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1 PROBLEM AND MOTIVATION
The next ubiquitous computing platform, after personal comput-
ers and smartphones, is likely to be autonomous nature, such as
drones, robots, and self-driving cars, which have been moving
from mere concepts in labs to permeate almost every aspect of
our society such as transportation, delivery, manufacturing, and
agriculture [21, 37]. The continuous proliferation of autonomous
machines depends critically on efficient and resilient computing
substrates, driven by higher performance and safety requirements
and the miniaturization of machine form factors. However, state-of-
the-art autonomous machines are becoming increasingly complex,
imposing hefty design efforts, latency, energy consumption, and
reliability challenges.

Despite the high demand for scalable, efficient, and resilient au-
tonomous machine computing (AMC), many fundamental problems
remain unsolved in this area. Firstly, autonomous machines consist
of complex cyber-physical components, resulting in a huge design
space that hinders the scalability of computing architectures [8, 17].
Secondly, autonomous machines are typically resource-constrained
and need to operate in dynamic changing environments in real-
time, requiring extremely efficient and adaptive computing sub-
strates [19, 33]. Moreover, autonomous systems need to operate
resiliently to ensure their functional safety in the presence of faults,
while nowadays resiliency solutions lead to higher overheads in
performance, energy, and silicon cost [11, 12]. These challenges
raise a surging need to develop more agile, efficient, and robust
AMC solutions.

In this work, we present a holistic solution to facilitate the devel-
opment of scalable, efficient, adaptive, and reliable AMC.We explore
various methods for automatic design space exploration, software-
hardware co-design, and efficiency-resilience co-optimization in
three research lines. These methodologies can be seamlessly inte-
grated and synergistically advance the ubiquitous application of
next-generation agile, efficient, and reliable autonomous systems.

2 BACKGROUND AND RELATEDWORK
Autonomous machines such as drones, robots, and self-driving cars
are poised to become integral to our daily lives. Early design ef-
forts have focused on developing accurate autonomy algorithms
for perception, localization, and planning [22] to improve mission
performance. Recently, autonomous machine computing (AMC)
has attracted extensive research interests in system and architec-
ture areas, given their growing demand for efficient, real-time, and
resilient computing substrates [6, 8, 26]. Fig. 1 shows the AMC de-
sign targets, including agile and scalable design space exploration,
efficient and adaptive computing hardware architecture, and re-
silient and robust system optimization. Due to the high complexity
of autonomous machines, coupled with size-weight-and-power con-
straints, and their safety-critical nature in real-world deployment,

Hardware

Architecture

System

Algorithm

AMC
Design 
Stack

Challenges and Proposed Methods

Skyline-
Autopilot:  
agile and 
scalable 

design space 
exploration 
framework

Solution

RoboAcc: 
efficient and 

adaptive 
heterogenous 

hardware 
accelerator

MAVFI-BERRY: 
end-to-end 

fault analysis 
framework with 

adaptive 
protection 

Resilience
& Robustness

Efficiency 
& Adaptivity

Design Agility 
& Scalability

Au
to

no
m

ou
s 

M
ac

hi
ne

s

Solution Solution

Figure 1: Challenges in current autonomous system design stack and
our proposed across-stack software-hardware co-design solutions
for agile, efficient, and resilient autonomous machine computing.

the potential of AMC will not be fully unleashed without careful
optimization of scalability, efficiency, and resilience.

2.1 Early-Stage Design Space Exploration
During the early design stages, autonomy algorithms and hardware
configurations will be jointly explored with other cyber-physical
components to derive the design target which can achieve the op-
timal system performance. Previously, Hadidi et al. [8] quantified
the unmanned aerial vehicle (UAV) design space and its various
components needed for autonomous operations. Park et al. [25]
explored the UAV design space for large-scale delivery services.
Gables [9] provided insights into the optimization effort required to
maximize the compute throughput for a given workload. However,
autonomous machines are extraordinarily complex and diverse sys-
tems, where compute is just one component among many involving
sensors, autonomy algorithms, onboard compute, and body dynam-
ics. Existing models typically focus on individual components and
cannot handle the vast design space of autonomous machines. To
enable scalable AMC, there is a high demand for automatic design
space exploration and agile domain-aware design flow to achieve
optimal design configurations and maximize system performance.

