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Motivation: Autonomous Systems

Drones SeIf-Drlvmg Cars Robots

Applications
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Cross-Layer Robotic Computing System
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Cross-Layer Robotic Computing System
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Cross Layer Robotic Computing System
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Cross-Layer Robotic Computing System
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Cross-Layer Robotic Computing System
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Robotic Computing Need Hardware Acceleration

* Take motion planning as an example: collision detection for each
connecting path can be very expensive...!
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Robotic Computing Need Hardware Acceleration

* Take motion planning as an example: collision detection for each
connecting path can be very expensive...!
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Robotic Computing Need Hardware Acceleration

* Take motion planning as an example: collision detection for each
connecting path can be very expensive...!
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Robotic Computing Need Hardware Acceleration

 Which Hardware Platform for Robotic Computing Acceleration?

AICAS 2022

GPUs/CPUs’ power consumption is orders of magnitude higher than requirements
of resource-constrained scenarios.

GPUs/CPUSs’ general-purpose nature leads to time inefficiencies (real-time
requirement) and more vulnerable to cybersecurity threats (safety requirement)

ASICs typically have the highest energy-efficiency, but their limited configurability
has difficulty adapting to new robotic scenarios, as the robotic computing
algorithms are still evolving very fast.

FPGAs have some unique advantages —

Compared to GPUs/CPUs: higher energy-efficiency, low power, higher performance

Compared to ASICs: higher reconfigurability, adaptivity, faster time-to-market, and
longer useful life time.
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FPGA-Based Robotic Computing

Environment

End-to-End Learning
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FPGA-Based Robotic Computing

Environment

Functional
Blocks:

Exampled
Algorithms:

AICAS 2022
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Feature Extraction
Stereo Vision
Obiject Detection
Scene Understanding

-----------------

' FAST, ORB, ELAS,
: Neural Network

[HPCA'21]
[AICAS’21]
[FPL’20]
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FPGA-Based Robotic Computing

Environment

Functional
Blocks:

Exampled
Algorithms:
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Scene Understanding Object Tracking
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FPGA-Based Robotic Computing
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_ L Planning &
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FPGA-Based Robotic Computing

Environment

o

»| End-to-End Learning

or

Planning &
Control

—»| Perception | Localization [———»

Feature Extraction Kalman Filtering Path Planning

Functional Stereo Vision Pose Estimation . Action Prediction
Blocks: Object Detection . Map Generation . . Obstacle Avoidance
Scene Understanding . Object Tracking . . Feedback Control
Exampled FAST, ORB,ELAS, ' -  SLAM,VIO, ' . RRT, PRM, RRT",
Algorithms: Neural Network : Registration Lo RRT-C, PID

Exampled design techniques:

SW: Robotic-specific hardware-friendly algorithms and data structure, dynamic scheduling, ROS support
HW: Robotic-specific architecture, sparsity, locality, pipeline and reduced data movement
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Exampled Design (SLAM)

Camera

[- . . \
Simultaneous Localization
( | IMU ) > and Mapping
Inertial Measurement Unit
A (SLAM)
o4 ( Estimated ~ / .3
L States R '

Mapping
[Source: V. Sze]
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Exampled Design (SLAM): Data Reuse

Keyframe 1 Keyframe 2

2 Keyframes
3 Feature Points (F1~F3)
4 Observations (O1~04)

[Wan, CICC’22]
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Exampled Design (SLAM): Data Reuse

01 02 O3 04

F1

—

F3

Jacobian Matrix

Keyframe 1 Keyframe 2
2 Keyframes <feature point, observation>
3 Feature Points (F1~F3) pairs have non-zero values

4 Observations (O1~04)

[Wan, CICC’22]
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Exampled Design (SLAM): Data Reuse

