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Cognitive Reasoning in Real World

• Cognitive reasoning pioneers the next frontier of physical intelligence

Achieving human-level cognition requires both intuitive thinking and deliberative reasoning
2Background & Motivation

(From Figure AI, Jiayuan Mao)
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Is a Monolithic LLM Enough?
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Key issue: only scaling parameters substitutes compute for structure

• Pattern recognition & language modeling

• Data-driven learning

• Reliable Multi-step logical deduction

• Uncertainty-aware reasoning

• Verifiability and robustness

Andrej Karpathy, Eureka Labs & OpenAI, 2025 LLM Year in Review

Jagged performance of monolithic LLM

Background & Motivation
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AI Systems Are Becoming Compositional
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LLMs are excellent at intuition — but verification and uncertainty require explicit components

Perception &
representation

learning

Explicit logic, rules,
and constraints that

are interpretable and
verifiable

Model uncertainty and
belief updates, reason

under ambiguity

Background & Motivation
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Neuro-Symbolic Example: Trustworthy Planning
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❑ Task: long-horizon multi-
step planning

❑ Modules:

❑ LLM: natural language
interpreter, task 
decomposition, 
generate program

❑ PDDL & Symbolic solver: 
planning domain
definition language-
based planner to ensure 
feasibility & correctness

Grasp bottle Free gripper Grasp can Place can Re-grasp bottle Place bottle

Planner

Liu et al, “LLM+P: Empowering Large Language Models with Optimal Planning Proficiency”, 2025

Background & Motivation
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Neuro-Symbolic Example: Scientific Reasoning
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Trinh et al, “Solving Olympiad Geometry without Human Demonstrations”, Nature 2024

❑ Task: Olympiad-level geometry solving

❑ Modules:

❑ LLM: construct auxiliary points and lines

❑ Symbolic: algebraic deductive reasoning

Background & Motivation



EvaluationBackground & Motivation System Analysis Architecture Design Conclusion

Compositional AI Scales Better

• Neuro-symbolic systems outperform monolithic LLMs

• Smaller models achieve comparable or higher accuracy
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Neuro-symbolic scale algorithmically better than monolithic LLMs

Complex
Reasoning Tasks

Math Reasoning
Tasks

Question-
Answering Tasks

Background & Motivation
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But Systems Hit a Wall
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Symbolic reasoning is slow, latency explodes with task complexity

Grasp bottle Free gripper Grasp can Place can Re-grasp bottle Place bottle

Planner

❑ Task: long-horizon multi-
step planning

❑ Modules:

❑ LLM: natural language
interpreter, task 
decomposition, 
generate program

❑ PDDL & Symbolic solver: 
planning domain
definition language-
based planner to ensure 
feasibility & correctness

Symbolic components
take >100 seconds on 

CPU-GPU per task

Background & Motivation
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REASON Enables Efficient Neuro-Symbolic Cognition
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Challenge 1:
Heterogeneous & 
diverse operators

Challenge 2:
Inefficient processing,

Low hardware utilization

Challenge 3:
Complex control 

flow

Goal:

Background & Motivation
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Challenge 1: Diverse Symbolic Operators
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Core computational primitives: logical reasoning, probabilistic reasoning, sequential reasoning
System Analysis
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Challenge 2: Long Runtime Latency
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Symbolic (Logical and probabilistic) reasoning accounts for large portion of end-to-end runtime

Neuro:
• LLM

Symbolic:
• First-order Logic
• Boolean Satisfiability

(SAT) solver
• Probabilistic Circuit
• Hidden Markov Model

System Analysis
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Why GPUs Inefficient for Symbolic Kernels?
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Even optimized GPU kernels suffer low utilization due to irregular symbolic operations

Symbolic kernels suffer from low ALU utilization, low cache hit rate, high data
movement, complex control flow, and low warp and branch efficiency

System Analysis
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How About CPU for Symbolic, GPU for Neuro?
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CPU+GPU suffer from inefficient symbolic execution and frequent neuro-symbolic interaction

(G: GPU | G+C: GPU+CPU)

• Symbolic remain slow on CPUs: low arithmetic intensity, irregular control flow, poor locality 
• Tight neuro-symbolic coupling introduces CPU-GPU communication overhead

System Analysis
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Challenge 3: Complex Control Flow
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Tight and diverse coupling between neuro and symbolic components complicates control flow 
System Analysis
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Symbolic Reasoning Is a New Workload Class
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Supporting probabilistic logical reasoning efficiently requires new abstraction and architecture

Neuro Inference (LLM/DNN) Neuro-Symbolic (LLM-Logic/Probabilistic)

Runtime [Neuro] < [Neuro-Symbolic]

Compute Kernels Dense/sparse tensor operations
Heterogeneous kernels (tensor, logic, graph 

traversal, vector ops)

Arithmetic intensity High Low

Data access pattern Regular, contiguous Irregular

Control flow Mostly static Branch-heavy, dependent, tightly-coupled

Parallelism Massive data parallelism Limited, dependency-driven

Data reuse High Low

Performance Throughput-oriented Latency-critical

System Analysis
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REASON Enables Efficient Neuro-Symbolic Cognition
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Technique 1:
Unified intermediate

representation of
diverse symbolic

kernels

Technique 2:
Flexible architecture &

compilation flow to
support diverse symbolic

kernels

Technique 3:
Programming

model with GPU
co-processor 
integration

Challenge 1:
Heterogeneous & 
diverse operators

Challenge 2:
Inefficient processing,

Low hardware utilization

Challenge 3:
Complex control 

flow

Goal:

