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Autonomous Machine Era

« Autonomous Machines on the Rise
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| Embodied Agentic Systems
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G:> (System 2)
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| Goal of this Work (Executive Summary)

* Understand fundamental building blocks
and characteristics of embodied systems.

This Work

* /dentify optimization opportunities for
embodied systems.

Long-Horizon
Task Performance

Latency and Energy
* Demonstrate scalability and efficiency Efficiency, Performance, Scalability }

improvement of embodied systems via co-
design intelligence.
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Embodied Autonomous Agent System

Alice
(LLM)
“Hi, Bob. I
found 3 target objects ‘ Bob /
in the kitchen, (Human/AlI)
: rememb?r “OK, thanks for your
you w:;'e ho:d}ng . Grsel WeTiEl =3 information, I'll go to
empty container, @ o
transport them.
can you come here to nl_" P
pick them up while [ - /
20 to explore other -
= pple Tea tray
rooms?

* Task: long-horizon multi-objective task and motion planning
* Examples: household tasks, transport objects, make meal, set up table, cook...
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| Demo: Long-Horizon Multi-Objective Planning

Bob Alice Bob Alice

OOQﬂ k B Co,

Zhang et al, “CoELA: Building Cooperative Embodied Agents Modularly with Large Language Models”, in ICLR 2024
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| Demo: Long-Horizon Multi-Objective Planning

Zhao et al, “RoCo: Dialectic Multi-Robot Collaboration with Large Language Models”, in arXiv 2023
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(2) Research Question:

What are the fundamental building blocks and
paradigms of embodied systems?

What are the system characteristics and sources
of inefficiencies in these embodied systems?
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| Embodied Agent System Paradigm

()

Environment
I

Actions
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| Embodied Agent System Paradigm
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Embodied Agent System Paradigm
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Embodied Agent System Paradigm
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Embodied Agent System Paradigm

ASPLOS 2025
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Embodied Agent System Paradigm

ASPLOS 2025
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Embodied Agent System Paradigm

ASPLOS 2025
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Embodied Agent System Paradigm

|
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| Embodied Agent System Paradigm

System 1
Execution S (Autonomy
Module )] | 3  Capability)

__________,____________“
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Embodied Agent System Paradigm

Cooperative Embodied Al Systems
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Embodied Agent System Paradigm

Cooperative Embodied Al Systems
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Embodied Agent System Paradigm

Cooperative Embodied Al Systems
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Bob

ASPLOS 2025

Alice

| Embodied System Example: CoELA
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Zhang et al, “CoELA: Building Cooperative Embodied Agents Modularly with Large Language Models”, in ICLR 2024
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Embodied System Example: COMBO

ﬂNorId State Estimation\

y, Environment Other Agents
A 90
Reconstructed t y ‘}9 ‘g I @ ;m
Partial o\
Point Clouds 1

Egocentric RGBD
Observation

place the black
bread onto the plate

Rendered
Partial
Noisy
World State
( )
| place the black bread 8 o
. onto the cutting board . =
Diffusion Model Action Compositional 8
Proposer W =]
orld Model
| place the black bread ':_l
onto the plate <
)
C_ g
Inpainted Intent o
World State Tracker [ Bobmay place the burger bottom onto the plate °
\ \L —

Zhang et al, “COMBO: Compositional World Models for Embodied Multi-Agent Cooperation”, in ICLR 2025
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| Representative Embodied Agent Workloads

