ReCA: Integrated Acceleration for <u>Real-Time and Efficient</u> Cooperative Embodied Autonomous Agents

Zishen Wan¹, Yuhang Du², Mohamed Ibrahim¹, Jiayi Qian¹, Jason Jabbour³, Yang (Katie) Zhao², Tushar Krishna¹, Arijit Raychowdhury¹, Vijay Janapa Reddi³ ¹Georgia Tech, GA ²University of Minnesota, Twin Cities, MN ³Harvard University, MA

COOPERATIVE EMBODIED AI AGENT SYSTEMS

*****Task: Long-horizon multi-objective task & planning ✓ **Applications**: complex household task, object transport, etc.

SYSTEM CHARACTERISTICS AND CHALLENGES

System Challenges: Latency, scalability, module sensitivity

✓ **Latency**: large planning and communication runtime latency.

RECA: ACCELERATION FRAMEWORK FOR COOPERATIVE EMBODIED AI AGENTIC SYSTEMS

SYSTEM-LEVEL OPTIMIZATION

Dual-Memory Structure ✓ Long-term & short-term memory

Hierarchical Cooperative Planning

Planning-Guided Efficient Execution

✓ Inter-cluster central & inter-cluster decentral

✓ Plan-then-comm; plan-guided multi-step exe

HARDWARE-LEVEL OPTIMIZATION

EVALUATION RESULTS

Paper

Heterogeneous Hardware System

✓ LLM subsystem (high-level plan); A* subsystem (low-level plan)

Efficiency-Performance-Scalability Improvement

✓ Task success rate and runtime ✓ Scalability under large num of agents

ACKNOWLEDGMENTS

This work was supported in part by CoCoSys, one of seven centers in JUMP 2.0, a SRC program sponsored by DARPA, and NSF GRFP DGE-214074.