2.2 Efficient Autonomous Machine Computing
Given an AMC system target, the second stage is to design an
efficient AMC architecture. Specifically, the aim is to accelerate
the computation-intensive compute kernels so that the design can
achieve low-latency processing to meet AMC real-time require-
ments. Previously, Palossi et al. [24] proposed a specialized ar-
chitecture for end-to-end learning autonomy paradigm running
on a nanorobot platform. Navion [26] is a hardware accelerator
for improving visual-inertial-odometry kernel in nano UAVs for
autonomous exploration tasks. eSLAM [20] presented an FPGA-
based hardware accelerator for autonomous machine real-time
ORB-SLAM task [23]. Though the compute speed is already orders-
of-magnitude higher than software running on CPU, their flexibility
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and adaptability are inadequate for practical autonomous machine
computing due to the increasingly diverse autonomy algorithms,
exacerbating resource constraints and dynamically changing oper-
ating environments.

2.3 Resilient Autonomous Machine Computing
Equippedwith computational efficiency, the ability of an autonomous
machine to tolerate or mitigate against errors, such as environmen-
tal conditions, sensor, hardware, and software faults, is essential
to ensure its functional safety. Recently, Google [10] and Meta [5]
have shown that potential compute andmemory failures pose safety
threats to the computing system at scale. Moreover, recent high-
profile tragedies [1] heighten the urgent need for building reliable
autonomous machine systems. To evaluate system reliability, prior
analysis [13, 28] explored kernel vulnerability on GPUs. To improve
system reliability, previous solutions [1, 6] have adopted “one-size-
fits-all” nature where they typically use the same protection scheme,
such as modular redundancy or anomaly detection, throughout the
entire autonomous machines. However, these fault analyses lack
an end-to-end perspective, and existing resiliency solutions make
fundamental trade-offs between resiliency and performance over-
head, leaving a large room for cross-layer efficiency-resilience co-
optimization to design resilient and robust autonomous machines.

2.4 Our Solutions
Overall, existing studies still fail to provide agile, efficient, and
resilient AMC designs. Hence, better AMC design flow and ad-
vanced efficiency-resilience co-optimization are still in great de-
mand. Therefore, we propose a holistic AMC design solution to
help build scalable, efficient, adaptive, and resilient autonomous
machines with the following methodologies seamlessly integrated,

• Agile and Scalable AMC Design Methodology: for the
first time, the AMC design space is automatically navigated
across the entire cyber-physic system stack. We propose a sys-
tematic AMC system-on-chip (SoC) design framework with
domain-aware characterization tool. An automated design
space exploration method is proposed to further boost the
performance of generated designs by 2-3× [15–18].

• Efficient and Adaptive AMCArchitecture: reconfigurable
spatial-aware computing is considered in AMC architecture
design for the first time. Hardware-aware algorithms and
processing-efficient hardware are proposed to achieve con-
siderable efficiency improvement under dynamic environ-
ments [2, 7, 19, 33, 34, 38].

• Resilient and Robust AMC Optimization: we propose an
end-to-end AMC reliability analysis and improvement frame-
work, which is the first to enable adaptive and cost-effective
protection in safety-critical autonomous machines. Our end-
to-end framework precisely captures fault propagation in
AMC, and the adaptive protection scheme boosts the AMC
reliability by 3× with 1% less overhead [11, 29, 30, 32, 35, 36].

As shown in Fig. 1, the proposed cross-layer solutions focus on
different AMC design stages and targets, synergistically advancing
the ubiquitous applications of autonomous machine computing.

3 APPROACH AND UNIQUENESS
In this study, we present a holistic solution to enable agile, efficient,
and resilient AMC, including automatic design space exploration
Skyline-AutoPilot for improving design agility and scalability,
reconfigurable accelerator RoboAcc for efficient and adaptive AMC,
and lightweight protection scheme BERRY with end-to-end fault
analysis frameworks MAVFI-family for improving AMC resilience.

3.1 Skyline-Autopilot: Agile AMC Design Flow
Autonomous machines are complex systems with sensors, auton-
omy algorithms, and onboard computing, posing a huge design
space of 1018 configurations with cross-product effects on overall
performance [16]. Previous efforts [8] quantify the system stack
but fail to provide a solution to navigate this design space to pro-
duce optimal designs. Thus, we focus on answering the following
critical questions: 1) how to evaluate the role of computing in
complex cyber-physical autonomous machines and determine the
optimal design, and 2) how to intelligently navigate the huge AMC
design space and systematically design domain-specific system-
on-chips (DSSoCs) for a rapidly evolving domain like autonomous
machines [15–18].
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Figure 2: Skyline-AutoPilot [15–18] proposes (a) bottleneck analysis
model for complex AMC systems, and (b) automated design space
exploration framework for agile and scalable AMC.

