

ReCA: Integrated Acceleration for Real-Time and Efficient Cooperative Embodied Autonomous Agents

<u>Zishen Wan</u>¹, Yuhang Du², Mohamed Ibrahim¹, Jiayi Qian¹, Jason Jabbour³, Yang (Katie) Zhao², Tushar Krishna¹, Arijit Raychowdhury¹, Vijay Janapa Reddi³

ACM Inter Conf on Architectural Support for Programming Languages and Operating Systems (ASPLOS), 2025

Autonomous Machine Era

Autonomous Machines on the Rise

Self-Driving Cars

Drones

Legged Robot

AR/VR

Embodied AI Robot

Wide Application Potential

Embodied Agentic Systems

Goal of this Work (Executive Summary)

- Understand fundamental building blocks and characteristics of embodied systems.
- *Identify* **optimization opportunities** for embodied systems.

 Demonstrate scalability and efficiency improvement of embodied systems via codesign intelligence.

Latency and Energy *Efficiency, Performance, Scalability*

Embodied Autonomous Agent System

- Task: long-horizon multi-objective task and motion planning
 - Examples: household tasks, transport objects, make meal, set up table, cook...

Demo: Long-Horizon Multi-Objective Planning

Zhang et al, "CoELA: Building Cooperative Embodied Agents Modularly with Large Language Models", in ICLR 2024

Demo: Long-Horizon Multi-Objective Planning

Zhao et al, "RoCo: Dialectic Multi-Robot Collaboration with Large Language Models", in arXiv 2023

Zishen Wan | School of ECE | Georgia Institute of Technology

What are the fundamental **building blocks** and **paradigms** of embodied systems?

What are the system characteristics and sources of inefficiencies in these embodied systems?

Cooperative Embodied AI Systems

Cooperative Embodied AI Systems

paradigm

Cooperative Embodied AI Systems

Embodied System Example: CoELA

Zhang et al, "CoELA: Building Cooperative Embodied Agents Modularly with Large Language Models", in ICLR 2024

Embodied System Example: COMBO

Zhang et al, "COMBO: Compositional World Models for Embodied Multi-Agent Cooperation", in ICLR 2025

Representative Embodied Agent Workloads

Embodied AI Systems	System Module						Application	Datasets and Tasks
	Sensing	Planning	Communication	Memory	Reflection	Execution	repression	
EmbodiedGPT [39]	ViT	Llama-7B	-	_	—	MLP	Embodied planning, visual captioning, VQA	Franka Kitchen [59], Meta-World [60], VirtualHome [61]
JARVIS-1 [24]	MineCLIP	GPT-4/Llama-13B	—	Ob., Act.	Llama-13B	Action list	Embodied planning (e.g, obtain diamond pickaxe)	Minecraft [62]
DaDu-E [40]	PointCloud	Llama-8B	—	Ob., Act.	LLaVA-8B	AnyGrasp	Object transport, Autonomous decision-making	Self-designed four-level tasks
MP5 [36]	MineCLIP	GPT-4	—	_	GPT-4	MineDojo	Object transport, Situation-aware long-term planning	Minecraft [62]
DEPS [15]	Symbolic info	GPT-4	_	_	CLIP	MineDojo	Embodied planning (e.g, obtain diamond pickaxe)	Minecraft [62], MineRL [63], ALFWorld [64]
MindAgent [6]	—	GPT-4	GPT-4	Ob., Act., Dx.	_	Action list	Collaborative planning, gaming, housework	CuisineWorld [6], Minecraft [62]
OLA [21]	—	GPT-4/Llama-70B	GPT-4	Ob., Act., Dx.	GPT-4	Action list	Collaborative planning, object transport	VirtualHome [61], C-WAH [65]
COHERENT [28]	DINO	GPT-4	GPT-4	Ob., Act., Dx.	GPT-4	RRT/A-star	Collaborative planning, Robot arm manipulation	BEHAVIOR-1K [66]
CMAS [20]	ViLD	GPT-4	GPT-4	Ob., Act., Dx.	-	Action list	Collaborative planning, manipulator, object transport	BoxNet1, BoxNet2, WareHouse, BoxLift [20]
CoELA [4]	Mask R-CNN	GPT-4	GPT-4	Ob., Act., Dx.	_	A-star	Collaborative object transporting, housework	TDW-MAT [67], C-WAH [65]
COMBO [5]	Diffusion	LLaVA-7B	LLaVA-7B	Ob., Act., Dx.	_	A-star	Collaborative gaming, housework	TDW-Game [68], TDW-Cook [68]
RoCo [27]	ViT	GPT-4	GPT-4	Ob., Act., Dx.	GPT-4	RRT	Robot arm motion planning, manipulation	RoCoBench [27]
DMAS [20]	ViLD	GPT-4	GPT-4	Ob., Act., Dx.	_	Action list	Collaborative planning, manipulator, object transport	BoxNet1, BoxNet2, WareHouse, BoxLift [20]
HMAS [20]	ViLD	GPT-4	GPT-4	Ob., Act., Dx.	GPT-4	Action list	Collaborative planning, manipulator, object transport	BoxNet1, BoxNet2, WareHouse, BoxLift [20]

Runtime Analysis:

- End-to-end latency in longhorizon embodied tasks is significant.
- LLM-based planning and communication dominate the latency due to repeated runs.