Architecture Design
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Technique 1: Unified Intermediate Representation
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Design a unified DAG structured-based IR for symbolic and probabilistic reasoning

Kernel DAG Nodes DAG Edges DAG Execution

SAT/FOL
Literals and 
logical ops 

Logic dependency 
between literals, 
clauses, formulas

Search and 
deduction via 
traversal

PC

Primitive 
distributions, 
sum and 
product nodes

Weighted 
dependency 
encoding 
probabilistic 
factorization 

Probability 
aggregation 
and flow 
propagation 

HMM
Hidden state 
variables at 
each step

State transition 
and emission 
dependencies 

Sequential 
message 
passing 

Architecture Design
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Technique 1: Unified Intermediate Representation
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Compiler automates DAG pruning and regularization to generate hardware-friendly structures

Step 1:
Adaptive DAG 

Pruning

Step 2:
Two-Input DAG 
Regularization

Step 3:
DAG Dependency-
aware scheduling

Automated 
compilation 

process

Instruction stream

Architecture Design
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Technique 2: Reconfigurable PE Architecture
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Reconfigurable PEs efficiently support heterogeneous reasoning operators at fine granularity

Three operational modes:
• Logical mode
• Probabilistic mode
• SpMSpM mode

Architecture Design
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Technique 2: Compiler-Driven Hardware Mapping
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Compiler-driven DAG-to-hardware mapping in an automated heuristic process
Architecture Design
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Technique 2: Scalable Inter-node Topology 
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Scalable tree-based inter-node topology can support large-scale logic and probabilistic kernels

(N: number of leaf nodes in 
PE architecture)

Root-to-leaf traversal latency
• Tree-based: O(log N)
• Mess-based: O(N1/2)
• Bus-based: O(N)

Architecture Design
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Technique 3: GPU Co-Processor Integration
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GPU co-processor integration enables efficient and versatile LLM-symbolic processing
Architecture Design
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Technique 3: GPU Programming Model
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Programming model enables flexibility and control for running diverse neuro-symbolic models  

Coordination and synchronization between GPU SMs 
and REASON processor is handled through shared-

memory flag buffers and L2 cache

Architecture Design
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Technique 3: GPU-REASON Two-level Pipeline

Two-level execution pipeline maximizes concurrency across neuro and symbolic kernels

GPU-REASON Pipeline:

Inter-REASON Pipeline (symbolic SAT example):

Architecture Design
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REASON Enables Efficient Neuro-Symbolic Cognition
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Technique 1:
Unified intermediate

representation of
diverse symbolic

kernels

Technique 2:
Flexible architecture &

compilation flow to
support diverse symbolic

kernels

Technique 3:
Programming

model with GPU
co-processor 
integration

Challenge 1:
Heterogeneous & 
diverse operators

Challenge 2:
Inefficient processing,

Low hardware utilization

Challenge 3:
Complex control 

flow

Goal:

Architecture Design
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Evaluation Setup

• Task: cognitive reasoning tasks

• 10 Datasets: IMO, MiniF2F, TwinSafety, XSTest, CommonGen, News, 
AwA2, FOLIO, CoAuthor, ProofWriter

• 6 Models: AlphaGeometry, R2- Guard, GeLaTo, Ctrl-G, NeuroPC, LINC 

• Hardware Baselines: Orin NX, RTX GPU, CPU, ML accelerator (TPU, DPU)

• REASON Implementation: in Verilog, synthesize and PnR @ TSMC 28nm

26

• Simulation Setup: GPU co-processor integration modeled in Accel-Sim

Evaluation
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Evaluation – Memory Footprint Reduction
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REASON enables 31.7% memory footprint savings on average across six workloads 
Evaluation
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Evaluation – Runtime Performance Improvement
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REASON achieves 50x speedup over Orin NX, 12x speedup over RTX GPU
Evaluation
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Evaluation – Energy Efficiency Improvement
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REASON achieves two orders of magnitude higher energy efficiency compared to CPU/GPU
Evaluation
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Evaluation – Compare with ML Accelerators
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REASON achieves similar performance in neuro, while improved symbolic operation efficiency
Evaluation
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Summary: Key Insights from REASON

• Neuro-symbolic AI enables compositional 
reasoning beyond monolithic LLMs

• Core architectural insights:
• Symbolic and probabilistic reasoning form a 

distinct workload class
• Reasoning can be unified as dependency-

driven DAG intermediate representation 
• Reconfigurable architecture enables low-

latency reasoning across symbolic kernels
• Compiler-driven workload-IR-hardware 

enables efficient mapping and scheduling
• GPU co-processor integration enables efficient 

compositional systems

31Conclusion
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REASON: A Milestone in Building the Foundation of 
Compositional Intelligence

32

Real-time
Cognition

Efficient 
Reasoning

Scalability

REASON System Achieves All The Three Requirements

Neuro-Symbolic-Probabilistic Form the Foundation of Compositional Reasoning

Scientific Reasoning
Embodied Planning Verified Content Generation

Trustworthy Trading

Compositional Reasoning Applications and Beyond

Conclusion
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Our Vision: Full-Stack Design for Neuro-Symbolic AI

33

“Compositional AI Beyond LLMs: System Implications of 
Neuro-Symbolic-Probabilistic Architectures”, in ASPLOS 2026

“A 40nm Programmable Heterogeneous SoC with 
5.625MB/0.85MB RRAM/SRAM for Accelerating 

Neuro-Symbolic AI Models”, in JSSC 2026

System-on-Chip (SoC) TapeoutSystem-Level Optimization

Conclusion
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Our Vision: Full-Stack Design for Neuro-Symbolic AI
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Paper

Project Website

Conclusion
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