro-Symbolic

Runtime [Neural Network] < [Neural-Symbolic]
Compute Neural kernels Heterogenous neural and symbolic kernels

Kernels (Conv, MatMul, etc) (vector, element, MatMul, graph, logic, etc)
Hardware Inefficient on CPU/GPU/TPU

. . Efficient on GPU/TPU (low ALU utilization, low L1 cache hit rate,
Efficiency )
high data movement, etc)
System Bound Compute-bound / Memory-bound Memory-bound
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| Neural Network vs. Neuro-Symbolic

_ Neural Network Neuro-Symbolic

Runtime [Neural Network] < [Neural-Symbolic]
Compute Neural kernels Heterogenous neural and symbolic kernels
Kernels (Conv, MatMul, etc) (vector, element, MatMul, graph, logic, etc)
Inefficient on CPU/GPU/TPU
Hardware - — :
.. Efficient on GPU/TPU (low ALU utilization, low L1 cache hit rate,
Efficiency :
high data movement, etc)
System Bound Compute-bound / Memory-bound Memory-bound
Dataflow Simple flow control, High parallelism Complex flow control, Low parallelism
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This talk: Demystify Neuro-Symbolic Al for SW/HW Co-Design

Neuro-Symbolic AI Algorithms

|
g | ™ e \ e \
2
Characterize Neuro-Symbolic _ £ | 5
Workloads S 2 || NeuralNetwork |V Symbolic T | Probabilistic
:E éﬁ : Scalable, Flexible, Interpretable, Explainable, Robust to
En % : kHandle inconsistency | L Data-efficient ) | uncertainty
O 8 Fr——-~----—----—-----——-~- b -~
i = : f N Symbolic Al Workload Ch terizati )
. . . = S euro-Symbolic orkloa aracterization
Identify Potential Inefficiency % & |
s S Hardware Compute Platforms Metrics
Rea sons E e Runtime, Memory, Compute
|0 e @ ot
= £ Aot Operators, Operation Graph,
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I This talk: Demystify Neuro-Symbolic Al for SW/HW Co-Design

Neuro-Symbolic AI Algorithms

|
g e ™ r ) r D
g 0
S | 0 0)\°/
e "c% | o°o
S 2 || NeuralNetwork |V Symbolic T | Probabilistic
:,E 5D : Scalable, Flexible, Interpretable, Explainable, Robust to
E” é :  Handle inconsistency) 0 Data-efficient ) N uncertainty y
O 8 Fr——-~----—----—-----——-~- b -~
@ E e )
é s : Neuro-Symbolic AI Workload Characterization
1 E‘D
§ _3 : Hardware Compute Platforms Metrics
g oh : ﬁ ; | Runtime, Memory, Compute
an) g | Lt @ ~ | Operators, Operation Graph,
s 3 CPU GPU  Accelerator Roofline, Sparsity, etc
§ g AN Y,
° ° ° F------"--"—-"—-"—-"-"=-"="="="="-"=-"=-"=-"=- |}/l o/ ,/,,_._o_-_-_-----—-—-—-—=—====
- S o1 [ )
O ptl mize N euro Sym bo I IC = g | Neuro-Symbolic AT Workload Optimization
[} L |
SVStemS Vid CO'D95|gn § : Software [+>| System [+—|Architecture[«—| Technology
I\ _J

Zishen Wan*, Hanchen Yang*, Ritik Raj*, Che-Kai Liu, Ananda Samajdar, Arijit
Raychowdhury, Tushar Krishna, “CogSys: Efficient and Scalable Neurosymbolic
Cognition System via Algorithm-Hardware Co-Design”, in HPCA 2025
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CogSys: Co-Design for Neuro-Symbolic Al

Goals
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CogSys: Co-Design for Neuro-Symbolic Al

Goals Challenges
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CogSys: Co-Design for Neuro-Symbolic Al

Goals Challenges Methodology
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CogSys: Co-Design for Neuro-Symbolic Al
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CogSys: Co-Design for Neuro-Symbolic Al
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CogSys: Co-Design for Neuro-Symbolic Al

Goals
2
= 7&( CogSys
E \
5]
O
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2
Z @“ﬁ%
g
O Neurosymbolic Al
Energy and Latency

Efficiency, Performance
Scalability, Interpretability
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Methodology

Challenge-1:

footprint

Large memory

Key Idea-1:
Efficient factorization

Challenge-2:
Symbolic operation =

inefficiency

»1 Reconfigurable arch

Key Idea-2:

for neural & symbolic

Challenge-3:
Hardware —
underutilization

»| Adaptive scheduler

Key Idea-3:

for neural & symbolic

\

Architecture
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Neuro/Symbolic PE
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Dataflow