Rotation
01 02 03 04 Keyframes matrix
F1 RAM || Keyirame | ["2ay,
Block l
)
F3 FIFO > ObsBelrva|'(t|0n
[ bian Matri Observations oc Jacobian
Keyframe 1 Keyframe 2 acobian iatrix T matiix
g Feature =y
- : —> —» FIF
2 Keyframes <feature point, observation> FF'FtO Block 5 .c:
i ~ : eature oin
3 Feature Points (F1~F3) pairs have non-zero values paliis coordinates

4 Observations (O1~04)

[Wan, CICC’22]
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Exampled Design (SLAM): Data Reuse

Rotation
F1 RAM || Keyframe | gy
Block l
)
E3 "FIFO — | Observation
Jacobian Matrix Observations ) acotian
Keyframe 1 Keyframe 2 T matrix
E—— Feature i~
. . —> —
2 Keyframes <feature point, observation> FFIFtO Block EIFC:
3 Feature Points (F1~F3) airs have non-zero values oar o
4 Observations (O1~04) P points coordinates
Three-Level Block Designs:
 Keyframe-level: Rotation matrix of keyframes
* Feature-level: 3D coordinates
K. Observation-level: Jacobian matrix y
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Exampled Design (SLAM): Data Reuse

[ I Rotation
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Two-Level Data Reuses: Three-Level Block Designs:
* Feature-reuse: across associated observations  Keyframe-level: Rotation matrix of keyframes

N

Keyframe-reuse: over all obsn. within keyframe/ K.

* Feature-level:

3D coordinates

Observation-level: Jacobian matrix

/
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Exampled Design (SLAM): Data Reuse

[ I Rotation
| 01 02 03 04 | Keyframes matrix
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Two-Level Data Reuses: Three-Level Block Designs:
* Feature-reuse: across associated observations  Keyframe-level: Rotation matrix of keyframes
mmm) feature (row)-stationary * Feature-level: 3D coordinates
. Observation-level: Jacobian matrix

N

Keyframe-reuse: over all obsn. within keyframe/ K.

/
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Exampled Design (SLAM): Symmetric & Sparsity

S matrix

S matrix: store the parameters
for the system
(40%-80% of total storage)

720 kb [Wan, CICC’22]
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Exampled Design (SLAM): Symmetric & Sparsity

15 IMU
S matrix
» +
6 Vision
S matrix: store the parameters
for the linear system
(40%-80% of total storage)
720 kb [Wan, CICC’22]
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Exampled Design (SLAM): Symmetric & Sparsity

15 IMU
S matrix
LT T 1]
NN
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. 1

S matrix: store the parameters H
for the linear system : —
(40%-80% of total storage)

720 kb [Wan, CICC’22]

AICAS 2022 Zishen Wan | School of ECE | Georgia Institute of Technology 06/15/2022



Exampled Design (SLAM): Symmetric & Sparsity

15 IMU
S matrix Symmetry»
T T T
HEEEEEE
e g T SRR, L
NN : Symmetry

S matrix: store the parameters H
for the linear system : —
(40%-80% of total storage)

720 kb [Wan, CICC’22]
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Exampled Design (SLAM): Symmetric & Sparsity

15 IMU
S matrix Symmetry»
T 7T 17
T 1 1
1 1 > Pt L
- i
an
S matrix: store the parameters ]
for the linear system : —
(40%-80% of total storage)
4.1x reduction ,
720 kb » 175.97 kb [Wan, CICC’22]
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Exampled Design (SLAM): Symmetric & Sparsity

AICAS 2022

‘D

ata Layout + Symmetry + Sparsity + Co-observation

~

o

4.1x memory reduction

Exploiting data characteristics unique to SLAM y

720 kb

4.1x reduction

» 175.97 kb
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* Research Challenges and Future Directions
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Challenges

@ Dynamic changing workloads

@ Unoptimized general solutions
@ Diverse hardware components
@ Inefficient ROS support

@ Large #algorithms and #hardware
@ Tedious development procedure

(@) Inaccurate performance evaluation
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Challenges and Research Opportunities

@ Dynamic changing workloads

AICAS 2022

at runtime

Static logic

Reconfigurable
partition

Q Reconfiguring robotic computing

A4.bit

A3.bit

A2.bit

Al.bit

Partial Reconfiguration of FPGA
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Challenges and Research Opportunities

Modularizing robotic computing

kernels design

* Build optimized building blocks
for robotic kernels, as libraries
or packages.

