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| Cognitive Reasoning in Real World

* Cognitive reasoning pioneers the next frontier of physical intelligence

(From Figure Al, Jiayuan Mao)

Achieving human-level cognition requires both intuitive thinking and deliberative reasoning

Background & Motivation System Analysis Architecture Design Evaluation Conclusion



| s a Monolithic LLM Enough?

Pattern recognition & language modeling
Data-driven learning
€ Reliable Multi-step logical deduction

€ Uncertainty-aware reasoning S

€) Verifiability and robustness

Jagged performance of monolithic LLM

Andrej Karpathy, Eureka Labs & OpenAl, 2025 LLM Year in Review

Key issue: only scaling parameters substitutes compute for structure

Background & Motivation



| Al Systems Are Becoming Compositional

Neuro Symbolic

N [ Explicit logic, rules,

' | and constraints that

Perception & % Logical are interpretable and

re : DNN/ = verifiable
presentation LLM r ' 5 1

learning e Probabilistic Model uncertainty and
belief updates, reason

under ambiguity

LLMs are excellent at intuition — but verification and uncertainty require explicit components

Background & Motivation



| Neuro-Symbolic Example: Trustworthy Planning

i

1 \S]

Grasp bottle Free gripper Grasp can

Place can Re-grasp bottle Place bottle

(" ~
Context  Ex. P & Ex. PDDL Domain PDDL
D
Problem (P) —» —> @D —> —  Plan
«=
LLM Planner LLM
Problem PDDL. — PDDL Plan ——
- Y,

O Task: long-horizon multi-
step planning

(J Modules:

J LLM: natural language
interpreter, task
decomposition,
generate program

J PDDL & Symbolic solver:
planning domain
definition language-
based planner to ensure
feasibility & correctness

Liu et al, “LLM+P: Empowering Large Language Models with Optimal Planning Proficiency”, 2025

Background & Motivation



| Neuro-Symbolic Example: Scientific Reasoning

= Google DeepMind Q

A simple problem AlphaGeometry Solution
. : A A
AlphaGeometry: An Olympiad-level Al system [m Language model}
for geometry
B G Adda Not B D ¢
17 JANUARY 2024 construct .----.--- . | solved
Trieu Trinh and Thang Luong Theorem premises: " v sna e smennmmnenne sl > « Construct D: midpoint BC
Let ABC be any triangle with AB=AC . . Solved | « AB=AC, BD=DC, AD=AD = ZABD= £DCA
< Share Prove that angle () ABC= £BCA * Symbolic engine « £ABD= £DCA, B C D collinear =
J t £ ABC=ZBCA

G e

AlphaGeometry adopts a neuro-symbolic

O Task: Olympiad-level geometry solving
approach

(J Modules:

AlphaGeometry is a neuro-symbolic system made up of a neural language model

and a symbolic deduction engine, which work together to find proofs for complex D |_|_|\/| construct a UXi I iary p0| Nnts a nd |ineS
geometry theorems. Akin to the idea of “thinking, fast and slow”, one system

provides fast, “intuitive” ideas, and the other, more deliberate, rational decision- D Symb0| IC: 4 |g€bralc ded uctive reasoni ng
making.

Trinh et al, “Solving Olympiad Geometry without Human Demonstrations”, Nature 2024

Background & Motivation 6



| Compositional Al Scales Better

Complex Math Reasoning Question-
Reasoning Tasks Tasks Answering Tasks
B Textedit (C) ACLUTRR (C) © ProofWriter (C) B GSMSK (C) ASVAMP (C) ©TabMWP (C) EAmbigNQ (C) ATriviaQA (C) © HotpotQA (C)
OTextedit (M) ACLUTRR (M) O ProofWriter (M) 100 ¢ In-Domain GSM8K (C) # In-Domain MATH (C) OAmbigNQ (M) ATriviaQA (M) © HotpotQA (M)
100 - ] o i A
o~ . — —_
S|®  ° < %0 ¢ 8 g , &g
2 70 6 2 5] A T = 70 £ =)
£ A = Q = 60 @ 3 2 | & )\ O
3 60 0 © ol 2 | & & 5601 A o
3 o) o 3 | 8 o o
255 = A 24028 S 250 8
=~ 40 A 0| ~ o ol o u ° o
S 30 ° %20|8 L ERL >
208 5 * O O O 30| 0 © ®
7B 8B 13B 70B GPT 7B 8B 13B 70B GPT 7B 8B 13B 70B GPT
(a) Model Size (b) Model Size (©) Model Size

* Neuro-symbolic systems outperform monolithic LLMs
* Smaller models achieve comparable or higher accuracy