Proposed AMC System Characterization Tool: To evaluate the role
of computing in complex autonomousmachines, we propose a novel
bottleneck analysis model, Skyline [16, 18], for designing optimal
computing systems for UAVs, as shown in Fig. 2a. Skyline provides
insights by exploring the fundamental relationships between vari-
ous components in autonomous machines, such as sensor, compute,
and body dynamics, and quantifying the bottlenecks, which can
aid a system architect in understanding the optimal compute de-
sign or selection for autonomous machines. The Skyline model is
experimentally validated using real UAVs in real-world flight tests
and is available as an interactive web-based tool [16].

Proposed Agile and Scalable AMC Design Framework: To intelli-
gently navigate the hugeAMCdesign space, we propose AutoPilot [17],
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a systematic methodology for automatically designing DSSoCs
for autonomous UAVs (Fig. 2b). Integrated with Skyline model,
AutoPilot offers a complete solution for automatically navigating
the AMC design space using machine learning and performing
co-design across the entire system stack, including sensors, auton-
omy algorithms, onboard compute, and dynamics, to maximize
the end-to-end autonomous machine performance. AutoPilot also
supports the ASIC flow and generates a layout of the floor-planed ac-
celerator, which can be used to tape out the final hardware chip [15].
AutoPilot generates optimal DSSoC designs that consistently out-
perform off-the-shelf hardware and demonstrate 2-3× higher per-
formance compared with state-of-the-art robotic accelerators.

Overall Contributions: We propose an automatic and intelligent
design framework to break through the AMC agility and scalabil-
ity. It is the first time that complex AMC design space has been
systematically explored. We move beyond the compute-isolated
design and propose an efficient characterization tool to navigate
the cyber-physical design space. We also propose an automatic de-
sign flow with domain-specific insights to generate optimal design
configurations. Our agile and highly scalable Skyline-AutoPilot
framework consistently generates optimal DSSoCs outperforming
state-of-the-art hardware accelerators in end-to-end performance
for diverse deployment scenarios, and provides a design template
for broader classes of autonomous machine applications.

3.2 RoboAcc: Efficient Adaptive AMC Hardware
Autonomous machines typically have strict real-time and energy
requirements and operate in constantly changing environments,
raising a surging need for more efficient and adaptive computing
under diverse scenarios. However, prior AMC architectures [20, 26]
lack adaptability for dynamic surroundings, and are designed for
specific algorithms to accommodate theworst case, leading towaste-
ful computation at run time and suboptimal efficiency. Instead of
static design, we focus on two aspects: (1) how to systematically
find autonomy algorithm bottleneck and lucrative acceleration
target, and (2) how to intelligently adapt AMC in dynamic envi-
ronments to achieve better efficiency via software-hardware co-
design [2, 7, 19, 33, 34, 38].
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Figure 3: RoboAcc [2, 7, 19, 33, 34, 38] features (a) unified autonomy
algorithm framework and (b) runtime-reconfigurable hardware ac-
celerator for efficient and adaptive AMC.

Proposed Unified Autonomy Algorithm Framework: To determine
the lucrative acceleration target, we propose an algorithm frame-
work that flexibly adapts to different operating environments and
systematically characterizes the end-to-end latency of the compute
pipeline [38]. To provide a unified architecture to efficiently sup-
port these components in one system, we propose to capture the
general patterns and shared common blocks across the primitive
algorithms [37]. We reveal that the vision frontend is typically the
bottleneck while the localization backend exhibits high latency vari-
ations. Our proposed unified algorithm framework provides insight
in AMC performance characterization and hardware acceleration.

Proposed Runtime-Reconfigurable Accelerator: To efficiently adapt
to dynamic environments, we propose RoboAcc [7, 19, 38], a recon-
figurable heterogeneous AMC accelerator that can continuously
adjust computational resources at run time according to the sur-
roundings to save power while sustaining performance and accu-
racy for autonomy tasks. RoboAcc adopts hardware-friendly robotic
algorithms, software-friendly sparsity, data flow, and memory ac-
cess patterns, as well as software-hardware co-design techniques
to reduce energy consumption and improve throughput. We fur-
ther propose to modularize the AMC kernel design by building
optimized hardware blocks and efficiently map Robot Operating
System (ROS) computational graphs on the silicon substrate, with
ROS node acceleration and a better ROS-SoC interface [33].