1 | I, s || , N
e mw . I e — c p—
Embodied Queries Text Queries Embodied | ! n Take a toy shark to nvironment Ferception 1 o . : ] Perception  |[Update
g 3 Planning : e my bed. 1 E ™ Promie I promnt i ' gj Action List i ) Module
- vision Embodied _Language Lla ' | — T - Eosd = e ] . Execute LM | ¢
Transformer Former Mapping ma Video : ( ::[ Memory ]’:> l I ';"': il:> .| | Communication |Retrieve
Caption 1 F [ 1 = | 1 i ! ! : Module
A 2 i ¢ i g =, ™ Memo
\xixg : A / :i Assistant LLM ' i on E k - - lMessage\ Mod :'y
3 CNN wiglobal Policy Video | ! i ) i N T Nt : Planning  [Retriove
Pooling Mapping Q&A I High-Level Planning Low-Level Action | Module
I Prompts Memory Feedback ) 1 Feedback Update
( 1 1 Visual 1 Pick up... f Plan —————|
. ; ’a Navigate... I Failure Feedback Succesf Feedback A Rarions
- - B;I)lil;'l](;;uu? : Llama 3.1 8B VLM — g Place... : [ Potential Reasons J [ Execution Results E;;:::l:" L )
. 1 . . .
EmbodiedGPT Physical Control : DaDu-E i COHERENT Environmental information \_ 4
Embodied AI Systems - - Systen? Module - - Application Datasets and Tasks
Sensing Planning Communication| Memory Reflection | Execution
EmbodiedGPT [39] ViT Llama-7B - - - MLP Embodied planning, visual captioning, VQA Franka Kitchen [59], Meta-World [60], VirtualHome [61]
JARVIS-1 [24] MineCLIP |GPT-4/Llama-13B - Ob., Act. |Llama-13B| Action list | Embodied planning (e.g, obtain diamond pickaxe) Minecraft [62]
DaDu-E [40] PointCloud Llama-8B - Ob., Act. |LLaVA-8B| AnyGrasp Object transport, Autonomous decision-making Self-designed four-level tasks
MP5 [36] MineCLIP GPT-4 - - GPT-4 | MineDojo |Object transport, Situation-aware long-term planning Minecraft [62]
DEPS [15] Symbolic info GPT-4 - - CLIP MineDojo | Embodied planning (e.g, obtain diamond pickaxe) Minecraft [62], MineRL [63], ALFWorld [64]
MindAgent [6] - GPT-4 GPT-4 Ob., Act., Dx. - Action list Collaborative planning, gaming, housework CuisineWorld [6], Minecraft [62]
OLA [21] - GPT-4/Llama-70B GPT-4 Ob., Act.,, Dx.| GPT-4 | Action list Collaborative planning, object transport VirtualHome [61], C-WAH [65]
COHERENT [28] DINO GPT-4 GPT-4 Ob., Act.,, Dx.| GPT-4 |RRT/A-star| Collaborative planning, Robot arm manipulation BEHAVIOR-1K [66]
CMAS [20] ViLD GPT-4 GPT-4 Ob., Act., Dx. - Action list | Collaborative planning, manipulator, object transport BoxNetl, BoxNet2, WareHouse, BoxLift [20]
CoELA [4] Mask R-CNN GPT-4 GPT-4 Ob., Act., Dx. - A-star Collaborative object transporting, housework TDW-MAT [67], C-WAH [65]
COMBO [5] Diffusion LLaVA-7B LLaVA-7B |Ob., Act., Dx. - A-star Collaborative gaming, housework TDW-Game [68], TDW-Cook [68]
RoCo [27] ViT GPT-4 GPT-4 Ob., Act.,, Dx.| GPT4 RRT Robot arm motion planning, manipulation RoCoBench [27]

DMAS [20] ViLD GPT-4 GPT-4 Ob., Act., Dx. - Action list | Collaborative planning, manipulator, object transport BoxNetl, BoxNet2, WareHouse, BoxLift [20]
HMAS [20] ViLD GPT-4 GPT-4 Ob., Act.,, Dx.| GPT-4 Action list | Collaborative planning, manipulator, object transport BoxNetl, BoxNet2, WareHouse, BoxLift [20]
-
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Embodied Agent System Characterization

Runtime Analysis: Takeaway:
' [ Memory M Reflection [ Exccution * End-to-end latency in long-
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Runtime Analysis:
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| Embodied Agent System Characterization

Takeaway:

* End-to-end latency in long-
horizon embodied tasks is
significant.

e LLM-based planning and
communication dominate the
latency due to repeated runs.

