

MulBERRY: Enabling Bit-Error Robustness for Energy-Efficient Multi-Agent Autonomous Systems

Zishen Wan¹, Nandhini Chandramoorthy², Karthik Swaminathan², Pin-Yu Chen², Kshitij Bhardwaj³, Vijay Janapa Reddi⁴, Arijit Raychowdhury¹

ASPLOS 2024

Executive Summary

Through this talk, we will:

- <u>Understand</u> the challenges of building efficient and resilient swarm autonomous systems
- <u>Optimize</u> the efficiency-performance-resilience of swarm intelligence via algorithm-hardware-system co-design approach

What is Autonomous Machine System?

What is Swarm Autonomous Machine System?

What is Swarm Autonomous Machine System?

Challenge 1: Strict Resource Budgets

Energy-Efficient Autonomous System

SRAM Access Energy vs. Operating Voltage

Challenge 2: Compute-Physics Correlation

Compute power is only a small fraction of total drone power -> Will optimize compute bring system energy-savings?

Challenge 3: Low Voltage Induces Faults

[HPCA19] Resilient Low Voltage Accelerators for High Energy Efficiency [MLSys21] Bit Error Robustness for Energy-Efficient DNN Accelerators ò

Challenge 3: Low Voltage Induces Faults

Operating below rated voltage range results in memory bit errors, negatively impacting safety

Mulberry

Hoween we achieve aggressive <u>energy-savings</u> under low-voltage operation, yet remain <u>computationally-</u> resilient for swarm autonomous systems?

(*performance-efficiency-resilience* co-optimization)

MulBERRY Framework

(MulBERRY: Enabling Bit-Error Robustness for Energy-Efficient Multi-Agent Autonomous Systems)

MulBERRY Framework

(MulBERRY: Enabling Bit-Error Robustness for Energy-Efficient Multi-Agent Autonomous Systems)

Low-voltage operation

(Peak temperature, , heatsink size and weight)

[2] Celsia Heatsink Size Simulator

Compute power has huge impacts on end-to-end autonomous system mission energy

MulBERRY Framework

(MulBERRY: Enabling Bit-Error Robustness for Energy-Efficient Multi-Agent Autonomous Systems)

MulBERRY System Design Principle

• <u>Design Principle</u>: Cross-layer swarm robust learning framework, integrates *algorithm-level* error-aware learning with *system-level* collaborative serveragent optimization and *hardware-level* thermal-voltage adaptive adjustment.

MulBERRY Objective

- <u>Design Principle</u>: Cross-layer swarm robust learning framework, integrates *algorithm-level* error-aware learning with *system-level* collaborative serveragent optimization and *hardware-level* thermal-voltage adaptive adjustment.
- <u>Achieve</u>: Aggressive *energy-savings* under *low-voltage operation*, yet *computationally-resilient* for swarm autonomous systems.

MulBERRY Framework

Algorithm 2 MulBERRY

1: Initialization: number of agent *n*, communication interval *CI*, smoothing average threshold δ^k . For each agent, initialize action-value function *Q* with policy θ_i and target action-value function \hat{Q} with policy $\theta^p = \theta$ 2: for time step k = 1 to T do // Agents conduct bit-flip robust learning at each step 3: for each agent i in parallel do 4: Update $\theta_i^k \leftarrow \text{BitFlipLearning}\left(i, \theta_i^{(k-1)}\right)$ 5: end for 6: // Agents communicate with server at every CI steps 7: if $k \mod CI = 0$ then 8: Each agent *i* sends policy θ_i^{k-} to server 9: Server calculates smoothing average parameters: 10: $\alpha^{k} = \frac{1}{n} \max(1, \frac{(1-n)k}{\delta^{k}} + n), \ \beta^{k} = \frac{1-\alpha^{k}}{n-1}$ 11: for each agent i do 12: Server sends its updated policy θ_i^{k+} back to agent *i*: 13: $\theta_i^{k+} = \alpha^k \theta_i^{k-} + \beta^k \sum_{i \neq j} \theta_i^{k-}$ 14: 19: **Function:** BitFlipLearning $(i, \theta^{(k)})$ 20: Given state s_k , take action a_k based on $O(\epsilon$ -greedy) 21: Obtain reward r_k and reach new state s_{k+1} 22: Store transition (s_k, a_k, r_k, s_{k+1}) in D 23: // Experience replay 24: Sample a mini-batch $\{(s_j, a_j, r_j, s_{j+1})\}_{h=1}^B$ from D 25: // Clean training pass 26: Set $y_j = r_j + \gamma \max_{a'} Q(s_{j+1}, a'; \theta^{p(k)})$ 27: $\Delta^{(k)} = \nabla_{\theta} \sum_{b=1}^{B} (Q(s_j, a_j; \theta^{(k)}) - y_j)^2$ 28: // Perturbed training pass, inject bit errors at rate p 29: $\tilde{\theta}^{(k)} = BErr_{\rho}(\theta^{(k)})$ 30: Set $\tilde{y}_i = (r_i + \gamma \max_{a'} Q(s_{i+1}, a'; \tilde{\theta}^{p(k)}))$ 31: $\tilde{\Delta}^{(k)} = \nabla_{\theta} \sum_{b=1}^{B} (Q(s_j, a_j; \tilde{\theta}^{(k)}) - \tilde{y}_j)^2$ 32: // Average gradients and update w.r.t θ 33: $\theta^{(k+1)} = \theta^{(k)} - \alpha(\Delta^{(k)} + \tilde{\Delta}^{(k)})$ 34: // Periodic update of target network 35: Every *C* steps reset $\hat{Q} = Q$, i.e., set $\theta^p = \theta$ 36: **Return** $\theta^{(k+1)}$ 37: 38: **Output:** Unified multi-agent bit-error robust policy θ