Neuro-symbolic scale algorithmically better than monolithic LLMs

Background & Motivation



| But Systems Hit a Wall

O Task: long-horizon multi-
step planning

(J Modules:

J LLM: natural language
interpreter, task

i I\5

Grasp bottle Free gripper Graspcan  Place can Re-grasp bottle Place bottle

s N\ o) o
. decomposition,
Context  Ex. P & Ex. PDDL Domain PDDL
generate program
v v
. 4
G .
Problem (P) —» & —> (_@D w > Symbolic components
LL*,M Plaimer LLM take >100 seconds on
CPU-GPU per task
Problem PDDL — PDDL Plan ——
\ / \_

Symbolic reasoning is slow, latency explodes with task complexity

Background & Motivation



| REASON Enables Efficient Neuro-Symbolic Cognition

. 4 ) 4 ) 4
Goal: Challenge 1. Challenge 2: Challenge 3:
Heterogeneous & C Inefficient processing, C Complex control
diverse operators Low hardware utilization flow
J \C J 0 y,

Cognitive Capability

Neuro-Symbolic Al

Energy and Latency

Background & Motivation 9



| Challenge 1: Diverse Symbolic Operators

K First-Order Logic (FOL)
Neuro Symbolic K Boolean Satisfiability (SAT)
. 8 X, n n - Y,
r | Xz n u - / n Y,
£ Logical féuﬂ\n\/
N B t v (-
LLM ~ Probabilistic Hidden Markov
. Probabilistic Circuit (PC) Model (HMM)
‘ f + R X, (X (X,
\ ; h""‘"‘;:?j T T I
\ A (8 (S

Core computational primitives: logical reasoning, probabilistic reasoning, sequential reasoning

System Analysis 10



| Challenge 2: Long Runtime Latency

@ Neuro [ Symbolic (logical, probabilistic)

LLLE Neuro:
2, 80% 2|5 [B]E]E o« LLM
g SIEENEIE]E

e | N .
Eler AL Symbolic:
A 7| VA 7 . Fi der Logi
5 s S 68 | 2 20 2 = e | S rst-order LogiC
E |l [l * Boolean Satisfiability
2 20% =] 1= = § & : § .
aill= all2llz 2 2| |2llz (SAT) solver
0

g B Tedgogom Revidye Comeler Mot wa s OLpcProoy Probabilistic Circuit
AlphaGeo R-Guard GeLaTo Ctrl-G NPC LINC * Hidden Markov Model

Symbolic (Logical and probabilistic) reasoning accounts for large portion of end-to-end runtime

System Analysis 11



| Why GPUs Inefficient for Symbolic Kernels?

Neural Kernel Logical Kernel |Probabilistic Kernel

MatMul | Softmax | Sparse MatVec | FOL | Marginal | Bayesian
Compute Efficiency
Compute Throughput (%) 96.8 62.2 32.5 147 35.0 31.1
ALU Utilization (%) 98.4 72.0 43.9 29.3| 485 52.8
Memory Behavior
L1 Cache Throughput (%) 82.4 58.0 27.1 206 | 324 37.1
L2 Cache Throughput (%) 41.7 27.6 18.3 124 | 242 27.5
L1 Cache Hit Rate (%) 88.5 85.0 53.6 37.0| 424 40.7
L2 Cache Hit Rate (%) 73.4 66.7 43.9 327 50.2 47.6
DRAM BW Utilization (%) 39.8 28.6 574 70.3 | 60.8 68.0
Control Divergence and Scheduling
Warp Execution Efficiency (%) | 96.3 94.1 48.8 540| 593 50.6
Branch Efficiency (%) 98.0 98.7 60.0 58.1| 634 66.9
Eligible Warps/Cycle (%) 7.2 7.0 2.4 2.1 2.8 2.5

Symbolic kernels suffer from low ALU utilization, low cache hit rate, high data
movement, complex control flow, and low warp and branch efficiency

Even optimized GPU kernels suffer low utilization due to irregular symbolic operations

System Analysis



| How About CPU for Symbolic, GPU for Neuro?