Contributions: Our proposed unified AMC algorithm framework
systematically characterizes the end-to-end latency of autonomy
pipeline to efficiently support AMC hardware design. Our proposed
runtime-reconfigurable design techniques address the unique chal-
lenges posed by autonomous machines in continuously interacting
with dynamic surroundings and intelligently adjusting comput-
ing resources. Our efficient accelerator co-designs hardware-aware
algorithms and processing-efficient hardware, unlocking the capa-
bility to deliver high performance, efficiency, and adaptive AMC.

3.3 MAVFI-BERRY: Resilient AMC Optimization
With improved AMC efficiency and adaptability, ensuring opera-
tional reliability is another critical step in intelligent AMC solu-
tions, which requires efficient methods to analyze, improve and
optimize AMC resilience. However, prior resilience analysis [28]
lacks end-to-end evaluation and protection solutions [1] incur large
performance overhead. Thus, we focus on answering the follow-
ing critical questions: (1) how to precisely capture end-to-end
fault propagation and efficiently evaluate the resilience of vari-
ous AMC kernels, (2) how to significantly improve AMC resilience
with little overhead, and (3) how to further advancing energy sav-
ings while ensuring safety via performance-efficiency-resilience
co-optimization [11, 29, 30, 32, 35, 36].

Proposed End-to-End Resilience Analysis Framework: Unlike tra-
ditional computing systems, autonomous machines are complex
cyber-physical systems, and evaluating the resilience of individual
components of compute/control is devoid of a cross-stack perspec-
tive. This may limit reliability solutions and miss error propagation.
To efficiently tackle the AMC resilience challenge, we propose an
end-to-end resilience analysis framework, MAVFI [11], that can an-
alyze the fault tolerance of autonomous machines to various types
of compute and memory failures. To accelerate the fault injection
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Figure 4: MAVFI-VPP-BERRY [11, 29, 30, 32, 35, 36] proposes (a) end-to-
end resilience analysis framework and (b) adaptive protection with
performance-efficiency optimization for resilient AMC.

(FI) campaign and efficiently identify safety-critical scenarios, we
propose an intelligent multi-phase hierarchical FI scheme [35]. We
integrate MAVFI into hardware-in-the-loop simulators, and further
propose a complete solution to evaluate the end-to-end resilience in
both physical model-based and learning-based autonomy pipelines
in single-agent RL-FI [29] and multi-agent scenarios FRL-FI [30].
MAVFI-family resilience evaluation frameworks are portable to any
Robot Operating System and provide AMC resilience insights.

Proposed Lightweight Adaptive Protection: To provide high pro-
tection coverage with little cost, we propose an adaptive vulnerable
proportional protection (VPP) design [32] that exploits the inherent
robustness variations in the autonomous machine system. Building
upon MAVFI-family tool, for the first time, we reveal that different
nodes in the autonomous machines differ significantly in their in-
herent robustness, where front-end is generally more robust while
the back-end is less so. In stark contrast to the existing "one-size-
fits-all" strategy [1, 6] that uniformly applies the same protection
strength to all tasks, VPP paradigm dynamically attributes the pro-
tection budget, be spatially or temporally, inversely proportional
to the inherent robustness of an autonomous task/algorithm. VPP
achieves 3× resilience improvement with little overhead.

Proposed Robust Low-Voltage Computation: Lowering the operat-
ing voltage is a powerful means of efficient computing, however,
it can also result in on-chip failures that are detrimental to the
safety and performance of autonomous machines. To co-optimize
efficiency and resiliency, we propose BERRY [36], a robust learning
framework for autonomous machines under low-voltage operation.
BERRY supports robust learning, both offline and on-board proces-
sor, and for the first time, demonstrates the practicality of robust
low-voltage AMC that leads to high energy savings in both compute-
level operation and system-level quality-of-mission. BERRY can be
applied in conjunction with VPP, leading to order-of-magnitude
energy reduction in AMC while maintaining system reliability.

Overall Contributions: Our resilience analysis framework MAVFI-
family introduces intelligent fault injection to enable accurate end-
to-end fault tolerance characterization of autonomous machines.
Our lightweight adaptive protection scheme VPP efficiently exploits
the inherent robustness variations to improve AMC resilience with
little overhead. Our robust learning technique BERRY supports ro-
bust low-voltage computation. From the analysis framework to
the protection design paradigm, our proposed methodologies co-
optimize the efficiency, performance, and resilience of AMC.