* Low-level planning and execution

RoCo AN U]
INIFGY 2 20NN NN NN NN At 0 Emm :
s E—— ‘ | l also contribute notable delays
HMAS ARSI, HEERRHSRS | | ] [ ===es
0 5 10 15 20 25 30 due to multiple executions and
(@) Step Runtime Latency (s) . .
computational complexity.
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| Embodied Agent System Characterization

Memory Analysis:

@ Task Success Rate (%)
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Takeaway:

Increasing memory module
capacity improves success
rates and reduces #steps,
especially for complex tasks.

However, excessively large
memory introduces
inconsistencies and increases
retrieval time per step.
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| Embodied Agent System Characterization

Scalability Analysis:

Task Success Rate (%)
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Takeaway:

MindAgent * Multi-agent embodied
systems face scalability
challenges as the number of
agents increases.

2 4 6 8 10 12
Number of Agents
* Centralized vs. decentralized:
* Centralized systems:
e success rate challenge
R * Decentralized systems:
Centralized latency challenge

ASPLOS 2025
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| Embodied Agent System Characterization

Module Sensitivity Analysis: Takeaway:

2 Max., — = = — * Memory module is critical for
% 120 tracking agent status and task
£ 00 S > 3 > success.

o 60 ([ o e 2 S * Low-level execution module
S e = - :
5 4, n 7 il o plays an indispensable role in
< Task A: Task B: Task C: Task D: system functionality.

Prepare tea Set up table Put groceries Food transport

Coop. Embodied Agents [ w/o Memory

EZ] w/o Communication [] w/o Execution
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Challenges of Embodied Agent Systems

Goals Challenges
Challenge-1:
Long planning &
This Work communication latency |
X (ReCA) i s b o
\ Challenge-2:

Low cooperative efficiency &
Memory inconsistency

=,

Long-Horizon Task
Performance

@ @ Challenge-3:
Limited scalability with large
Latency and Energy number of agents
Efficiency, Performance )
Scalability T Challenge-4:

Sensitivity of low-level
planning and execution
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(?) Research Question:

How to enhance the efficiency and scalability
of cooperative embodied systems?

ASPLOS 2025 Zishen Wan | School of ECE | Georgia Institute of Technology
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Our Methodology

Goals Challenges
Challenge-1:
Long planning &
This Work communication latency |
ReC») | ) ——--mmmmmmmTTEmTTIIIERTTTT N
\ Challenge-2:

Low cooperative efficiency &
Memory inconsistency

=,

Long-Horizon Task
Performance

@ @ Challenge-3:
Limited scalability with large
Latency and Energy nunsber of agents
Efficiency, Performance i )
Scalability f Challenge-4:
Sensitivity of low-level
planning and execution
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Our Meth

Goals
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(ReCA)

N
Q
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Latency and Energy

Long-Horizon Task
Performance

Efficiency, Performance
Scalability

ASPLOS 2025

odology
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Long planning &
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Methodology

Key Idea-1: Algorithm

Challenge-2:
Low cooperative efficiency &
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Challenge-3:
Limited scalability with large
number of agents

t
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Sensitivity of low-level
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guided multi-step execution

»| Local LLM processing & Planning- level
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Our Methodology

Goals Challenges

Challenge-1:
Long planning &
communication latency

This Work

ReCA) | [/ ooommmmmmmmmmmmmemmmmmme :

Challenge-2:
Low cooperative efficiency &
Memory inconsistency

N

>

=,

Long-Horizon Task
Performance

@ @ Challenge-3:
Limited scalability with large
Latency and Energy number of agents
Efficiency, Performance i
Scalability f Challenge-4:
Sensitivity of low-level
planning and execution