Neuro compute  [Z] Symbolic compute [ 1 Data movement

Task: IMO Task: TwinSafety Task: FELM Task: Text Infill
= 10° G G G+C
=y G+ G
GHC
g 1o
| G Gr-C G G+ i
L G O+C G
+§ G+
5 10! G G+C
0 Ll o B e | e e 1 B Bk i b
Large Small Large

Small Large T ..
AlphaGeometry R2-Guard

(G: GPU | G+C: GPU+CPU)

* Symbolic remain slow on CPUs: low arithmetic intensity, irregular control flow, poor locality
* Tight neuro-symbolic coupling introduces CPU-GPU communication overhead

BTProp

CPU+GPU suffer from inefficient symbolic execution and frequent neuro-symbolic interaction
13

System Analysis




| Challenge 3: Complex Control Flow

[ [Ny Symbolic/
s| |52 LLM [Probabilistic]
+j+,§§+ —"'[Symbolic!]_"’ Y
LLM | Symbolic | Probabilistic | LLM [Symbolic/Probabilistic] | LLM:Symbolic/Probabilistic -> LLM

[Symb?l_ic{] " Symbolic/ |
Probabilistic _,| Probabilistic |
(LM Y LM > M
LLMg,, 1 icprobapiisic LM | Symbolic/Probabilistic [LLM]

Tight and diverse coupling between neuro and symbolic components complicates control flow

System Analysis 14



| Symbolic Reasoning Is a New Workload Class

_ Neuro Inference (LLM/DNN) | Neuro-Symbolic (LLM-Logic/Probabilistic)

Runtime [Neuro] < [Neuro-Symbolic]

Heterogeneous kernels (tensor, logic, graph

Compute Kernels Dense/sparse tensor operations
traversal, vector ops)

Arithmetic intensity High Low
Data access pattern Regular, contiguous Irregular
Control flow Mostly static Branch-heavy, dependent, tightly-coupled
Parallelism Massive data parallelism Limited, dependency-driven
Data reuse High Low
Performance Throughput-oriented Latency-critical

Supporting probabilistic logical reasoning efficiently requires new abstraction and architecture

Background & Motivation System Analysis Architecture Design Evaluation Conclusion 15



| REASON Enables Efficient Neuro-Symbolic Cognition

Cognitive Capability

Neuro-Symbolic Al

Energy and Latency

Challenge 1.
Heterogeneous &

diverse operators y

N2

Technique 1:
Unified intermediate
representation of
diverse symbolic
kernels

\_

J

Challenge 2:
Inefficient processing,

Low hardware utilization
\_ _J

\

Y
R

2

Y
NS

\_

Technique 2:

Flexible architecture &

compilation flow to

support diverse symbolic

kernels

@,

J

Architecture Design

Challenge 3:
Complex control
flow

J

2

\_

Technique 3:
Programming
model with GPU
CO-processor
integration

J




| Technigue 1: Unified Intermediate Representation

e D3 s | DR Eies | oA cuien
First-Order Logic (FOL)

Boolean Satisfiability (SAT) : Logic dependency  Search and
SAT/FOL HisiElS £ between literals, deduction via

Logical ¥, n i ¥ logical ops

Kemels X - . clauses, formulas  traversal
X / :
x, u _\ r- \\L, Weighted

Primitive dependenc Probability
Probabilistic Hidden Markov pC distributions, enEo din Y aggregation
Circuit (PC) Model (HMM) sum and s and flow
e probabilistic :
Probabilistic _m product nodes L propagation
f— T ) 0 & factorization
Kemels e L = : 1’
T T Y My Ay N Hidden state  State transition Sequential
fom R HMM variables at and emission message
each step dependencies passing

Design a unified DAG structured-based IR for symbolic and probabilistic reasoning

Architecture Design



| Technigue 1: Unified Intermediate Representation

. . Step 1:
First-Order Logic (FOL) ,
Boolean Satisfiability (SAT) Adaptive DAG
Logical X, n n—{ o — Pruning
Kenels § VAR T {03
. g q\n\\h/ Step 2:
Two-Input DAG Automated
e ) N Put & o
'EI]'E].llt {PC} Mﬂdﬂ] {HMM} egu ar|Zat|0n Compl a IOI1
Probabilistic - ~7 process
Kernels A X Ef }"1’ Step 3:
B NN N E DAG Dependency-
nomRn aware scheduling
A4

Instruction stream

Compiler automates DAG pruning and regularization to generate hardware-friendly structures

18
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| Technique 2: Reconfigurable PE Architecture

( Tree-based PE Architecture \ Three operational modes:
SIMD > Intermediate Buffer ) :S?Elar * Logica | mode
* Probabilistic mode
M:1 Outpyt Interconnect 4
——— DPLL Broadcast (Symbolic) | * S P MS P M mode
SpMSpM/DAG/DPLL Reduction . v

'é’, (Neuro/Probabilistic/Symbolic \ BCP FIFO
= o
= A = = === = f T e e e e el = Em i = == p
E %._ 111 /.\ ./.\. Rl Node Microarchitecture
=] © '
NN NN | —
LT R R RS R
o | &
| T OO0000000O000000OQ