4 RESULTS AND CONTRIBUTIONS
4.1 Skyline-AutoPilot: Agile AMC Design Flow
Skyline-AutoPilot achieves fast AMC full-system design space
exploration and consistently generates optimal design configura-
tions across deployment scenarios in an agile and scalable way.
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Figure 5: Skyline-AutoPilot quickly explores huge design space and
consistently generates optimal AMC designs across scenarios.

Holistic AMC System Characterization.We use Skyline to demon-
strate the need for holistic AMC full-system co-design to achieve
maximum overall performance. High-performance onboard com-
pute does not necessarily translate to high overall AMC perfor-
mance due to cross-product effects. Miniaturization of autonomous
machines puts greater emphasis on full system co-design. We ex-
perimentally validate Skyline using real UAVs and the error is
between 5.1% to 9.5% compared to real-world mission tests [16, 18].

Fast AMC Design Space Exploration with Optimal Configuration.
AutoPilot can navigate the huge AMC design space of 1018 con-
figurations within 1 hour, outperforming prior solutions by 1000×.
We show that design configurations generated by AutoPilot con-
sistently outperforms general-purpose hardware and dedicated
accelerators across different deployment scenarios, increasing the
number of missions on average by 2.25× over baselines [15, 17]
(Fig. 5). We demonstrate the need for automated flows to simplify
the design process for autonomous cyber-physical systems.

4.2 RoboAcc: Efficient Adaptive AMC Hardware
RoboAcc achieves efficient and reconfigurable spatial-aware AMC
under dynamic environments and demonstrates the significant
energy efficiency and real-time performance improvements.
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Hardware-Efficient and Real-Time AMC.We demonstrate that, with
improved hardware-friendly algorithms and optimized hardware
architecture, RoboAcc achieves 10.49× speedup and 183× energy
reduction over CPU on autonomous navigation task, as well as >5×
better performance against prior robotic accelerators (Fig. 6). Based
on RoboAcc, we also release the first deep-dive AMC book [21].

Adaptive AMC under Dynamic Environments. RoboAcc is dynam-
ically optimized at runtime to adapt to different surroundings and
save power while maintaining accuracy. Evaluated on outdoor envi-
ronments, the runtime reconfigurable method further enables 1.59×
power reduction with <0.01cm localization accuracy degradation.

4.3 MAVFI-BERRY: Resilient AMC Optimization
MAVFI-BERRY accurately evaluates AMC end-to-end resilience and
enables adaptive AMC protection with low performance overhead.
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Figure 7: MAVFI-BERRY accurately evaluate end-to-endAMC resilience
and significantly improve AMC resilience with low overhead.

Accurate AMC Resilience Evaluation.We integrate end-to-end re-
silience evaluation framework MAVFI on both autonomous vehicle
and drone systems, and for the first time, we reveal the performance-
robustness trade-offs in AMC. The front-end (sensing, localization,
perception) has higher resilience but with higher latency and en-
ergy consumption, while the back-end (planning, decision-making)
is more vulnerable to errors but with low runtime [32] (Fig. 7a).

Cost-Effective AMC Resilience Improvement.Wevalidate adaptive
protection design VPP with various environments on Intel CPU and
Nvidia TX2 platforms. The system reliability is improved by 3× and
the failure cases can be fully recovered in best-case scenarios [11,
29, 30] (Fig. 7b). Compared with traditional redundancy-based solu-
tions, our lightweight application-aware protection scheme incurs
<1% overhead with 18.5% further energy reductions when inte-
grated with BERRY robust low-voltage operation.

4.4 Research Impacts
We present a cross-layer autonomous machine computing design
solution to help build scalable, efficient, adaptive, and resilient
autonomous machines. We delve into a range of methodologies en-
compassing automatic design space exploration, software-hardware
co-design, and efficiency-resilience co-optimization, where they can
be seamlessly integrated and synergistically advance the ubiquitous
application of autonomous systems. Our research and endeavor in
the AMC area have led to 1 book [21] in Synthesis Lectures on Com-
puter Architecture and several first-authored [7, 11, 19, 29–38] and
co-authored [2–4, 14–18, 27] publications in premier system/design
automation/computer architecture/circuit journals and conferences.
We believe our contribution to AMC can benefit a broad range of

next-generation drone/vehicle/robot/mixed-reality system design
and cognitive AI applications.