Deployment

Configurations:
hardware & system

v
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Mapping
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| Hardware Architecture Overview

(a) Overall Architecture (b) Scalable Compute Array (¢) Reconfig. Neuro/Symbolic PE
4
/ | SRAM A |
Host SoC / + +
. DRAM S/ | e R ! ; :
Controller / 5 | PE
/ % op_in A‘ ita n_B ‘ l
Memory bus Ctrl bus // E - PE
DRAM / to] miBm,, l l
JtMemory bus | /‘ _DD 2x32 ¢
; |
Neuro-Symbolic Accelerator] PE
Reconfigurable Neuro/ jas S H
Symbolic Compute Array é S~ o
. —
Workload | [* vV
Scheduler | \ :
n V1 N/
SRAM r # Ctrl bus \\ [ B |
Q)
T Memory ) ¥ left inD
Controller \\ @ 110
#Memory bus{ Ctrl bus \ : : : ACC
\ || -
Custom SIMD Unit \ ‘I;'- ﬁ : P —
\ [ SRAMC | Ulop_in_A,,, Qtop_in_B,,,
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| Reconfigurable Neuro/Symbolic PE

in

" "next

[YJ top_in_A,,, fJ fop_in_B,,,

Micro-architecture of
reconfigurable neuro/symbolic PE

[ Reconfigurable neuro/symbolic PE incurs low area overhead based on systolic array PE; ]

MLBench @ ASPLOS25 Zishen Wan | School of ECE | Georgia Institute of Technology 70



| Reconfigurable Neuro/Symbolic PE

I
I
I Load Mode GEMM Mode (Neuro, Symbolic) Circular Convolution Mode (Symbolic) I
: top_in_A§ top_in_ AQ U top_in_A top_in_B @ |
I PASS D— PASS |
[ left in b N :
I
AR == e R s
: o © left|in,,,, o :
| . ACC ACC |
I
: w ‘ ~___~ ~— . - I
Qrop_in A,,, Qtop_inB,,, | @ ®opin e, (b) iop_in 4, ©) Wiop_in A, @iop_in B, |
—  — Tnex —  —  nex I
| o o e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e
Micro-architecture of Operation mode of
reconfigurable neuro/symbolic PE reconfigurable neuro/symbolic PE

Reconfigurable neuro/symbolic PE incurs low area overhead based on systolic array PE;
The PE is reconfigurable for three operation modes: load, neuro, symbolic
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| What is Circular Convolution?

A1l ([B1 A1B1+A2B2+A3B3
A2 |®| B2| = | A1B3+A2B1+A3R2
A3 | B3 A1B2+A2B3+A2B1
Al Al Al
X X X
B1 '\ B2 ‘\
B2 B3 33 Blgy
VA~ Y A3 VA~ A3
A1B1+A2B2+A3B3 A1B3+A2B1+A3B2 A1B2+A2B3+A2B1
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| Bubble Streaming Dataflow

Vector-Symbolic Circular Convolution Example (3 CircConv): TPU-like Systolic Array: Implement as three GEMV Multiplication Cycles:

CircConv #1: (A1, A2, A3)® (B1, B2, B3) [. .»! .»!»

CircConv #2: (C1, C2, C3)® (D1, D2, D3)

CircConv #3: (E1, E2, E3) @ (F1, F2, F3) .—" .—" .—‘:
[E—Hpat-oal-for] (53— +{es}-fea}-ea) [Fa——[es}-{e2}-fEA)

CircCony #1 Computation: “CircConv #1 “CireConv #2 “CircConv #3

(Al,A2,A3)® (B1,B2,B3) = TPU: Finish at (3n+15) = 24 cycles

(A1B1+A2B2+A3B3, A1B3+A2B1+A3B2, A1B2+A2B3+A2B1)

éor symbolic operation: \
e TPU-like array suffers from low
parallelism & high memory access;

o J
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| Bubble Streaming Dataflow

Vector-Symbolic Circular Convolution Example (3 CircConv):

CircConv #1: (A1, A2, A3)® (B1, B2, B3)
CircConv #2: (C1, C2, C3)® (D1, D2, D3)
CircConv #3: (E1, E2, E3) ® (F1, F2, F3)

CircConv #1 Computation:
(A1,A2,A3)© (B1,B2,B3) =

(A1B1+A2B2+A3B3, A1B3+A2B1+A3B2, A1B2+A2B3+A2B1)

éor symbolic operation:
e TPU-like array suffers from low

* Bubble streaming dataflow
improve parallelism, arithmetic
\ intensity, and data reuse.