To SRAM Bank; Leaf‘r:ode ' \
TolLeaf 4 From From Control |\
Node PE | Broadcast | \
¥ — I \
Decods Pre-fetcher u:;:c;r: Benes Network (N:N Distribution Crossbar) \\\
/ D‘P‘M »Controller : _[From Forwarding or PF N SRAM Banks & | \\ Fwd’ j ¢ | antroI
\_ 1 Frommo L2 FomTol2  / N Data  Data Signals

Reconfigurable PEs efficiently support heterogeneous reasoning operators at fine granularity

Architecture Design 19



| Technigue 2: Compiler-Driven Hardware Mapping

-~ Single PE
&) PE PE PE FPE
PE PE PE PE \

E:> !nfra -block Reguranzafmn E>

Assign based on BD I:> PR ET T
Step 4: Tree Mapping
Inner-block Tree global scratchpad R E- E

Regula rrzarrﬂn

- oo = m

=0 T=1 T=2 T=3
Step 5: Reordering

Step 1: Unified Representation  Step 2: Block Decomposition (BD)  Step 3: PE and Register Mapping

Compiler-driven DAG-to-hardware mapping in an automated heuristic process

Architecture Design



| Technique 2: Scalable Inter-node Topology

4 Tree-based PE Architecture R Normalized Broadcast-to-Root Cycle Counts
_ , 1| Scalar || 30X
SIMD ——— Intermediate Bufer > PE 25 | (N: number of leaf nodes in
20 | PE architecture)
M:1 Outpyt Interconnect 4 15
——— DPLL Broadcast (Symbolic) |
SpMSpM/DAG/DPLL Reduction @ v 10
= (Neuro/Probabilistic/Symbolic
: §, . \ . BCP FIFO y H H . ;
s B T T1 1T T A KLT1 1T T TV .1 hoManflnmednnEanfllAm al ¥
3 g / \ /\ / \ /\ = gErgErgEr gEr g=Er g=E g=r g
gl =~-O-O—0O--O0—Q--O— - < T T T 3T T =T =%
Sl | 7\ 2\ N /\ 7 A\ N N 3N 4N SN 6N N 8N
T O00000O00O00O00O0OC
. Leaf node J
el roLet & From ] et Root-to-leaf traversal latency
Node PE T |Broadcast | b d O I N
. - [)
Pre-fetcher Wat:;h;d Benes Network (N:N Distribution Crossbar) v Tree dseaq. ( Og )
De‘mde‘ /DMA _,.Literals From Forwarding or PF ° M ESS-baS ed : O( N 1/2)
¢ 4 >Controller > N SRAM Banks & v
\_ } FromTo L2 FromTol2 ___/  Bus-based: O(N)

Scalable tree-based inter-node topology can support large-scale logic and probabilistic kernels

Architecture Design 21




| Technigue 3: GPU Co-Processor Integration

GPU with Proposed Plug-in ‘r Proposed REASON Plug-in | [ Tree-based PE Architecture h
.chi I ! )
Off-chip Memory ! Global Controller | : S Intermediate Buffer ’ 'S(?Elar
) | /|| smp- |
' )
|
| Memory Controller ,’ Tree-based / \ Tree-based | |, M:1 Outpyt Interconnect 4
. PE PE i ——— DPLL Broadcast (Symbolic)
.| GPU Graphics Pro- | || > | = Souspunncon et "
cessing Clusters (GPC) | |, | = (NeurolProbabilistic/Symbolic \ BCP FIFO
L ) =) (<]
£ | e f | < Globallnterconnect > | |[2|| o[~ = 7 7 > LTI T T T LF @
e GPC (15| &) ]S — \.
[ 3 - ‘ o ©
= : SE[ N ¢\ 74\ 7N
@ | Tree-based Tree-based El| “+--C) - (}----(O) ) --1& - - H
& A PE PE S| 2% 2% N 2N\ 7 \
— — 1T 308080000000 ODOC
<« Proposed REASON | ; Leaf node .
: To SRAM Banks
Plug-in Workload Scheduler Ctrl To Leaf T From 1 From Control
h Node PE | Broadcast |
\ —
~ + — | Shared Local Memory ! Pre-fetcher Watched Benes Network (N:N Distribution Crossbar) v
Giga Thread Engine \ || e || oma dteras | F Z
; ; \ Custom SIMD Unit \ ) | ~Controller _ | {FRmTomsieer™ N SRAM Banks 4
\. J \ )\ | From/To L2 From/To L2 YV,