Methodology

Key Idea-1:
Local LLM processing & Planning-
guided multi-step execution

Key Idea-2:
Dual memory structure: persistent

and temporary memory

‘ Algorithm

level
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Our Methodology

Goals Challenges

Challenge-1:
Long planning &
communication latency

This Work

Methodology

Key Idea-1:

K

(ReCA) e e :

Challenge-2:
Low cooperative efficiency &
Memory inconsistency
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»| Local LLM processing & Planning-
guided multi-step execution

=,

Long-Horizon Task
Performance

@ Q Challenge-3:
Limited scalability with large
Latency and Energy number of agents
Efficiency, Performance i
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Sensitivity of low-level
planning and execution

Key Idea-2:
»| Dual memory structure: persistent
and temporary memory
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decentralized cooperative planning

‘ Algorithm

level
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Our Methodology

Goals

This Work
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Efficiency, Performance
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ASPLOS 2025
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Long planning &
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Challenge-2:
Low cooperative efficiency &
Memory inconsistency

>

Challenge-3:
Limited scalability with large
number of agents

Challenge-4:
Sensitivity of low-level
planning and execution

Methodology

Key Idea-1:
Local LLM processing & Planning-
guided multi-step execution

Key Idea-2:
Dual memory structure: persistent
and temporary memory

Key Idea-3:
Hierarchical centralized/
decentralized cooperative planning

Key Idea-4:
Adaptive A* planning accelerator

with accelerator-GPU interaction

‘ Algorithm

level

Hardware
level
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| System Optimization — Dual Memory Structure

4 ° ° :
Environmental Graph Agent Interactions and Embodied Tasks
; ' [ Alice (agent 0) Bob (agent 1)
E “Hi, Bob. I havs:
oo gy i
: [ ; remember you this soon. I;mdl do
| - ha:: ::“cl:ril Sl:)llllle not find any other
- fetl::h on’e peai’l here r:::)l;lg:ts:st?\]’]vglllng?z)
and put i.t onto the explore other rooms
plate while I go to after finishing tasks
explore other above.”
room?”
‘ ! — J
Long-term Persistent Memory Short-term Dynamic Memory
Semantic | Object i, position , layout i Object Status | -+ did I
Memory | Opject j, position j, layout j Agent Status | R e
Procedural Sub-task m Action History | - we o >
. Memory Sub-task » JIR Dialogue History | - - > |

 Dual-memory structure for agentic systems:
J Long-term memory: subtask and environment info
L Short-term memory: action, dialog, agent history (periodically update)
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| System Optimization - Hierarchical Cooperative Planning

/ Inter-cluster \

Decentralized Cooperation

A -

S

22 €

v’q!q!qjur ° quqm ~
11721372, 1 P
S S K SR, Sl 3L SELSEL SE. B
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v q q q a o v q q q a .
] 1 bl 2 ] 3 5| 4 [ "- ] 1 L) 2 ] 3 ;) 4 [ "- .

(d Hierarchical cooperative planning for agentic systems:
 Inter-cluster decentralized cooperation
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| System Optimization - Hierarchical Cooperative Planning

ASPLOS 2025

/ Inter-cluster Intra-cluster \
Decentralized Cooperation . Centralized Cooperation
- - : Plan
“. <—>‘¢ ! Parent Agent
A ) C ? ! Agent 1:<explore cabinet> —
, =p iy ap a>» , op oy ap >, : Agent 2:<fetch an apple> \t
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L OS5 SE S Sisee. ISE SE SE SE Bl *
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1 2 43144 1 2314 '\ 3
T ST X i— X K K il— Child Agents j

(d Hierarchical cooperative planning for agentic systems:
 Inter-cluster decentralized cooperation
 Intra-cluster centralized cooperation
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System Optimization — Execution Pipeline

B I bodied Communication ’Generate} ‘ Planning | Makea ){ Execution
aseline embodie Module ©]a message Module © Jhigh-level plan Module

system pipeline

Translate high-level plan into low-level action and execute

Traditional
Strategy

ReCA
Strategy

Latency of 4 steps in different strategies Time
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| System Optimization — Execution Pipeline