parallelism & high memory access;

~

J

TPU-like Systolic Array: Implement as three GEMV Multiplication

e
ey

P '

e
Buan

C1rcConv #1

ClrcConV #2 C1rcC0nV #3
TPU: Finish at (3n+15) = 24 cycles

CogSys: Bubble Streaming Dataflow

BB . g o592 elain g
B[] 5 52 2 5 2 2 2 z zlz;z z
o (@} o (©) o ©) o o OI o [} ()

g gie el g g g gligg o
BBl § 6§ 6668 08 51518 8
Pl o B (o (o ) [ @ e ) (el ) o)
: i - i u oy | :
bl [ [ () [ () ) 6 () e () e e
PG B E EEE E R E ERE E

CogSys: Finish at (n+5) = 8 cycles

MLBench @ ASPLOS25

Zishen Wan | School of ECE | Georgia Institute of Technology
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Bubble Streaming Dataflow

Vector-Symbolic Circular Convolution Example (CircConv #1): — Roofline TPU(2'* PEs)/This Work(2!4 PEs)
(Al,A2,A3) @ (Bl, B2, B3) = (A1B1+A2B2+A3B3, A1B3+A2B1+A3B2, A1B2+A2B3+A2B1) — Roofline RTX GPU
Cycle nt+1 Cycle nt+2 Cycle n+3 Cycle nt+4 Cycle nt+5 O 1 CircConv, d=2048 (TPU)
% 1000 CircConv, d=2048 (TPU)
(_sram_ ] O 1 CircConv, d=2048 (GPU)
WAE—E—) % 1000 CircConv, d=2048 (GPU)
| |:B§|‘ © 1 CircConv, d=2048 (This Work)
¥ 1000 CircConv, d=2048 (This Work)
@@@ < 1000 CircConv, d=20480 (This Work)
A1BL[]|] >
) T 4 130 TFLOPS
[B;ZI S 102
=3
@ = 23 TFLOPS
N 910! &
Q
IS
1 g
1
—~ 5 ) 5 100
L] 5 e
(¥
®g] 9 101
S
[ 1) '§ d: vector dimension
. . . . . g 10" 10 10! 102
Stat Reg. P Reg. St Reg. Partial Sum Reg. MAC Unit < . . g
() staionary Reg. (@ Passing Reg. () Sveaming Reg. () Parial Sum Reg. () " Arithmetic Intensity (FLOPS/Byte)

Bubble streaming dataflow flow improve parallelism, arithmetic intensity, and data reuse
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| CogSys: Co-Design for Neuro-Symbolic Al

Goals Challenges Methodology Architecture Deployment
2 Challenge-1: Key Idea-1: Reconli;l%urable Configurations:
B * CogSys Large memory 1] Efficient factorization - o hardware & system
) \ footprint J - —
=« N\ ||\ /7| —————————— Bubble-Streaming +
O f ) ( ) Dataflow . \
2 Challenge-2: Key Idea-2: - - Evaluate:across cognitive
= @) + ‘% Symbolic operation —1| Reconfigurable arch Spatial-Temporal tasks, scales, complexities,
go inefficiency for neural & symbolic L Mapping ) hardware configs
O Neurosymbolic AT - | — a g N N * g
( \ ( \ Scaling Up/Out
Energy and Latenc : :
gy y Challenge-3: Key Idea-3: L J Target: efficient and

Efficiency, Performance fard'vlv_are. T tzv? f%chedtge; Adaptive | scalable human-fluid

Scalability, Interpretabili ty? L underutilization J L for neural & symbo ZCJ | Scheduling | Lintelligence and cognitionJ
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| Algorithm Optimization — Efficient Factorization

Original Codebook
/F? S —X,C,P\N,S,—]
23 —X,C,P|N;S,—
75} Q .
53 ‘
Eg —X,C,P\N,S;—
S 57| | TGN
o BNV Y >
g Il R CchNn._'
S § 13560KB
= 3 11.7s

-
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| Algorithm Optimization — Efficient Factorization

Original Codebook Our Proposed Factorization Strategy

:g: =i r'_ilglﬁlﬁlgl_' ) [ Attr. (X) Atir. (C) Attr. (P) Attr. (N)  Attr. (S) ) @%\
*i% &y 151 189 —gl— —1121— —El— —21— éé
oy —X,C,P.NS— B N Sy M R IS

S S| | —XCPNS-| ED> e s |
2 3 A =0 B =N B | 56
< o | LACER NS — | ¢ P 8 — § §
S 3 13560KB < F
SR 11.7s =

[ Factorization disentangles large symbolic knowledge codebook into small volume of J
attributes
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| Algorithm Optimization — Efficient Factorization