GPU co-processor integration enables efficient and versatile LLM-symbolic processing

Background & Motivation System Analysis Architecture Design Evaluation Conclusion



| Technigue 3: GPU Programming Model

GPU with Proposed Plug-in ’{' Proposed REASON Plug-in | Listing 1: C++ Programming Interface of REASON
Off-chip Memory Global Controller // Trigger symbolic execution for a single inference
_ I void REASON_execute (
e N,' int batch_id, // batch identifier
| Memory Controller | | , | | Tree-based / \ Tree-based int batch_size, // number of objects in the batch
GPU Graphics Pro- I PE PE const voidx neural_buffer, // neural results in

" | cessing Clusters (GPC) | | shared memory |
o 3 " GichaTTter const voidx reasoning _mode, // mode selection
§ - GPC oLl voidx symbolic_buffer // write-back symb. results
o

- ) y

| ‘ ; . .
3 ,l Tree-based Tree-based {/ Query current REASON status for a given obiject
S [« GPC PE PE int REASON_check_status (
22 I | 2 / int batch_id, // batch identifier

«»! Proposed REASON bool blocking // wait till REASON is idle

Plug-in Workload Scheduler ||  Ctrl )i
I I I \
e i Shared Local Memory Coordination and synchronization between GPU SMs
iga Thread Engine : .
\‘L Custom SIMD Unit and REASON processor is handled through shared-
% J J

memory flag buffers and L2 cache

Programming model enables flexibility and control for running diverse neuro-symbolic models

Architecture Design 23



| Technigue 3: GPU-REASON Two-level Pipeline

GPU-REASON Pipeline:

GPU with Proposed Plug-in ,{ Proposed REASON Plug-in XX + 3tasks Time
o
Off-chip Memory | Global Controller GPU <  Neuro >: Neuro >  Neuro > ..
. 1 | REASON Symbolic Symbolic
I
Memory Controller Tree-based Tree-based . . .
v oy ! Inter-REASON Pipeline (symbolic SAT example):
: I PE PE
.| GPU Graphics Pro- Cycle | 14.T4 5 T6T9 0 ™ 5 T16 TI7.T19 | T2 ™
| cessing Clusters (GPC) | |' Modue
3 g I Broadcast | Broadcast |x1 arrives Broadcast | Broadcast )(2‘ x12 Broadcast | x99 arrives
% - . I < Global Interconnect > x1 x2 x12 amives | arrives x99
(3]
o " - | Reduction x2=1 X3 arrives Conflict
9 I propagate propagate 9
? - Tree-based Tree-based then x3=0 o
s |+ GPC PE PE L2/DMA DMA |[DMA |[DMA  |DMA StopDMA| S
(77] | | 2 i activated | activated | activated | activated g
[}
<«»] Proposed REASON PE Activity Implication None Confiicts %
Plug-in Workload Scheduler || Ctrl o g8
\ BCPFIFO |[x12=0,  |[x12=0, |[x12=0, |[12=0, |[x99=1, |[99=1, [[(3=0] |[p3=0] |[x3=0] [NULL] a
h 4 A 4 h 4 \ Shared Local Memory x99=1] x99=1] x99=1] x99=1] x3=0] x3=0] 3—5
Giga Thread Engine \ Control | Decide Push X3, Pop x99 FIFO 2
\ Custom SIMD Unit x1=0 Popxi2 Flugh
\L Watched No miss No miss | Miss conflicts!
\ J / Literals detected detected | detected

Two-level execution pipeline maximizes concurrency across neuro and symbolic kernels

Architecture Design



| REASON Enables Efficient Neuro-Symbolic Cognition

) 4 ) 4 )
Challenge 1: Challenge 2: Challenge 3: Goal:
Heterogeneous & || Inefficient processing, [ 5| Complex control
diverse operators y  Low hardware utlllzatlon) L flow ) = % REASON
Technique 1: Technique 2: Technique 3: La:a
Unified intermediate Flexible architecture & Programming E ﬁ%ﬁ AR
: ~ e ~ : &
representation of [ )| compilationflowto [ JI model with GPU O Newro-Svmbolic Al
cCuro->ympoliic
diverse symbolic support diverse symbolic Co-processor 4
. . Energy and Latency
_ kernels ) kernels AN integration Y

Architecture Design



| Evaluation Setup

* Task: cognitive reasoning tasks

e 10 Datasets: IMO, MiniF2F, TwinSafety, XSTest, CommonGen, News,
AwA?2, FOLIO, CoAuthor, ProofWriter