ACKNOWLEDGEMENT
We are grateful for the fruitful collaboration, support, and inspi-
ration from Srivatsan Krishnan, Kshitij Bhardwaj, Thierry Tambe,
David Brooks, Gu-Yeon Wei, Aleksandra Faust, Paul Whatmough,
Shaoshan Liu, Bo Yu, Yiming Gan, Yuhao Zhu, Maximilian Lam,
Sharad Chitlangia, Yu Wang, Yu-Shun Hsiao, Tianyu Jia, Abdulrah-
man Mahmoud, Karthik Swaminathan, Nandhini Chandramoorthy,
Pin-Yu Chen, Aqeel Anwar, Ashwin Lele, Brian Crafton, Muya
Chang, Samuel Spetalnick, Jong-Hyeok Yoon, Cong (Callie) Hao,
Qiang Liu, Yanjun Zhang, etc.

REFERENCES
[1] P. Bannon, G. Venkataramanan, D. D. Sarma, and E. Talpes. 2019. Computer and

redundancy solution for the full self-driving computer. In 2019 IEEE Hot Chips 31
Symposium (HCS). IEEE Computer Society, 1–22.

[2] K. Bhardwaj, Z. Wan, A. Raychowdhury, and R. Goldhahn. 2023. Real-Time Fully
Unsupervised Domain Adaptation for Lane Detection in Autonomous Driving. In
2023 Design, Automation & Test in Europe Conference & Exhibition (DATE). IEEE,
1–2.

[3] M. Chang, A. S. Lele, S. D. Spetalnick, B. Crafton, S. Konno, Z. Wan, A. Bhat,
W.-S. Khwa, Y.-D. Chih, M.-F. Chang, et al. 2023. A 73.53 TOPS/W 14.74 TOPS
heterogeneous RRAM In-memory and SRAM near-memory SoC for hybrid frame
and event-based target tracking. In 2023 IEEE International Solid-State Circuits
Conference (ISSCC). IEEE, 426–428.

[4] B. Crafton, Z. Wan, S. Spetalnick, J.-H. Yoon, W. Wu, C. Tokunaga, V. De, and
A. Raychowdhury. 2022. Improving compute in-memory ECC reliability with
successive correction. In Proceedings of the 59th ACM/IEEE Design Automation
Conference. 745–750.

[5] H. D. Dixit, S. Pendharkar, M. Beadon, C. Mason, T. Chakravarthy, B. Muthiah, and
S. Sankar. 2021. Silent data corruptions at scale. arXiv preprint arXiv:2102.11245
(2021).

[6] Y. Gan, P. Whatmough, J. Leng, B. Yu, S. Liu, and Y. Zhu. 2022. Braum: Ana-
lyzing and protecting autonomous machine software stack. In 2022 IEEE 33rd
International Symposium on Software Reliability Engineering (ISSRE). IEEE, 85–96.

[7] T. Gao, Z. Wan, Y. Zhang, B. Yu, Y. Zhang, S. Liu, and A. Raychowdhury. 2021.
IELAS: An ELAS-based energy-efficient accelerator for real-time stereo match-
ing on FPGA platform. In 2021 IEEE 3rd International Conference on Artificial
Intelligence Circuits and Systems (AICAS). IEEE, 1–4.

[8] R. Hadidi, B. Asgari, S. Jijina, A. Amyette, N. Shoghi, and H. Kim. 2021. Quan-
tifying the design-space tradeoffs in autonomous drones. In Proceedings of the
26th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems. 661–673.

[9] M. Hill and V. J. Reddi. 2019. Gables: A roofline model for mobile socs. In 2019 IEEE
International Symposium on High Performance Computer Architecture (HPCA).
IEEE, 317–330.

[10] P. H. Hochschild, P. Turner, J. C. Mogul, R. Govindaraju, P. Ranganathan, D. E.
Culler, and A. Vahdat. 2021. Cores that don’t count. In Proceedings of theWorkshop
on Hot Topics in Operating Systems. 9–16.

[11] Y.-S. Hsiao, Z. Wan, T. Jia, R. Ghosal, A. Mahmoud, A. Raychowdhury, D. Brooks,
G.-Y. Wei, and V. J. Reddi. 2023. Mavfi: An end-to-end fault analysis framework
with anomaly detection and recovery for micro aerial vehicles. In 2023 Design,
Automation & Test in Europe Conference & Exhibition (DATE). IEEE, 1–6.

[12] S. Jha, S. Banerjee, T. Tsai, S. K. Hari, M. B. Sullivan, Z. T. Kalbarczyk, S. W.
Keckler, and R. K. Iyer. 2019. Ml-based fault injection for autonomous vehicles:
A case for bayesian fault injection. In 2019 49th annual IEEE/IFIP international
conference on dependable systems and networks (DSN). IEEE, 112–124.