B l bodied Communication ’ Generate} ‘ Planning ] Makea )[ Execution
aseline embodie Module ©]a message Module © Jhigh-level plan Module
system pi pel Ine Translate high-level plan into low-level action and execute

Send the message

Communication]M)—_
E ti
Optimized embodied _)[ Planning ] Makea Module © | a message

Module ® high-level plan
4)[ Execution ]—)l Execution J—)[ Execution ]_

Translate high-level plan into low-level action and execute

system pipeline

Traditional
Strategy

ReCA
Strategy

Latency of 4 steps in different strategies Time

[ Efficient execution pipeline
1 Planning-then-communication strategy
M Planning-guided multi-step execution
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| Hardware Optimization — Heterogenous SoC
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0,6) | (1,5) | (2,4) &h)
3 2 5 Grid
(1,5 i (1,4): (2,3)
6
(2,2)
F Obstacle
(2,0)
L
Iteration 1
@ delete & inse {1+ Min Heap Update
"""" g (Priority Queue)
) @(HS) @(HS)
S Expanded List

Iteration 2
(1+4)

(1+5)

(1+5) (213)

(2+6)

S | 2

Expar:lded I:Jist

A-star Operations
Per Iteration

n « Get and
delete node with
min cost

A
I

IExpand n — Get all
n’s Successors
Compute
Successors’

Min Heap Operations ----------

Total Cost: h + g

Insert to Min
Heap

7'y

e

~

Example: A*-based path planning

Zishen Wan | School of ECE | Georgia Institute of Technology

41



| Hardware Optimization — Heterogenous SoC

Environment

Communication
Module (C)

@4—

Planning Module

SN

l‘ (P)

Sensing

Module (S)

Memory Module (M)

| Observation Memory

| Action Memory

| Dialogue Memory

f

Retrieved
Memory

Execution
Module (E)

T_ Reflection Module@]‘_

R)

High-level reasoning

ASPLOS 2025

(System 2)

Low-level planning
(System 1)

Actions

( A-Star ) 4 LLM )
Subsystem g Subsystem
Host CPU g Host CPU

g
APU 8 & GPU Block
£ s
: 2
APU E 8 S | | GPUBIock
A 2 &)
APU E = 2 | | GPUBIlock
e 0 0 % § e 0 0
\. o & Y,

A*-Subsystem
(System 1)

LLM-Subsystem

(System 2)
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| Hardware Optimization — Heterogenous SoC

Environment

Communication
Module (C)

@4—

]

Planning Module

® G

Sensing
Module (S)

Memory Module (M)

| Observation Memory

| Action Memory

Retrieved
Memory
| Dialogue Memory

Execution
Module (E)

L

Reflection Module ]‘_
(R) ®

ASPLOS 2025

Actions

( Asar ) [g| ( LLM
Subsystem = Subsystem
Host CPU g Host CPU

g

APU 8 & GPU Block
== 5

APU g1 18] || 2| cPuBlock
A 2 &)

APU B = 2 || GPU Block

e 0 0 ('% -§ e 0 0

\. Ja RS

A*-Subsystem
(System 1)

( Hardware system for embodied agent systems:
J LLM Subsystem: for high-level decision making and communication
1 Control Subsystem: for low-level planning and action

LLM-Subsystem
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| Hardware Optimization — Heterogenous SoC

1 . :
/ \ opcode (delete/insert)
I ECHIConuler l Ceml opcl Si1 Reg H?ASh\ 4 A-Star ) 2 LIM

Subsystem Subsystem

Target Config Neighbors Regs| | Stage 1 Controller

Reg 9 min elem

!