MulBERRY Framework

Start: Initialize swarm autonomy model

Goal: learn robust swarm autonomy model

Algorithm 2 MulBERRY

	1:	Initialization: number of agent <i>n</i> , communication interval <i>CI</i> , smooth-
		ing average threshold δ^k . For each agent, initialize action-value function
		Q with policy θ_i and target action-value function \hat{Q} with policy $\theta^p = \theta$
1	2:	for time step $k = 1$ to T do
	3:	// Agents conduct bit-flip robust learning at each step
	4:	for each agent i in parallel do
	5:	Update $ heta_i^k \leftarrow extsf{BitFlipLearning}\left(i, heta_i^{(k-1)} ight)$
	6:	end for
	7:	// Agents communicate with server at every CI steps
	8:	if $k \mod CI = 0$ then
	9:	Each agent <i>i</i> sends policy θ_i^{k-} to server
	10:	Server calculates smoothing average parameters:
	11:	$\alpha^{k} = \frac{1}{n} \max(1, \frac{(1-n)k}{\delta^{k}} + n), \ \beta^{k} = \frac{1-\alpha^{k}}{n-1}$
	12:	for each agent i do
	13:	Server sends its updated policy θ_i^{k+} back to agent <i>i</i> :
	14:	$\theta_i^{k+} = \alpha^k \theta_i^{k-} + \beta^k \sum_{i \neq j} \theta_j^{k-}$
	19:	Function: BitFlipLearning $(i, \theta^{(k)})$
	20:	Given state s_k , take action a_k based on Q (ϵ -greedy)
	21:	Obtain reward r_k and reach new state s_{k+1}
	22:	Store transition (s_k, a_k, r_k, s_{k+1}) in D
	23:	// Experience replay
	24:	Sample a mini-batch $\{(s_j, a_j, r_j, s_{j+1})\}_{b=1}^B$ from D
	25:	// Clean training pass
	26:	Set $y_j = r_j + \gamma \max_{a'} Q(s_{j+1}, a'; \theta^{p(k)})$
	27:	$\Delta^{(k)} = \nabla_{\theta} \sum_{b=1}^{B} (Q(s_j, a_j; \theta^{(k)}) - y_j)^2$
	28:	// Perturbed training pass, inject bit errors at rate p
	29:	$\tilde{\theta}^{(k)} = BErr_{p}(\theta^{(k)})$
	30:	Set $\tilde{y}_j = (r_j + \gamma \max_{a'} Q(s_{j+1}, a'; \tilde{\theta}^{p(k)}))$
	31:	$\tilde{\Delta}^{(k)} = \nabla_{\theta} \sum_{k=1}^{B} (Q(s_i, a_i; \tilde{\theta}^{(k)}) - \tilde{y}_i)^2$
	32:	// Average gradients and update w.r.t θ
	33:	$\theta^{(k+1)} = \theta^{(k)} - \alpha(\Delta^{(k)} + \tilde{\Delta}^{(k)})$
	34:	// Periodic update of target network
	35:	Every C steps reset $\hat{Q} = Q$, i.e., set $\theta^p = \theta$
	36:	Return $\theta^{(k+1)}$
Ν.	37:	
	38:	Output: Unified multi-agent bit-error robust policy θ

Low-Voltage Payload Optimization

Under low-voltage, MulBERRY reduces drone payload, leading to increased safe flight velocity, thus reducing mission time and energy

Sprinting Duty Cycle (η): fraction of period for which the UAV is sprinting

Sprinting Duty Cycle (η): fraction of period for which the UAV is sprinting

Sprinting Duty Cycle (η): fraction of period for which the UAV is sprinting

MulBERRY Framework

(MulBERRY: Enabling Bit-Error Robustness for Energy-Efficient Multi-Agent Autonomous Systems)

Swarm UAVs Experimental Setup (Sim/Task)

• Simulation Platform:

- Task: collaborative package delivery or surveillance
- Policy Architecture of each UAV:

ASPLOS 2024 MulBERRY: Enabling Bit-Error Robustness for Energy-Efficient Multi-Agent Autonomous Systems 05/01/2024