Original Codebook Our Proposed Factorization Strategy
s [—XCPNS,—7| (At (X At (C) Atr(P) Atr(N) At (S) | z
‘q"r: S —X,CPN&— —C—1 [—Bi—7 [-N— —S,— (3'8
A - —c,—| |[=P,—| |-N—~| |=s,—|| SE
- g —X,C,P\N;§;— C2 p2 N2 32 § N
S S| [—XCPNS— | [ — ) ... - S
23 : sQpe) [Pl N g (S S
. = —XCPNS — . B . s =
Q L ctp nTs A 8 0
S § 13560KB < 5
&= 11.7s =
q= |:> g= — X(t+1) = (g@f(C(1), P(t), N(©), (S())))XX"
sim<q, XCPN_S.> “X®COPONOS V ' A
Factor Similarity Factor
Unbinding Search Projection
Detailed Operations Steaﬁ Step @ Step .9

Factorization disentangles large symbolic knowledge codebook into small volume of
attributes
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| Algorithm Optimization — Efficient Factorization

Original Codebook Our Proposed Factorization Strategy
g [(—XCcPNS,—7] [Atr () Atr(C) At (P) Aur(N) At (S) | O}
% S —X,C,PNS;— —C— == == —5,— (3'8
7 S : —C,—| |=P,—| |-N—]| |-S,—|| S E
=5 —X,CP\N§— C2 P2 N2 32 S &p
E S| [—X.CPNS— | E e R R e
o3 ; == [P =N gl | S 8
E \Q? -_XchPpNnSs_- ? ’ 'g §
3 13560KB » 190KB 71.4X memory footprinty| < =
& & 11.7s ; C » 2.88s  4.1X runtime latencyy =
q = |:> g= —» X(t+1) = (gOf(C(1), P(t), N(©), (S{))XX"
sim<q, XCPN,S.> ~XOCOPON®S ; ' i
Factor Similarity Factor
Unbinding Search Projection
Detailed Operations Steriﬂ Step @ Siep .9

Factorization disentangles large symbolic knowledge codebook into small volume of
attributes, thus reducing computational time and space complexity
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| System Optimization - Adaptive Scheduling

<+Neura]l we¢——— Symbolic ———»<Neural »r¢—— Symbolic ———»
|

ation

ML Accele--
rators

(@

Utiliz

Time
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| System Optimization - Adaptive Scheduling

<+Neural we¢——— Symbolic ———»r<¢Neural »r¢—— Symbolic ———»

o | @ Neuro and symbolic : | @ Neuro engine inefficient for |
ML Accele-S [77] | |  operate sequentially =[| | symbolickemels |
rators D [l iy — Low throughput and mapmsl __'—» [ ow utilization and high |
il 250 R0 2% performance SEREEEEEl  [atency |
(a) o [Sfsieltetebien | ] T e W [T T T .

Time

- _________________________________________________________________________________________________________________________________________________________________________________________Jua
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| System Optimization - Adaptive Scheduling

<+Neural e——— Symbolic ———»<Neural »r¢&——— Symbolic ———»

o | @ Neuro and symbolic : | @ Neuro engine inefficient for :
ML Accele- % 2 E;E;E I operate sequentially EEuw I symbolic kernels :
rators & s . ,' — Low throughput and sedesd __ —»Tow utilization and high |
S [eseiesgeee performance segmasspems|  latency '
(a) D e o ] e ) WO s I
Time
=
2
This work § @ Efficient symbolic execution
(w/o adSCH) = 1 — Low latency for symbolic operations
—
5 ;
—>
Time
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| System Optimization - Adaptive Scheduling

<+ Neural r¢e—— Symbolic ——»<¢Neural - ¢—— Symbolic ———»

o | @ Neuro and symbolic : | @ Neuro engine inefficient for |
ML Accele-S [77] | |  operate sequentially =[| | symbolickemels |
rators D [l iy — Low throughput and mspmsl __'—» [ ow utilization and high |
D [t performance S AEEeRens  latenc '
! W o sEpEshsn Y
(a) ) 00 1500 8 : et EEEEE ll-—|_@_"—] .
Time
g
This work & @ Efficient symbolic execution |
(/o adSCH) = — Low latency for symbolic operations
)
—>
Time
e
This work -% '
(W/ adSCH) =
~—
= .,
(b) Time
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| System Optimization - Adaptive Scheduling