* During design phase, directly
import these robotic-specific
libraries and building blocks.

@ Unoptimized general solutions
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Challenges and Research Opportunities

(). Mapping robotic computing on
heterogeneous platforms

@ Diverse hardware components

L2 Cache

Ethernet

Serial and Task : I : I Data Parallel

Parallel Workloads Workloads
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Challenges and Research Opportunities

Q Connecting FPGA to ROS ecosystem

* Better interface with FPGA and
ROS.

* Accelerate inter-process and
intra-process between ROS
nodes.

 Dynamically and efficiently
mapping ROS to heterogeneous
compute platforms.

@ Inefficient ROS support

(ROS: Robot Operating System)
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Challenges and Research Opportunities

Q Benchmarking robotic computing
kernels
 Benchmark a robotic algorithm
across various hardware
platforms.
 Benchmark various robotic

@ Large #algorithms and #hardware algorithms within the same
hardware.
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Challenges and Research Opportunities

Automating robotic computing
design flow

Robot Task
obot Tas AT A DNN

Xeiese Policy
Platform . AV R
: AutoPilot
Constraints
Optimization :Ciﬁi{eré;tor
Target rchitecture
Specification System

[Krishnan, arXiv’21]

e Push button framework
* |ntelligently search huge design space
to pick optimal hardware and algorithm

@ Tedious development procedure

AICAS 2022 Zishen Wan | School of ECE | Georgia Institute of Technology



Challenges and Research Opportunities

Q Building customized robotic
computing with the open-source
framework
* Defining and building an

open-source FPGA-based
RISC-V robotics-on-chip
processor with open-source

, frameworks
@ Tedious development procedure
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Challenges and Research Opportunities

Q Integrating robotic computing
hardware in a simulation loop

A si
)/ Unreal Engine

Sensory Data ; Sensory Data
(RGBD, GPS/ Flight Control‘\\‘(lMU)

/ Workload Flight Stack /5/

1 ROS Autopilot Hard -
¥~ Companion Computer Flight itk

e p P Commands

(@) Inaccurate performance evaluation
[Boroujerdian, MICRO’18]
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Abstract—Robotic computing has reached a tipping
with a myriad of robots (e.g., drones, self-driving cars, logistic
robots) being widely applied in diverse scenarios. The continuous
proliferation of robotics, however, critically depends on efficient
computing substrates, driven by real-time requirements, robotic

datapath, making it capable of meeting real-time requirements
with high energy efficiency compared to CPUs and GPUs.
Second, FPGA can adaptively generate custom architectures
and update with the fast-evolving of robotic algorithms without

gh p
and dynamically changing scenarios. Within all platforms, FPGA
is able to deliver both software and hardware solutions with
low power, high performance, reconfigurability, reliability, and
adaptivity characteristics, serving as the promising computing
substrate for robotic applications. This paper highli

rent progress, design techniques, challenges, and open research
challenges in the domain of robotic computing on FPGAS.

1. INTRODUCTION

Robotic computing is on the rise. A myriad of robots
such as drones, legged robots, and self-driving cars are on
the verge of becoming an integral part of our life [1], [2].
Robotics is typically an art of system integration both in
software and hardware (Fig. 1). The continuous proliferation
of robots, however, face computing challenges, raised from
the higher i resource i
miniaturization of machine form factors, dynamic operating
scenarios, and cybersecurity considerations. Therefore, it is
essential to choose a proper computing substrate for robotic
system that can meet real-time and power requirements and
adapt to changing workloads.