AirSim

(Drone dynamics)

Swarm UAVs Experimental Setup (UAV Platform)

Bitcraze Crazyflie UAV

Nano-Drone 27g takeoff weight 15g max payload 250mAh battery DJI Tello UAV

Micro-Drone 80g takeoff weight 70g max payload 1100mAh battery

Swarm UAVs Experimental Setup (Hardware)

Layout of one RISC-V Rocket core

	Hardware Configuration Parameters				
	Technology	GF 12 <i>nm</i>			
e typ	e Core Type 4 X RISC V Ro	4 x RISC-V cket Rooeket Cores			
he ted o	16K 4 Cache ore area 0.16 mm in 1	16KB 4-way I+D 2nm te@aches			
age /er	Routed Core Area	0.4mm x 0.4mm			
	Voltage Range	0.54V to $1V$			
(b)	Power	117 <i>mW</i> to 399 <i>mW</i>			

Evaluation Metrics

- Compute-level:
 - Processing Energy
- System-level:
 - Avg. flight success rate
 - Avg. flight time
 - Avg. flight energy
 - Avg. #missions

All reported results are averaged from 500 runs

(#LVA: number of low-voltage UAVs)

MulBERRY improves mission robustness under low-voltage operation

On-Device MulBERRY

+ Payload Optimization

- + Payload Optimization
- + Collaborative Sprint-or-Slack

On-Device MulBERRY

- + Payload Optimization
- + Collaborative Sprint-or-Slack
- + Adaptive Communication Interval
- + Adaptive Knowledge Sharing Para.

18.97% Less Flight Energy22.07% More #Completed Missions

Effectiveness Across Voltages and Chips

Effectiveness Across Voltages and Chips

Voltage / BER (p)	Metric	UAV 1	UAV 2	UAV 3	UAV 4
Baseline 1V ($p=0$)					
0.77 <i>V_{min} /</i>	Success Rate (%)				
(<i>p</i> =0.025%)	Flight Energy (J)				
0.74 <i>V_{min} /</i>	Success Rate (%)				
(p =0.203%)	Flight Energy (J)	Ĩ			

Effectiveness Across Voltages and Chips

Voltage / BER (p)	Metric	UAV 1	UAV 2	UAV 3	UAV 4	
Baseline 1V ($p=0$)	Success Rate = 91.4%, Flight Energy = 75.80 <i>J</i>					
0.77 V_{min} /	Success Rate (%)	91.6	91.4	90.2	90.6	
(<i>p</i> =0.025%)	Flight Energy (J)	63.90	64.06	66.16	65.47	
0.74 V_{min} /	Success Rate (%)	91.4	91.6	90.4	90.2	
(<i>p</i> =0.203%)	Flight Energy (J)	63.15	62.95	64.37	64.78	

MulBERRY is scalable across voltages and chips, and consistently improves efficiency and robustness

Effectiveness Across Environments

Medium Obstacle

Dense Obstacle

Effectiveness Across Environments

Sparse Obstacle

Medium Obstacle

Dense Obstacle

	Sparse		Medium		Dense	
Environment	Flight	Num. of	Flight	Num. of	Flight	Num. of
	Energy (J)	Missions	Energy (J)	Missions	Energy (J)	Missions
Baseline @1V			•			
MulBERRY						
(optimal)						

Effectiveness Across Environments

Sparse Obstacle

Medium Obstacle

Dense Obstacle

	Sparse		Medium		Dense	
Environment	Flight	Num. of	Flight	Num. of	Flight	Num. of
	Energy (J)	Missions	Energy (J)	Missions	Energy (J)	Missions
Baseline @1V	52.41	58.56	75.80	40.15	102.4	28.04
MulBERRY	42.02	71.63	61.42	49.01	85.77	33.79
(optimal)	@0.69V _{min}		@0.70V _{min}		$@0.73V_{min}$	

MulBERRY is adaptive across environments, and consistently improves efficiency; Sparse obstacle environments enable lower operating voltage

Effectiveness Across Drones and Models

Effectiveness Across Drones and Models

UAV	Network		
Туре	Policy		
Crazyflie	C3F2		
DJI Tello	C3F2		
DJI Tello	C5F4		
DJI Spark	C3F2		
DJI Spark	C5F4		
DJI Spark	C7F6		

Effectiveness Across Drones and Models

MulBERRY is adaptive across drones and models, and consistently improves efficiency and robustness; MulBERRY enables more mission energy savings under smaller UAVs and larger models

Paper Webpage

MulBERRY: Enabling Bit-Error Robustness for Energy-Efficient Multi-Agent Autonomous Systems

<u>Zishen Wan</u>¹, Nandhini Chandramoorthy², Karthik Swaminathan², Pin-Yu Chen², Kshitij Bhardwaj³, Vijay Janapa Reddi⁴, Arijit Raychowdhury¹

> Email: <u>zishenwan@gatech.edu</u> Web: https://zishenwan.github.io