Host CPU

3 3 3
lelem2 | |addr2] | o%c2 | Host CPU
St2 Reg

Compute

Heuristic Unit |

Stage 2 Controller APU GPU Block

u

i

Trans. Cost
Config Reg

v v 2

—H—-

2 w

GPU Block

....... T

?‘o{al lCos thelgsI Start Config

L2 Cache

Stage 3 Controller |+ S13 Reg
e =] APU

Reg

GPU Block

Local Scratchpad

Shared Scratchpad

|elem4| addr4 |o%c4 |
e o 0

\Cost Compute Unit (CCU), = | | 514 Reg . 5

Stage 4 Controller

Global Device Memory (DRAM)

APU Controller \_Pipelined Heap Unit (HU) /

1 Microarchitecture of low-level subsystem:
) Cost Compute Unit (CCU): for cell cost evaluation
. Pipelined Heap Unit (HU): for priority queue management
) Scratchpad memory: for storing neighboring cell during node expansion

ASPLOS 2025 Zishen Wan | School of ECE | Georgia Institute of Technology



| Optimizations of Embodied Agent Systems

Goals Challenges Methodology
Challenge-1:
Long planning &
This Work communication latency |
(ReCA) e S S A AR T =
\ Challenge-2:

Low cooperative efficiency &
Memory inconsistency

=,

Long-Horizon Task
Performance

@ Q Challenge-3:
Limited scalability with large
Latency and Energy number of agents
Efficiency, Performance )
Scalability T Challenge-4:

Sensitivity of low-level
planning and execution
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Evaluation

Goals Challenges Methodology Deployment
Challenge-1: i : Key Idea-1: ‘ Algorithm Yy Configurations:
Long planning & »| Local LLM processing & Planning- level v* hardware & system
» This Work communication latency | ) guided multi-step execution ) — ¢
é o (ReCA) —_—m N i ——————— VA
= % \ Challenge-2: Key Idea-2: Evaluate: across
.§ g Low cooperative efficiency & »| Dual memory structure: persistent scenarios, number of
S &8 @ Memory inconsistency and temporary memory System agents, tasks,
4 3 S Naoni environments, etc
§ @ @ Challenge-3: Key Idea-3:
Limited scalability with large > Hierarchical centralized/
number of agents decentralized cooperative planning
Latency and Energy ~ \ = A e ————— A 3"“ Target: real-time and
Efficiency, Performance ) f ) efficient cooperative
Scalability f Challenge-4: Key Idea-4: Hardware embodied autgnomous
Sensitivity of low-level »| Adaptive A* planning accelerator level svstem
planning and execution with accelerator-GPU interaction 2
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| Evaluation - Setup

* Embodied Workloads: -
 CoELA, COMBO, MindAgent

* Long-horizon Tasks:

« TDW-MAT, TDW-Cook, TDW-Game,
CuisineWorld, C-WAH, MineCraft

e Metrics:

» Task success rate, Number of steps, End-

to-end runtime

e Hardware:

Alice

* NVIDIA A6000 GPU (for LLM-subsystem)

e Xilinx Zyng-7000 ZC706 FPGA (for control-

subsystem)

Example: C-WAH task

ASPLOS 2025
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Evaluation — Success Rate and Efficiency Improvement

0] O Baseline ¢ ReCA

A98
é
896
<
% g4
8
S 92
95]
§90
=
5 % O 't L
0,% 0%, ,0, 0,9 ‘%%, 1%
28 L b h% 4% %Yy
WY 7 Q0 QO S 0%
7 UV 2 % o, v e
(a) 7 & © % 9

Improved success rate: ReCA increases task success rate by 4% on average.
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| Evaluation — Success Rate and Efficiency Improvement

sdoys ageroAy
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Improved success rate: ReCA increases task success rate by 4% on average.
Improved efficiency: ReCA reduces end-to-end task runtime by 8.4x on average.
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| Evaluation — Scalability Improvement

80

Task Success Rate (%)

-~ . -~~~
& Task Latency (min) &
N B N ® O =
oSS S S S
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o e e