<+ Neural re—— Symbolic ——»<Neural »¢—— Symbolic ——»
@ Neuro and symbolic ' | @ Neuro engine inefficient for

|
g |
ML Accele- % : operate sequentially | symbolic kernels |
rators = —> Low throughput and — Low utilization and high |
% performance - latency '
S W
@ | =,
= 1me
=
This work § @ Efficient symbolic execution _
= —» Low latency for symbolic operations
(w/o adSCH) £
>
@ Interleaved neuro/symbolic processing Time
T k g — High parallelism and throughput
1S WOr =
<
w/ adSCH) = |
( H) E
‘ >
(b) Time

Adaptive scheduling enables interleaved
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| System Optimization - Adaptive Scheduling

<+Neura] r¢&——— Symbolic ———»<«Neural »r¢&——— Symbolic ———»

o | @ Neuro and symbolic : | @ Neuro engine inefficient for |
ML Accele-£ [77] | |  operate sequentially =se| | symbolic kernels i
rators D [ —> Low throughput and SEHEEEL > Low utilization and high |
S pussegeeal  performance EEaeaskEs{ latency |
(a) o [l moblomnjoom
—>
Time
&
This work & @ Efficient symbolic execution .
(w/o adSCH) = —» Low latency for symbolic operations
> >
@ Interleaved neuro/symbolic processing Time
. g1 — High parallelism and throughput
This work = €) Reconfigurable neuro/symbolic engine
(w/ adSCH) o — Low latency and high efficiency
5
. -~
(b) Time

Adaptive scheduling enables interleaved and reconfigurable neuro/symbolic processing
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| System Optimization - Adaptive Scheduling

<+Neural e¢——— Symbolic ———»<«Neural »r¢&——— Symbolic ———» A ] I:Ir 1] Column-wise
o : @ Neuro and symbolic : @ Neuro engine inefficient for : = : : | :
ML Accele--2 [ | operate sequentially == 1 symbolic kernels | g LI symbolic ops
CCClC-5 | : — : ym : : e .
t i — — Low throughput and oE —> Low utilization and high | =1 IO partition
TAROES = performance sasums|  latency ' 2 RN
(@) = o e (S
, Time 100007 Cell-wise .
S RHEEE neuro/symbolic
This work § O Efficient symbolic execution . O0000 partition
/o adSCH) = — Low latency for symbolic operations A
(/o adSCH) E ST
. > O
@ Interleaved neuro/symbolic processing Time | DEEE
: g M W45 — High parallelism and throgghput . . . .
This work p=f o o Y HH i € Reconfigurable neuro/symbolic engine
/ adSCH) N Vil iim=e=k= — Low latency and high efficiency OOaad
\picdeCal) ] 050 0005 EE(imalin @ Partitioned array for neuro/symbolic EEEE
o fesasspesatafersts I — High compute & bandwidth utilization i
(b) Time (©)

Adaptive scheduling enables interleaved and reconfigurable neuro/symbolic processing
with partitioned array
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| System Optimization - Adaptive Scheduling

<+Neural e¢——— Symbolic ———»<«Neural »r¢&——— Symbolic ———» A ] I:I:- 1] Column-wise
o : @ Neuro and symbolic : @ Neuro engine inefficient for : 2 [l .
ML Accele- .% [ operate sequentially I symbolic kernels : = l:l D:D:D: Symbo.h.c ops
rators. | S _ — Low throughput and \—> Low utilization and high | g IO partition
@) 5 performance : ﬂ"_g_'—i m* [H I:l:l_:l_:l_:l_:
||
> .
Time 100007 Cell-wise
.S ' RHEEE neuro/symbolic
This work g | @ Efficient symbolic execution . OO0 partition
/0 adSCH) = ) — Low latency for symbolic operations A
(w/o adSCH) = | (| HEEE
. > O
@ Interleaved neuro/symbolic processing Time | DEEE
oy -, 3 /
Thi ] ¥i4% — High parallelism and throgghpu’g 101000
S WOIK ' petins] @)uups 4 € Reconfigurable neuro/symbolic engine
(W/ adSCH) B oS oo ey T T — Low latency and high efficiency E = EE
= X o Koo T T T @ Partitioned array for neuro/symbolic
] $5% 356 e TH HH 1 — High compt?’;e & bandwiﬁgll utilization . OEEHE
(b) Time (©)

Adaptive scheduling enables interleaved and reconfigurable neuro/symbolic processing
with partitioned array, improving parallelism, latency, efficiency, and utilization
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| CogSys: Co-Design for Neuro-Symbolic Al