CPUs and GPUs are two widely-used computing platforms,
however, their performance and efficiency are still incompe-
tent in real-time computation for complex robots. Take the
motion planning task as an example, CPU typically takes a
few seconds to find the collision-free trajectory [3], making
it too slow for complex navigation tasks. GPUs can finish
planning tasks in hundreds of milliseconds, still insufficient
for many scenarios while at hundreds of watts cost [4].
ASICs are recently developed for specific robotic workloads
with low power and high performance [S}-[7], but their
fixed architecture has difficulty in adapting to rapid-evolving
robotic algorithms and dynamic scenarios, and is vulnerable
to cybersecurity threats.

As an alternative, we believe FPGA is the promising com-
pute substrate for robotic applications. First, FPGA increases
the performance with massive parallelism and deeply pipelined

going through as ASIC [8]. Third, FPGA is
flexible in dealing with highly diverse robotic workloads,
especially with partial reconfiguration allowing modification
part of the operating board. Fourth, FPGA provides reliable
design by leveraging reconfiguration to patch flows, compared
to potential vulnerabilities detected in fixed architectures [9],
which is especially essential in safety-critical scenarios [10].
Overall, FPGA has the potential to deliver high-performance,
low-power, reconfigurable, adaptive, and secure features in
robotic computing, and is booming in autonomous applica-
tions. However, several challenges, such as tedious develop-
ment procedures, inefficient system support, and huge design
space, remain in the FPGA-based robotic computing and
impede the way ahead.

In this paper, we will discuss the current progress, chal-
lenges, and opportunities for FPGA-based robotic computing.
Section II introduces the cross-layer stack of robotic system.
Section III presents current FPGA accelerators and systems
for robotic computing, with an emphasis on design techniques.
Section IV discusses challenges and opportunities for FPGA-
based robotic computing, and our view of the road ahead.

II. CROSS-LAYER ROBOTIC COMPUTING SYSTEMS

This section introduces the abstraction layers of the robotic
computing stack. We traverse down Fig. 1 to explain robotic-
specific algorithms and systems building blocks.

A. Robotic-Computing Algorithm Layer

Fig. 2 illustrates the representative algorithm building blocks
in robotic ing, including plan-act i
localization, planning, control) and end-to-end learning.

Perception. The goal of perception is to sense the dynamic
surroundings and build a reliable and detailed representation
based on sensory data (e.g., camera, IMU, GPS, LiDAR). Per-
ception usually includes feature extraction, stereo vision, ob-
Jject detection, scene understanding, etc. In feature extraction,
key points are usually detected using FAST feature and ORB

[Wan, AICAS 2022]
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datapath, making it capable of meeting real-time requirements
with high energy efficiency compared to CPUs and GPUs.
Second, FPGA can adaptively generate custom architectures
and update with the fast-evolving of robotic algorithms without
going through ication as ASIC [8]. Third, FPGA is

ight-and-p
and dynamically changing scenarios. Within all platforms, FPGA
is able to deliver both software and hardware solutions with
low power, high performance, reconfigurability, reliability, and
adaptivity characteristics, serving as the promising computing
substrate for robotic applications. This paper highlights the cur-
rent progress, design techniques, challenges, and open research
challenges in the domain of robotic computing on FPGAS.

1. INTRODUCTION

Robotic computing is on the rise. A myriad of robots
such as drones, legged robots, and self-driving cars are on
the verge of becoming an integral part of our life [1], [2].
Robotics is typically an art of system integration both in
software and hardware (Fig. 1). The continuous proliferation
of robots, however, face computing challenges, raised from
the higher i resource i
miniaturization of machine form factors, dynamic operating
scenarios, and cybersecurity considerations. Therefore, it is
essential to choose a proper computing substrate for robotic
system that can meet real-time and power requirements and
adapt to changing workloads.