© Baseline
© ReCA
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2 4 6 8 10 12

Number of Agents

[
o O
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3
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Task Success Rate (%)
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(=)

—_~
=
~
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N B ® o
S S & & &

[a—
(=)

(e)

COMBO

2 4 6 8 10
Number of Agents

12
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2 4 6 8 10
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—
o O
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(0]
S
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W
S
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~
o)
S

MindAgent
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2 4 6 8 10 12

Number of Agents

Improved scalability: ReCA scales well in both decentralized embodied systems
(CoELA, COMBO) and centralized embodied systems (MindAgent).
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| Evaluation — Sensitivity across Multi-Step Execution

> CoELA | & S COMBO | = S MjndAgent| =
2 95 6E 295 6 E 295 6 E
~ 2 ~ > & >
2 9ol | @ Success rate 428 %90 48 %290 4 g
S @ Latency 2 8 s 38 s
2 - 2 - 2 -
% 85 0000 2% @85 2% @85 0 g0 2
v ZNY o000 2R 2
2 SE S =
= 1 2 3 4 5 6 7 = 1 2 3 4 5 6 7 = 12374 56 ]

(@)  Multi-Step Execution Steps (b)  Multi-Step Execution Steps (¢)  Multi-Step Execution Steps

Multi-Step Execution Steps: ReCA exhibits optimal task performance and
efficiency under 4-5 action steps per LLM reasoning run.
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| Evaluation — Sensitivity across Hierarchical Planning

595 v 6: 595 v 6:§95 FHJMV\' 6;
385 2% B85 l\mwzj 7 85 .‘.\./I‘-/-/. 2%
& 2 3 4 5 6 7 = 2 3 4 5 6 7 8 & 2 3 4 5 6 7 8

~
(=2

~
)

8
)  Agent Number Per Cluster

~
=)

)  Agent Number Per Cluster ) Agent Number Per Cluster

Hierarchical Cooperative Planning: ReCA exhibits optimal task performance and
efficiency under 5-agent per cluster.

ASPLOS 2025 Zishen Wan | School of ECE | Georgia Institute of Technology 52



Evaluation — Ablation Study

COMBO MindAgent

LM: local model (Sec.5.1) DM: dual memory (Sec.5.2) HC: hierarchical cooperation (Sec.5.3)
MT: multi-step execution (Sec.5.4) HW: A-star/GPU heterogenous hardware system (Sec.6)

o 100 83 [@H ReCA w/o (LM, DM, HC, MT, HW)
f < 75 i & b 23 ReCA w/o (LM, DM, HC, MT)
8% 4 J' P =1 ReCA w/o (LM, DM, HC)

g 8 ReCA w/o (LM, DM)

5= 25 ReCA w/o (LM)

“ 0 - ReCA

-

\_

Proposed dual-memory, hierarchical cooperation, multi-step execution,
and heterogenous architecture optimizations are effective.

Model-system-hardware co-design is critical for system performance.

~

J
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| ReCA Summary

* Embodied agents integrate perception, cognition, and

physica

* In this work,

* Cha

Communication L
@ Module (C) &
Planning Module

(P)

| action to conduct long-horizon tasks

_| Sensing
" | Module (S)

Memory Module (M)

Memory

Environment

racterize system implications

I Observation Memory
I Action Memory Retrieved | |

I Dialogue Memory

T_ Reflection Module@}_

R)

Execution
Module (E)

* Leverage co-design intelligence
* Algorithm: efficient local LLM deployment

* System: dual-memory structure, hierarchical planning,
and planning-guided multi-step execution

 Ach

Hardware: heterogenous architecture for high-level
reasoning and low-level control

ieve efficient and scalable embodied Al systems

across cooperative long-horizon multi-objective tasks
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Long-Horizon

9 This Work

= (ReCA)

<

N
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& Q
i

E QQ

Latency and Energy

Efficiency, Performance
S'calability
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