Goals Challenges Methodology Architecture Deployment
2 * CooSvs LChallenge-l: % Key Idea-1: Reconli;l%urable Configurations:
B £ arge memory Efficient factorization - o hardware & system
) \ footprint J - —
sl N | eV I —— _ Bubble-Streaming +
O f ) Dataflow - ~
2 Challenge-2: Key Idea-2: - - Evaluate:across cognitive
= @) + ‘% Symbolic operation —1| Reconfigurable arch Spatial-Temporal tasks, scales, complexities,
& inefficiency for neural & symbolic L Mapping hardware configs
8 NeurosymbolicAT | \  _ __ J T ——— /| p " = * g
( \ Scaling Up/Out
Energy and Latency Challenge-3: Key Idea-3: L 5P J i Target: efficient and R
Efficiency, Performance fard'vlv_are. T tiv? ichedt;)le; Adaptive | scalable human-fluid

Scalability, Interpretabili ty? underutilization for neural & symbolic | Scheduling | &intelligence and cognitionJ
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Evaluation — Setup and Accelerator Layout

Layout of Neuro-Symbolic Accelerator

Accelerator Specs

Technology | 28 nm || Frequency [600 MHz
#Arrays 16 Voltage I
Size of Bachl 35 35 | Power | 1.48W
Array
SRAM |4.5MB Area 4.9 mm?

Task: Cognitive reasoning tasks
Reasoning datasets:
 RAVEN, I-RAVEN, PGM, CVR, SVRT
Neuro-symbolic workloads:
 NVSA, MIMONet, LVRF
Hardware baseline:
* Jetson TX2, Xavier NX, RTX GPU, Xeon CPU
ML accelerators (TPU, MTIA, Gemmini)

MLBench @ ASPLOS25
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| Evaluation — Algorithm Performance

Dataset Neurosymbolic Model Non-neurosymbolic Human
Accuracy NVSA Our Design | Our Design ResNet18| GPT4
(+Algo Opt.) | (+Quant.)
RAVEN | 98.5% 98.9% 98.7% 534% | 89.0% | 84.4%
[-RAVEN | 99.0% 99.0% 98.8% 40.3% | 86.0% | 78.6%
PGM 68.3% 68.7% 68.4% 36.8% | 56.0% | N/A
#Parameters | 38 MB 32 MB 8 MB 42MB | 1.7TB | N/A

('« Better Reasoning Capability: neurosymbolic methods achieve high accuracy across A
reasoning tasks than NNs and human.
* Smaller Memory Footprint: neurosymbolic methods consume much less
\_#parameter than NNs (e.g., LLM). )
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Evaluation — Hardware Performance

102 | 90.82 93.26 Jetson TX2
26,76 [] Xavier NX 4
X - 90x speedup

[ ] Xeon CPU
compared to CPU/GPU

[ JRTX GPU
This work

[E—
)
[«

Norm. Runtime (X)
S

RAVEN [-RAVEN PGM

70 § 17.5 QS:
% o B 4 )
g = 7g s Symbolic operation:
20 o 5.0 &2
07z 2572 75x speedup to TPU
‘9, < 4 E
ot AL IR % 18x speedup to GPU
5 \Qq, R 0 .&OC; ) @C k j
Vet & 0 (S S
Or Dimape:. N o 5 &%
HS]OH (d) éo. OQ éo. OQ

(@)
93

MLBench @ ASPLOS25 Zishen Wan | School of ECE | Georgia Institute of Technology



Evaluation — Hardware Performance

X 102 | ED TPU-like (128%128) : 5 127.50

Qé MTIA-like (16X32X32) < . . 2 - 5

s GEMMINI-like (64X16X16) | ]= = = % 2’

2 10 This Work (16X32X32) 2 & s | . -

E 0| SS88 45588 =358 = z 2 | NS aE = 3
> & " _Ei " " * X —El

NVSA LVRF MIMONet NVSA LVRF MIMONet NVSA LVRF MIMONet
Neuro-Only Symbolic-Only End-to-End Neuro+Symbolic

Compared with ML accelerators: similar neuro latency, 7-120x symbolic speedup,
2-16x end-to-end neuro-symbolic speedup
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Evaluation — Ablation Study

[E—
S
o

]
()]

[\
()]

Norm. Runtime (%)
o 3

w/o (adSCH, SO, nsPE)
[ w/o (adSCH, SO)

:l | E w/o (adSCH)

RAVEN [-RAVEN PGM

Neuro-Symbolic accelerator

Neurosymbolic Cognitive Solution
Algorithm @ Hardware

Normalized Runtime (%) on
RAVEN I-RAVEN PGM CVR SVRT

NVSA @ Xavier NX

100 100 100 100 100

Proposed Algorithm @ Xavier NX

89.5% 88.9% 90.7% 87.6% 88.4%

Proposed Algorithm @ Proposed Accelerator

1.76% 1.74% 1.78% 1.72% 1.69%

reconfigurable PE,
bubble streaming

~

Proposed scheduling,

dataflow are effective

-

\_

Algorithm-system-
hardware co-design
is critical

J

MLBench @ ASPLOS25 Zishen Wan | School of ECE | Georgia Institute of Technology 95



@ Key Observations:

Compared with systolic arrays that only support neural,
CogSys provides reconfigurable support for neural and
symbolic operations with only 4.8% area overhead.