* 6 Models: AlphaGeometry, R2- Guard, GelLaTo, Ctrl-G, NeuroPC, LINC

* Hardware Baselines: Orin NX, RTX GPU, CPU, ML accelerator (TPU, DPU)
* REASON Implementation: in Verilog, synthesize and PnR @ TSMC 28nm
e Simulation Setup: GPU co-processor integration modeled in Accel-Sim

Background & Motivation

System Analysis

Architecture Design

Shared Local Technology 28 nm Configured for Orin NX architecture

L SRAMBarks (M) Core VDD 09V #SMs 8
ntrol, | Input/Output Distribution Power 212W Threads/warp 32

1 Yerhpes il SRAN LW Shared memo 48 KB

In;‘;grconnéi;t # of PEs 12 b
Ll I Tree-structured PEs # of Nodes 80 L1 cache 128 KB
DRAMBW | 104 GBIs L2 cache 2 MB
Area 6 mm? LPDDR5 BW 104 GB/s (peak)

Evaluation

Conclusion




| Evaluation — Memory Footprint Reduction

Workloads | Benchmarks Metrics Baseline | After REASON Algo. Opt.
Performance | Performance | Memory |

IMO Accurac 83% 83% 25%
AlphaGeo —ym mr Accuraci ER 31% 3% 1%
R2_Guard TwinSafety AUPRC (1) 0.758 0.752 37%
XSTest AUPRC (1) 0.878 0.881 30%
CommonGen BLEU 30.3 30.2 41%
Gel.aTo News BLEU ER 5.4 54 7%
Ctrl-G CoAuthor | Success rate (1) 87% 86% 29%
NeuroSP AwA2 Accuracy 87% 87% 43%
LINC FOLIO Accuracy (1) 92% 91% 38%
ProofWriter | Accuracy (7) 84 % 84% 26%

REASON enables 31.7% memory footprint savings on average across six workloads

Evaluation




| Evaluation — Runtime Performance Improvement

Norm. Runtime (<)

97.9 99.2 96.5 97.6 98.5

48.3 51.5 48.9 48.0
12.4 12.1 11.5 13.8
Ny ™ — ]

1.0 1.0 1.0 1.0

Xeon CPU
[] Orin NX

[]RTX GPU
REASON

REASON achieves 50x speedup over Orin NX, 12x speedup over RTX GPU

Evaluation



| Evaluation — Energy Efficiency Improvement

Average Task: Task: Task:

251f----- 103|838 ., MO TwinS ~ News | [[] Xeon CPU
- — 310 B
% : 102 | | Orin NX
= 1.88F-1- 2 e
=2 2 o O —
o S| 3|0 < 10! RTX GPU
Ay 2| F2| 0[O [ —

5 § HIZE 0.87
o LIZIZEIX]S 100 - o

REASON achieves two orders of magnitude higher energy efficiency compared to CPU/GPU

Evaluation



| Evaluation — Compare with ML Accelerators

TPU-like (systolic-based array) | 4 43 1019.24

— 76,10 TE4E

DPU-like (tree-based array)
B REASON

= =
L L §

] | |

= il | |
g2 =f B 2[E E o2 NS

o|ill ifl off T i

AlphaG Guard GelaTo Ctrl-G AlphaG ‘Guard GeLaTo Ctrl-G AlphaG Guard GeLaTo Ctrl-G

Neuro-Only Symbolic-Only End-to-End Neuro+Symbolic
(logical/probabilistic)

2

25.13
| 2131
{17.77
1054

.II .ﬁl

4,24
a7

.0
0.6
4.44
1.0

=
e

215

= =i
= =

Nom. Runtime (x)
=

EI.IHI
a.54
.00
5.03
I &

REASON achieves similar performance in neuro, while improved symbolic operation efficiency
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| Summary: Key Insights from REASON

* Neuro-symbolic Al enables compositional _ Newo Symbolic
reasoning beyond monolithic LLMs ﬁ% .
e Core architectural insights: DNN/ [t !
* Symbolic and probabilistic reasoning form a o é} e
distinct workload class

e Reasoning can be unified as dependency-
driven DAG intermediate representation
* Reconfigurable architecture enables low-
latency reasoning across symbolic kernels
* Compiler-driven workload-IR-hardware
enables efficient mapping and scheduling
* GPU co-processor integration enables efficient Neuro-Symbolic Al
compositional systems Energy and Latency

Cognitive Capability

Conclusion




| REASON: A Milestone in Building the Foundation of

“Let ABC be an acute triangle. Let
(O) be its circumcircle, H its
orthocenter, and F the foot of the
altitude from A. Let M be the
midpoint of BC. Let Q be the point
on (O) such that QH L QA and let K
be the point on (O) such that KH L
KQ. Prove that the circumcircles
(0,) and (O,) of triangles FKM and  ®