CPUs and GPUs are two widely-used computing platforms,
however, their performance and efficiency are still incompe-
tent in real-time computation for complex robots. Take the
motion planning task as an example, CPU typically takes a
few seconds to find the collision-free trajectory [3], making
it too slow for complex navigation tasks. GPUs can finish
planning tasks in hundreds of milliseconds, still insufficient
for many scenarios while at hundreds of watts cost [4].
ASICs are recently developed for specific robotic workloads
with low power and high performance [S}-[7], but their
fixed architecture has difficulty in adapting to rapid-evolving
robotic algorithms and dynamic scenarios, and is vulnerable
to cybersecurity threats.

As an alternative, we believe FPGA is the promising com-
pute substrate for robotic applications. First, FPGA increases
the performance with massive parallelism and deeply pipelined

flexible in dealing with highly diverse robotic workloads,
especially with partial reconfiguration allowing modification
part of the operating board. Fourth, FPGA provides reliable
design by leveraging reconfiguration to patch flows, compared
to potential vulnerabilities detected in fixed architectures [9],
which is especially essential in safety-critical scenarios [10].
Overall, FPGA has the potential to deliver high-performance,
low-power, reconfigurable, adaptive, and secure features in
robotic computing, and is booming in autonomous applica-
tions. However, several challenges, such as tedious develop-
ment procedures, inefficient system support, and huge design
space, remain in the FPGA-based robotic computing and
impede the way ahead.

In this paper, we will discuss the current progress, chal-
lenges, and opportunities for FPGA-based robotic computing.
Section II introduces the cross-layer stack of robotic system.
Section III presents current FPGA accelerators and systems
for robotic computing, with an emphasis on design techniques.
Section IV discusses challenges and opportunities for FPGA-
based robotic computing, and our view of the road ahead.

II. CROSS-LAYER ROBOTIC COMPUTING SYSTEMS

This section introduces the abstraction layers of the robotic
computing stack. We traverse down Fig. 1 to explain robotic-
specific algorithms and systems building blocks.

A. Robotic-Computing Algorithm Layer

Fig. 2 illustrates the representative algorithm building blocks
in robotic i including pl t i
localization, planning, control) and end-to-end learning.

Perception. The goal of perception is to sense the dynamic
surroundings and build a reliable and detailed representation
based on sensory data (e.g., camera, IMU, GPS, LiDAR). Per-
ception usually includes feature extraction, stereo vision, ob-
Jject detection, scene understanding, etc. In feature extraction,
key points are usually detected using FAST feature and ORB

A Survey of FPGA-Based
Robotic Computing

Zishen Wan,” Bo Yu,” Thomas Yuang LI, Jle Tang, Yuhao Zhu,
‘Yu Wang, Arijit Raychowdhury, and Shaoshan Liu

Recent rosearches on rabatics have shown significant improve
mont, hite

tures. Robotics, including manipulators, lgged rabots, drones,
and autonomous vehicles, are naw widsly appied in diverse sce-
narios. However, the high computation and data complexy of
robotic algarithms pose great challenges to its appications. On
the ono hand, CPU platform is flexible ta handie multiple robotic
tasks. GPU platiorm has higher computational capacities and
sazy-to-use development framawarks, 5o they hava been widaly
adopted in several applications. On the ather hand, FPGA-based
robatic accelerators ar bacoming incroasingly compeitive al
ternatives, especially in latency-critical and pawarlimited sce
narios. With specializod designed hardware logic and algorithm
komels, FPGA-based accolerators can surpass CPU and GPU
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In parformance and energy efficiency. In this paper, we give an
overviaw of previous work on FPGA-based robotic accelerators
covering diferent stages of the robotic system pipeling. An analy-
sl of software and hardwara optimization technikques and main
technical issues Is presented, along with some commercial and
5pace applications, to s6rve as a guida for future work

L Introduction
ver the last decade, we have seen significant
O progress in the development of robotics, span-
ning from algorithms, mechanics to hardware

platforms. Various robotic systems, like manipulators,
legged robots, unmanned aerial vehicles, self-driving cars
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