Our design achieves 0.3s latency per cognition task, with
1.18W power consumption.
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(2) Research Question:

How to automate this neuro-symbolic
architecture design process?
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End-to-End FPGA Deployment for Neuro-Symbolic Al

Workload

Dataflow Architecture Generation Sec.V

O] User-provided files
[] NSFlow-integrated

[] NSFlow-generated
= Data/Control flow

NSAI
Workload

Compile

(py)

\/\

Hardware

Sec. V. B Sec. V.B
P;(;gram ( Dataflow Graph \
ace
(-json) >
Sec. V. C ¥ Y
[ Vector Conv]| [ GEMM |
HW-Mapping | «—

Co-explore \ )

Excutables

Y

L5 1 5 % 8 %1 3131
Nnvaa

Host
| Binary

Bitstream

Gener;},ed Configs

Compile

Synthesizq

v+t

Compile

12 Y
Accelerator System RTL basic
Host Code | |Design Config blocks
(-cpp) (-json) v
S——"1
HW Design Sec. IV Pararneterized‘# Instantiation
Accelerator Design
BRAM| [UraM| | S¥Stelic gy | | el
Array

pudjuory

puayoeg

Frontend: dataflow arch generator

- Step 1: Extract execution trace

- Step 2: Generate dataflow graph

- Step 3: HW-mapping co-exploration

Backend: FPGA deployment

- Step 1: Pre-define hardware template
- Step 2: Configure design parameters
- Step 3: Synthesize and compile RTL

Hanchen Yang*, Zishen Wan*, Ritik Raj, Joongun Park, Ziwei Li, Ananda Samajdar, Arijit Raychowdhury, Tushar Krishna, “NSFlow: An End-to-End
FPGA Framework with Scalable Dataflow Architecture for Neuro-Symbolic Al ”, to appear in DAC 2025
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| Frontend — Dataflow architecture Generation

graph() :

// Neuro Operation — CNN (Resnetl8)
%$relu_1[16,64,160,160] : call_module[relu] (args = (%bnl
[16,64,160,160]1))

($relu_1[16,64,160,160]))
%$conv2d_1[16,64,160,160] : call_module[conv2d] (args =
($maxpool_1[16,64,160,160]1))

// Symbolic Operations
// Inverse binding of two block codes vectors by
blockwise cicular correlation

%$inv_binding_circular_1[1,4,256] : call_function[nvsa.
inv_binding_circular] (args = (%vec_0[1,4,256], %
vec_1[1,4,256]))

%$inv_binding_circular_2[1,4,256] : call_function[nvsa.
inv_binding_circular] (args = (%vec_3[1,4,256], %

vec_4[1,4,256]))
// Compute similarity between two block codes vectors

$match_prob_1[1] : call_function[nvsa.match_prob] (args
= (%inv_binding circular_1[1,4,256], %vec_2
[1,4,256]))

// Compute similarity between a dictionary and a batch
of query vectors

$match_prob_multi_batched_1[1]: call_function[nvsa.
match_prob_multi_batched] (args = (%
inv_binding_circular_2[1,4,256], %vec_5[7,4,256]))

$sum_1[1] : call_function[torch.sum] (args = (%
match_prob_multi_batched_1[1]))

$clamp_1[1] : call_function[torch.clamp] (args = (%sum_1
[11))

gmul_1[1] : call_function[operator.mul] (args = (%

match_prob_1[1], %clamp_1[1]))

$maxpool_1[16,64,160,160] : call_module[maxpool] (args =

Extract workload execution trace

Loop 1 Loop 1 Loop 1 _ .
| \ L+1 | E | L+1 | E | L+1 | I'Derive runtime )
: l functions and é
| \L2 | E | Ly | ! | |5 | : caI:ull(;;S :::amory

I footprint for VSA :
! and NN operations.,

- e = = -

= = _ - -Loop2_

’

- - \ L !
- : 55,30 H W, Nofo) }— L 25 3 [ L1 W ——
“‘ : = L nn(®]s 21 V7
(I , H, W, Nv[1 +
S ’v‘”‘ﬂz W Ve 2 N mw v
o  H, W, Nvj2 *
, o t,(vs vI2]) v L3 tuu(l3, H, W, N2])
“’ l‘- _ o 5 . e
‘,’E"‘ =fvsa(H, W, N,) —-—------'V'ftnn(H’ W, N)
P _
\4
________ N S ———mmm - 1,2,3
1 Perform DFS in the E 1 Perform BFS and attach : 1 Engage Loop 2 and 1
1 execution graph, and !