KQH are tangent to each other.” —
| \ Scientific Reasoning Trustworthy Trading
Embodied Planning

Compositional Reasoning Applications and Beyond

Efficient
Reasoning

Real-time
Cognition

Scalability

Y

COMPLANCE

CJ‘/—

Verified Content Generation

Conclusion



| Our Vision: Full-Stack Design for Neuro-Symbolic Al

| Neuro-Symbolic-Probabilistic AT Models (Sec. 2) < 5.25mm .
g : f '.o 3“ e Al i St S o B iAo L BV
- 5 576KB RRAM 576KB RRAM
%D | o o . .
S ! | LLMNewroN) |7t Symbolic (S) + | Probabilistic (P) Neural tile1 > Neural ile2
% I Scalable, Flexible, Interpretable, Explainable, Robust to 5
o : (Handle inconsistency Data-efficient uncertainty 576KB RRAM DC:’ 576KB RRAM
B proms e et s e s St s - Neural tile3 o3 Neural tile4
§ : Neuro-Symbolic-Probabilistic Al Taxonomy & Paradigm (Sec. 2, 3) é
Lo N @E S/P 576KB RRAM 576KB RRAM
3 ) ) oo () . - .
g | = ﬂf?)**N - 0& E Neural tile5 2 Neural tile6
A 2 N ©
: : [ Neuro-Symbolic-Probabilistic AI System Characterization (Sec. 4, 5) W2 576KB RRAM = 576KB RRAM
E : Hardware Compute Platforms Metrics Neural tile7 § Neural tile8
% @ D B Runtime, Memory, Operators, o
20 e TooR 0] Operation graph, Roofline, 576KB RRAM 576KB RRAM
2| | LCPU___GPU Multinode | [ Utilization, Control flow, etc Neural tile9 Neural tile10
8 L
o ettt Joo——-——--—--------—---
| . .
g Neuro-Symbolic-Probabilistic AT System Optimization (Sec. 6) SV:T‘I(:’;’"C a Sy’t‘_‘lgg"c
| 1
§ : | Software/System-level |<—>| LLM/Symbolic/Probabilistic | ) v~y
| \. v A s il o L S 2 L __ & L o

System-Level Optimization System-on-Chip (SoC) Tapeout

“A 40nm Programmable Heterogeneous SoC with
5.625MB/0.85MB RRAM/SRAM for Accelerating
Neuro-Symbolic Al Models”, in JSSC 2026

“Compositional Al Beyond LLMSs: System Implications of
Neuro-Symbolic-Probabilistic Architectures”, in ASPLOS 2026
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| Our Vision: Full-Stack Design for Neuro-Symbolic Al

Efficient Processing of Neuro-Symbolic Al: A Cross-Layer Co-Design Tutorial

Students: Zishen Wan', Che-Kai Liu’, Hanchen Yang', Ritik Raj’, Jiayi Qian’
Collaborators: Ananda Samajdar?
Principal Investigators: Arijit Raychowdhury’, Tushar Krishna'

'Georgia Institute of Technology, 2IBM Research

Recent News

01/21/2026 Our paper "A 40nm Programmable Heterogeneous SoC with RRAM/SRAM for Accelerating Neuro-Symbolic Al Models" accepted to JSSC.
11/07/2025 Our paper "REASON: Accelerating Probabilistic Logical Reasoning for Neuro-Symbolic Cognitive Intelligence" accepted to HPCA 2026.

06/25/2025 Our paper "Compositional Al Beyond LLMs: System Implications of Neuro-Symbolic-Probabilistic Architecture" accepted to ASPLOS 2026. [PDF]
04/15/2025 Our tutorial paper "Efficient Processing of Neuro-Symbolic Al: A Tutorial and Cross-Layer Co-Design Case Study" accepted to NeuS 2025. [PDF]
03/03/2025 Our paper "Generative Al in Embodied Systems: System-Level Analysis of Performance, Efficiency and Scalability" accepted to ISPASS 2025. [PDF]
02/15/2025 Our paper "NSFlow: An End-to-End FPGA Framework with Scalable Dataflow Architecture for Neuro-Symbolic Al" accepted to DAC 2025. [PDF]
01/29/2025 Our paper "ReCA: Integrated Acceleration for Real-Time and Efficient Cooperative Embodied Autonomous Agents" accepted to ASPLOS 2025. [PDF]
11/02/2024 Our paper "CogSys: Efficient and Scalable Neurosymbolic Cognition System via Algorithm-Hardware Co-Design" accepted to HPCA 2025. [PDF]
08/04/2024 Our invited paper "Towards Efficient Neuro-Symbolic Al: From Workload Characterization to Hardware Architecture” accepted to TCASAI. [PDF]
07/01/2024 Our special session "Neuro-Symbolic Architecture Meets Large Language Models: A Memory-Centric Perspective" accepted to ESWEEK 2024. [PDF]
02/29/2024 Our paper "Towards Cognitive Al Systems: Workload and Characterization of Neuro-Symbolic Al" accepted to ISPASS 2024. [PDF]