[13] S. Jha, S. S. Banerjee, J. Cyriac, Z. T. Kalbarczyk, and R. K. Iyer. 2018. Avfi: Fault
injection for autonomous vehicles. In 2018 48th annual ieee/ifip international
conference on dependable systems and networks workshops (DSN-W). IEEE, 55–56.

[14] S. Krishnan, M. Lam, S. Chitlangia, Z. Wan, G. Barth-maron, A. Faust, and V. J.
Reddi. 2022. QuaRL: Quantization for Fast and Environmentally Sustainable
Reinforcement Learning. Transactions on Machine Learning Research (2022).

[15] S. Krishnan, T. Tambe, Z. Wan, and V. J. Reddi. 2021. Autosoc: Automating
algorithm-soc co-design for aerial robots. arXiv preprint arXiv:2109.05683 (2021).

[16] S. Krishnan, Z. Wan, K. Bhardwaj, N. Jadhav, A. Faust, and V. J. Reddi. 2022.
Roofline model for uavs: A bottleneck analysis tool for onboard compute charac-
terization of autonomous unmanned aerial vehicles. In 2022 IEEE International
Symposium on Performance Analysis of Systems and Software (ISPASS). IEEE,
162–174.



ACM Student Research Competition, Grand Final, 2023 Z. Wan, et al.

[17] S. Krishnan, Z. Wan, K. Bhardwaj, P. Whatmough, A. Faust, S. Neuman, G.-Y.
Wei, D. Brooks, and V. J. Reddi. 2022. Automatic Domain-Specific SoC Design for
Autonomous Unmanned Aerial Vehicles. In 2022 55th IEEE/ACM International
Symposium on Microarchitecture (MICRO). IEEE, 300–317.

[18] S. Krishnan, Z. Wan, K. Bhardwaj, P. Whatmough, A. Faust, G.-Y. Wei, D. Brooks,
and V. J. Reddi. 2020. The sky is not the limit: A visual performance model for
cyber-physical co-design in autonomous machines. IEEE Computer Architecture
Letters 19, 1 (2020), 38–42.

[19] Q. Liu, Z. Wan, B. Yu, W. Liu, S. Liu, and A. Raychowdhury. 2022. An energy-
efficient and runtime-reconfigurable fpga-based accelerator for robotic localiza-
tion systems. In 2022 IEEE Custom Integrated Circuits Conference (CICC). IEEE,
01–02.

[20] R. Liu, J. Yang, Y. Chen, and W. Zhao. 2019. eslam: An energy-efficient accelerator
for real-time orb-slam on fpga platform. In Proceedings of the 56th Annual Design
Automation Conference 2019. 1–6.

[21] S. Liu, Z. Wan, B. Yu, and Y. Wang. 2021. Robotic computing on fpgas. Synthesis
Lectures on Computer Architecture 16, 1 (2021), 1–218.

[22] M. Mohanan and A. Salgoankar. 2018. A survey of robotic motion planning in
dynamic environments. Robotics and Autonomous Systems 100 (2018), 171–185.

[23] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardos. 2015. ORB-SLAM: a versatile
and accurate monocular SLAM system. IEEE transactions on robotics 31, 5 (2015),
1147–1163.

[24] D. Palossi, A. Loquercio, F. Conti, E. Flamand, D. Scaramuzza, and L. Benini. 2019.
A 64-mw dnn-based visual navigation engine for autonomous nano-drones. IEEE
Internet of Things Journal 6, 5 (2019), 8357–8371.

[25] S. Park, L. Zhang, and S. Chakraborty. 2016. Design space exploration of drone
infrastructure for large-scale delivery services. In 2016 IEEE/ACM International
Conference on Computer-Aided Design (ICCAD). IEEE, 1–7.

[26] A. Suleiman, Z. Zhang, L. Carlone, S. Karaman, and V. Sze. 2019. Navion: A 2-mw
fully integrated real-time visual-inertial odometry accelerator for autonomous
navigation of nano drones. IEEE Journal of Solid-State Circuits 54, 4 (2019),
1106–1119.

[27] T. Tambe, E.-Y. Yang, Z. Wan, Y. Deng, V. J. Reddi, A. Rush, D. Brooks, and G.-Y.
Wei. 2020. Algorithm-hardware co-design of adaptive floating-point encodings
for resilient deep learning inference. In 2020 57th ACM/IEEE Design Automation
Conference (DAC). IEEE, 1–6.