Runtime Analysis:

- End-to-end latency in longhorizon embodied tasks is significant.
- LLM-based planning and communication dominate the latency due to repeated runs.
- Low-level planning and execution also contribute notable delays due to multiple executions and computational complexity.

Memory Analysis:

- Increasing memory module capacity improves success rates and reduces #steps, especially for complex tasks.
- However, excessively large memory introduces inconsistencies and increases retrieval time per step.

Scalability Analysis:

- Multi-agent embodied systems face scalability challenges as the number of agents increases.
- Centralized vs. decentralized:
 - Centralized systems: success rate challenge
 - Decentralized systems: latency challenge

Module Sensitivity Analysis:

- Memory module is critical for tracking agent status and task success.
- Low-level execution module plays an indispensable role in system functionality.

Challenges of Embodied Agent Systems

How to enhance the **efficiency and scalability** of cooperative embodied systems?

System Optimization – Dual Memory Structure

Dual-memory structure for agentic systems:

Long-term memory: subtask and environment info

Short-term memory: action, dialog, agent history (periodically update)

System Optimization - Hierarchical Cooperative Planning

Hierarchical cooperative planning for agentic systems:
Inter-cluster decentralized cooperation

System Optimization - Hierarchical Cooperative Planning

□ Hierarchical cooperative planning for agentic systems:

- □ Inter-cluster decentralized cooperation
- □ Intra-cluster centralized cooperation

System Optimization – Execution Pipeline

System Optimization – Execution Pipeline

Example: A*-based path planning

□ Hardware system for embodied agent systems:

LLM Subsystem: for high-level decision making and communication
Control Subsystem: for low-level planning and action

□ Microarchitecture of low-level subsystem:

Cost Compute Unit (CCU): for cell cost evaluation

Pipelined Heap Unit (HU): for priority queue management

Scratchpad memory: for storing neighboring cell during node expansion

Optimizations of Embodied Agent Systems

Evaluation

Evaluation - Setup

- Embodied Workloads:
 - CoELA, COMBO, MindAgent
- Long-horizon Tasks:
 - TDW-MAT, TDW-Cook, TDW-Game, CuisineWorld, C-WAH, MineCraft

• Metrics:

• Task success rate, Number of steps, Endto-end runtime

• Hardware:

- NVIDIA A6000 GPU (for LLM-subsystem)
- Xilinx Zynq-7000 ZC706 FPGA (for controlsubsystem)

Evaluation – Success Rate and Efficiency Improvement

Improved success rate: ReCA increases task success rate by 4% on average.

Evaluation – Success Rate and Efficiency Improvement

Improved success rate: ReCA increases task success rate by 4% on average. Improved efficiency: ReCA reduces end-to-end task runtime by 8.4x on average.

Evaluation – Scalability Improvement

Improved scalability: ReCA scales well in both decentralized embodied systems (CoELA, COMBO) and centralized embodied systems (MindAgent).

Evaluation – Sensitivity across Multi-Step Execution

Multi-Step Execution Steps: ReCA exhibits optimal task performance and efficiency under 4-5 action steps per LLM reasoning run.

Evaluation – Sensitivity across Hierarchical Planning

Hierarchical Cooperative Planning: ReCA exhibits optimal task performance and efficiency under 5-agent per cluster.

Evaluation – Ablation Study

MT: multi-step execution (Sec.5.4) HW: A-star/GPU heterogenous hardware system (Sec.6)

Proposed dual-memory, hierarchical cooperation, multi-step execution, and heterogenous architecture **optimizations are effective**.

Model-system-hardware co-design is critical for system performance.

ReCA Summary

- Embodied agents integrate perception, cognition, and physical action to conduct long-horizon tasks
- In this work,
 - Characterize system implications
 - Leverage co-design intelligence
 - Algorithm: efficient local LLM deployment
 - System: dual-memory structure, hierarchical planning, and planning-guided multi-step execution
 - Hardware: heterogenous architecture for high-level reasoning and low-level control
 - Achieve efficient and scalable embodied AI systems across cooperative long-horizon multi-objective tasks

ReCA: Integrated Acceleration for Real-Time and Efficient Cooperative Embodied Autonomous Agents

Zishen Wan¹, Yuhang Du², Mohamed Ibrahim¹, Jiayi Qian¹, Jason Jabbour³, Yang (Katie) Zhao², Tushar Krishna¹, Arijit Raychowdhury¹, Vijay Janapa Reddi³

> Email: zishenwan@gatech.edu Webpage: https://zishenwan.github.io

ACM Inter Conf on Architectural Support for Programming Languages and Operating Systems (ASPLOS), 2025