11/07/2023 Our paper "H3DFACT: Heterogeneous 3D Integrated CIM for Factorization with Holographic Perceptual Representations" accepted to DATE 2024. [PDF]
04/10/2023 Our paper "Towards Cognitive Al Systems: A Survey and Prospective on Neuro-Symbolic Al" accepted to SNAP workshop at MLSys 2023. [PDF]

Recent Talks

10/20/2025 "Tailored Computing: Cross-Layer System, Architecture, and Silicon Co-Design for Physical Intelligence” at MICRO PhD Forum, Seoul, Korea.
09/05/2025 "System Implications and Opportunities for Compositional Neuro-Symbolic-Probabilistic Al" at Georgia Tech (Host: Dr. Alexey Tumanov), Atlanta, GA.
07/11/2025 "Demystifying Neuro-Symbolic Al for Software-Hardware Co-Design" at Purdue University (Host: Dr. Anand Raghunathan), West Lafayette, IN.
07/10/2025 "Demystifying Neuro-Symbolic Al for Software-Hardware Co-Design" at University of Notre Dame (Host: Dr. Ningyuan Cao), South Bend, IN.

06/24/2025 "Tailored Computing: Domain-Specific Hardware and Systems for Embodied Cognitive Intelligence" at DAC PhD Forum, San Francisco, CA. [Slide]
06/24/2025 "NSFlow: An End-to-End FPGA Framework with Scalable Dataflow Architecture for Neuro-Symbolic Al" at DAC, San Francisco, CA. [Slide]

06/21/2025 "Efficient and Safe Embodied Intelligence: From Benchmarking to Co-Design" at ISCA Arch4EAI Workshop, Tokyo, Japan. [Slide]

05/30/2025 "Efficient Processing of Neuro-Symbolic Al: A Tutorial and Co-Design Case Study" at NeuS, University of Pennsylvania, Philadelphia, PA.

05/11/2025 "Generative Al in Embodied Systems: System-Level Analysis of Performance, Efficiency and Scalability" at ISPASS, Ghent, Belgium. [Slide]

04/17/2025 "Demystifying Neuro-Symbolic Al for Software-Hardware Co-Design" at Google (Host: Dr. Suvinay Subramanian), Mountain View, CA. [Slide]

04/02/2025 "ReCA: Integrated Acceleration for Real-Time and Efficient Cooperative Embodied Autonomous Agents" at ASPLOS, Rotterdam, the Netherlands. [Slide]
03/31/2025 "Demystifying Neuro-Symbolic Al for Software-Hardware Co-Design" at ASPLOS MLBench Workshop, Rotterdam, the Netherlands. [Slide]

03/22/2025 "Bridging Learning and Reasoning: A Cross-Layer Software-Architecture-FPGA-SoC Approach for Neuro-Symbolic Al* at DARPA JUMP2.0 CoCoSys
Annual Review, Atlanta, GA. - .
« 03/13/2025 "Programmable Silicon Prototyping for Various Neuro-Symbolic Models" at CoCoSys Industry Meeting, Atlanta, GA. P t W b t

« 03/04/2025 "CogSys: Efficient and Scalable Neurosymbolic Cognition System via Algorithm-Hardware Co-Design Al" at HPCA, Las Vegas, NV. [Slide] rOj e c e SI e
+ 03/01/2025 "Towards Coanitive Al Svstems: Workload and Characterization of Neuro-Svmbolic Al" at HPCA MLBench Workshobo. Las Veaas. NV. [Slidel

Conclusion




_.-/ = Georgl a Semiconductor %
ﬁ esearc ;
\L\ - & Te(:h Eorpora'?ion <

REASON: Accelerating Probabilistic
Reasoning for Neuro-Symbolic Intell]

Zishen Wan, Che-Kai Liu, Jiayi Qian, Hanchen Yang,
Arijit Raychowdhury, Tushar Krishna

Georgia Institute of Technology, Atlanta, GA
Email: zishenwan@gatech.edu
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