[28] T. Tsai, S. K. S. Hari, M. Sullivan, O. Villa, and S. W. Keckler. 2021. Nvbitfi:
Dynamic fault injection for gpus. In 2021 51st Annual IEEE/IFIP International

Conference on Dependable Systems and Networks (DSN). IEEE, 284–291.
[29] Z. Wan, A. Anwar, Y.-S. Hsiao, T. Jia, V. J. Reddi, and A. Raychowdhury. 2021.

Analyzing and improving fault tolerance of learning-based navigation systems.
In 2021 58th ACM/IEEE Design Automation Conference (DAC). IEEE, 841–846.

[30] Z. Wan, A. Anwar, A. Mahmoud, T. Jia, Y.-S. Hsiao, V. J. Reddi, and A. Ray-
chowdhury. 2022. Frl-fi: Transient fault analysis for federated reinforcement
learning-based navigation systems. In 2022 Design, Automation & Test in Europe
Conference & Exhibition (DATE). IEEE, 430–435.

[31] Z. Wan, B. Crafton, S. Spetalnick, J.-H. Yoon, and A. Raychowdhury. 2022. RRAM-
ECC: Improving Reliability of RRAM-Based Compute In-Memory. In 13th Annual
Non-Volatile Memories Workshop (NVMW).

[32] Z. Wan, Y. Gan, B. Yu, S. Liu, A. Raychowdhury, and Y. Zhu. 2023. VPP: The
Vulnerability-Proportional Protection Paradigm Towards Reliable Autonomous
Machines. In Proceedings of the 5th International Workshop on Domain Specific
System Architecture (DOSSA). 1–6.

[33] Z. Wan, A. Lele, B. Yu, S. Liu, Y. Wang, V. J. Reddi, C. Hao, and A. Raychowdhury.
2022. Robotic computing on fpgas: Current progress, research challenges, and
opportunities. In 2022 IEEE 4th International Conference on Artificial Intelligence
Circuits and Systems (AICAS). IEEE, 291–295.

[34] Z. Wan, A. S. Lele, and A. Raychowdhury. 2022. Circuit and system technologies
for energy-efficient edge robotics. In 2022 27th Asia and South Pacific Design
Automation Conference (ASP-DAC). IEEE, 275–280.

[35] Z. Wan, K. Swaminathan, P.-Y. Chen, N. Chandramoorthy, and A. Raychowdhury.
2022. Analyzing and Improving Resilience and Robustness of Autonomous Sys-
tems. In Proceedings of the 41st IEEE/ACM International Conference on Computer-
Aided Design (ICCAD). 1–9.

[36] Z. Wan, K. Swaminathan, P.-Y. Chen, N. Chandramoorthy, V. J. Reddi, and A.
Raychowdhury. 2023. BERRY: Bit Error Robustness for Energy-Efficient Rein-
forcement Learning-Based Autonomous Systems. In 2023 60th ACM/IEEE Design
Automation Conference (DAC). IEEE, 1–6.

[37] Z. Wan, B. Yu, T. Y. Li, J. Tang, Y. Zhu, Y. Wang, A. Raychowdhury, and S. Liu.
2021. A survey of fpga-based robotic computing. IEEE Circuits and Systems
Magazine 21, 2 (2021), 48–74.

[38] Z. Wan, Y. Zhang, A. Raychowdhury, B. Yu, Y. Zhang, and S. Liu. 2021. An energy-
efficient quad-camera visual system for autonomous machines on fpga platform.
In 2021 IEEE 3rd International Conference on Artificial Intelligence Circuits and
Systems (AICAS). IEEE, 1–4.


	1 Problem and Motivation
	2 Background and Related Work
	2.1 Early-Stage Design Space Exploration
	2.2 Efficient Autonomous Machine Computing
	2.3 Resilient Autonomous Machine Computing
	2.4 Our Solutions

	3 Approach and Uniqueness
	3.1 Skyline-Autopilot: Agile AMC Design Flow
	3.2 RoboAcc: Efficient Adaptive AMC Hardware
	3.3 MAVFI-BERRY: Resilient AMC Optimization

	4 Results and Contributions
	4.1 Skyline-AutoPilot: Agile AMC Design Flow
	4.2 RoboAcc: Efficient Adaptive AMC Hardware
	4.3 MAVFI-BERRY: Resilient AMC Optimization
	4.4 Research Impacts

	References