I same-level operations to ; !  attach it onto Loop 1 at ! Vi

Videntify critical path for a I operations on the critical 1 1 the time when its "

! single run. ! path. ! I compute unit is ]

1 1 1 1 H Vv
available. 1 5

e ~ e e e o o - 4 h -~ e e e o o - 4 ‘ - e em e o o o ’

Generate dataflow graph &
two-stage HW-mapping co-exploration
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| Backend — FPGA Deployment

Host
CPU

On-chip Cache

Ctrl Unit

wn
«
72§
o
_
o
o
«

>
s
=
=
<
o

FPGA

Pre-defined architecture template

Cycle 1 Cycle 2 . Cycle3 1 Cycle4 C;y%
| Sw | I L L1 | |
N/{_H [1¥ N .| v |

\ 51: El! 3
A1B1|] [ A1B3|] ||
] N — o
v 53: v EZ:
1 1B1+A28 ||
1 — 1
— —

Example: (A1, A2, A3)Q(B1, B2, B3) = (A1B1 + A2B2 + A3B3, A1B3 + A2B1 + A3B2, A1B2 + A2B3 + A2B1)
|:| Stationary Reg. |:| Passing Reg |:| Streaming Reg. |:| Partial Sum Reg. @MAX

Dataflow & configure design parameters
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| Looking Ahead: LLM + Neurosymbolic

LLM

J

Relevant

N
Theory-Driven > EERITES
Cognitive Model e

Moral Judgment

Towards safe and trustworthy Al System:

Values of
Features

F{

Linear Regression
Model

Theory-Driven
Cognitive Model

LLM + cognitive model for human moral judgment

A simple problem

A

AN

B C

Theorem premises:
Let ABC be any triangle with AB=AC
Prove that angle («£) ABC= «BCA

AlphaGeometry

[% Language model ]

Add a
construct

Not
solved

---------------------- > « Construct D: midpoint BC

Solved
—{Q Symbolic engine J%'{

Solution

« AB=AC, BD=DC, AD=AD = ZABD= £DCA
« £ABD= £DCA, B C D collinear >
ZABC=ZBCA

Towards logical reasoning Al System:

LLM + symbolic solver for scientific computing

MLBench @ ASPLOS25

‘ Conversational Content 1

W\‘— =
—

- . * Visual Dialogue 3
’ Conversational Expression ‘ + Visual QA (VQA) o
* AR/VR e
| Conversational Vision ‘

* Neural rendering
* Large Body Language ModelsyLBLM) y!l
* Large Face Language Models (L

n h

GUI links Equations
* Fields « Plots
e Lists < Figures
Forms * Maps

Towards human centered Al System:
LLM + knowledge base for conversational reasoning

l Conversatlonal Model |
gma plrim sd,...)

Towards intelligent Al System:

LLM + concept graph for intelligent autonomous system
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Summary

* Motivation
Neuro-Symbolic AI Algorithms

* Neurosymbolic Al is a promising paradigm s

N\ N\ 2
towards next-generation cognitive Al @3 é%% y
e Chal |enge: inefﬁciency on off-the-shelf Neural Network | T Symbolic T | Probabilistic
Scalable, Flexible, Interpretable, Explainable, Robust to
h d rd ware \Handle inconsistency) L Data-efficient ) L uncertainty )
____________________ T g
° A p p roac h f Neuro-Symbolic AT Workload Characterization )
* Characterize neurosymbolic workloads Hardware Compute Platforms Metrics
. . . L. @ - - Runtime, Memory, Compute
* |dentify potential inefficiency reasons e Operators, Operation Graph,
L . . . CPU GPU  Accelerator Roofline, Sparsity, etc
* Optimize neurosymbolic system via co-design. Y———— ———————————— /
% : — 2
® A C h i eve Neuro-Symbolic AI Workload Optimization
.. . Software [+>| System |+—|Architecture|+—| Technology
 Efficient and scalable neuro-symbolic \ J

execution across reasoning tasks.
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