

Moving Towards Reliable Autonomous Machines: The Vulnerability-Adaptive Protection Paradigm

Zishen Wan^{1*}, Yiming Gan^{2*}, Bo Yu³, Shaoshan Liu³, Arijit Raychowdhury¹, Yuhao Zhu²

¹Georgia Institute of Technology ²University of Rochester ³Shenzhen Institute of AI and Robotics for Society (*Equal Contributions)

Research and Advances, Communication of the ACM

Outline

- Motivation Why autonomous system needs reliability
- What is Autonomous Machine System
 - The concept of frontend and backend autonomous machine kernels
- VAP Framework
 - System performance and resiliency characterization
 - Vulnerability-adaptive protection
- Evaluations
 - Autonomous vehicle and drone

Motivation

Autonomous Machines

Motivation

[1] Telsa Autopilot System Found Probably at Fault in 2018 Crash, The New York Times, 2021[2] Surviving an In-Flight Anomaly: What Happened on Ingeuity's Sixth Flight, NASA Science, 2021

What is Autonomous Machine System

Design Landscape of Protection Techniques

Challenge

<u>Challenge</u>: Today's resiliency solutions are of "<u>one-size-fits-all</u>" nature: they use the same protection scheme throughout entire autonomous machine, bringing <u>trade-offs</u> between resiliency and cost

How to provide high protection coverage while introducing little cost for autonomous machine system?

Insight & Solution

Insight & Solution: exploit the *inherent resiliency variations* in autonomous machine system to conduct *vulnerable-proportional protection* (VPP)

VAP Overview

(VPP: <u>Vulnerability-A</u>daptive <u>Protection</u>)

VAP Overview

(VPP: <u>Vulnerability-A</u>daptive <u>Protection</u>)

System Characterization - Autonomous Vehicle

Experimental Setup

Platform: Autonomous
 Vehicle (Autoware^[1])

[1] Kato et al, IEEE Micro, 2015

System Characterization - Autonomous Vehicle

System Characterization - Autonomous Vehicle

System Characterization - Autonomous Drone

VAP Overview

(VAP: <u>Vulnerability-A</u>daptive <u>Protection</u>)

Vulnerability-Adaptive Protection

• **Design Principle**: the protection budget, be it spatially or temporally, should be allocated inversely proportionally to kernel inherent resilience

Vulnerability-Adaptive Protection

- **Design Principle**: the protection budget, be it spatially or temporally, should be allocated inversely proportionally to kernel inherent resilience
 - Frontend: low vulnerability -> lightweight software-based protection

Vulnerability-Adaptive Protection

- <u>Design Principle</u>: the protection budget, be it spatially or temporally, should be allocated inversely proportionally to kernel inherent resilience
 - Frontend: low vulnerability -> lightweight software-based protection
 - **Backend**: high vulnerability -> more protection efforts, hardware-based protection

Frontend: Anomaly Detection

• Frontend Insights:

- Strong temporal consistency of inputs and outputs
- Inherent error-masking and error-attenuation capabilities
- Rare false positive detection

Frontend: Anomaly Detection

• Frontend Insights:

- Strong temporal consistency of inputs and outputs
- Inherent error-masking and error-attenuation capabilities
- Rare false positive detection

IODR

Frontend: Anomaly Detection

Frontend Insights:

- Strong temporal consistency of inputs and outputs
- Inherent error-masking and error-attenuation capabilities
- Rare false positive detection

Backend: Redundancy & Checkpointing

- Critical to errors
- Extremely lightweight that do not involve complex computation
- More false positive detection cases

Backend: Redundancy & Checkpointing

- Critical to errors
- Extremely lightweight that do not involve complex computation
- More false positive detection cases

Backend: Redundancy & Checkpointing

- Critical to errors
- Extremely lightweight that do not involve complex computation
- More false positive detection cases

Backend: Redundancy & Checkpointing

- Critical to errors
- Extremely lightweight that do not involve complex computation
- More false positive detection cases

Backend: Redundancy & Checkpointing

<u>Backend Insights</u>:

- Critical to errors
- Extremely lightweight that do not involve complex computation
- More false positive detection cases

VAP Overview

(VAP: <u>Vulnerability-A</u>daptive <u>Protection</u>)

Fa	ult Protection Scheme						
Baseline No Protection Anomaly Detection							
Software -	Anomaly Detection						
	Temporal Redundancy						
Hardware	Modular Redundancy						
пагижаге	Checkpointing						
Adaptiv	e Protection Paradigm (VPP)						
Front-end	Software + Back-end Hardware						

Experimental Setup

Platform: Autonomous
 Vehicle (Autoware^[1])

[1] Kato et al, IEEE Micro, 2015

Fa	ult Protection Scheme	Resilience
l'a	fuit i fotection scheme	Error Propagation
		Rate (%)
Baseline	No Protection	46.5
Software -	Anomaly Detection	24.2
Software	Temporal Redundancy	11.7
Hardware	Modular Redundancy	0
11ai uwai e	Checkpointing	0
Adaptiv	e Protection Paradigm (VPP)	0
Front-end	Software + Back-end Hardware	U

Experimental Setup

- Platform: Autonomous
 Vehicle (Autoware^[1])
- Reliability: soft errors

[1] Kato et al, IEEE Micro, 2015

Takeaway: VPP *improves resilience* and *reduces error propagation rate* by (1) leveraging inherent error-masking capabilities of front-end and (2) strengthening back-end resilience by hardware-based redundancy and checkpointing.

Fa	ult Protection Scheme	Resilience	Latency and	Object Distance
l l'a	ant i fotection scheme	Error Propagation	Compute	
		Rate (%)	Latency (ms)	
Baseline	No Protection	46.5	164	-
Software	Anomaly Detection	24.2	245	New
Software	Temporal Redundancy	11.7	347	Event
Hardware	Modular Redundancy	0	164	Sensed
Ilaiuwale	Checkpointing	· · · · · · · · · · · · · · · · · · ·	610	
Adaptive Protection Paradigm (VPP)		0	173	T _{comp} = 0
Front-end	Software + Back-end Hardware		1/5	\mathbf{A}

	Perception	Localization	Planning	Control	Total
No Protection	58	69	35	2	164
Anomaly Detection	64	72	106	3	245
Checkpointing	216	256	131	7	610
VAP	64	72	35	2	173

Compute latency breakdown of different protection schemes in the autonomous vehicle system

Ea	ault Protection Scheme	Resilience	Latency and	Object Distance				
Га		Error Propagation	Compute	•	•			
		Rate (%)	Latency (ms)					
Baseline	No Protection	46.5	164					
Software	Anomaly Detection	24.2	245	New	Control	N.	Vehicle	Vehicle
Software	Temporal Redundancy	11.7	347	Event	Commands	Actuator	Starts	Fully
Hardware	Modular Redundancy	0	164	Sensed	Generated	Activated	Reacting	Stops
Ilaluwale	Checkpointing	0	610		>	>	>	\rightarrow
Adaptiv	ve Protection Paradigm (VPP)	0	173	T _{comp} = 0	Computing Latency T _{data} =	CAN Bus T _{mech} =	Mechanical T _{sto}	• t
Front-end	Software + Back-end Hardware	0	175				:y (~19 ms)	
-					l			

Takeaway: VPP reduce end-to-end compute latency overhead.

Fa	ult Protection Scheme	Resilience	Latency and Object Distance			
I'd	fuit i fotection scheme	Error Propagation	Compute	Object Avoidance		
		Rate (%)	Latency (ms)	Distance (m)		
Baseline	No Protection	46.5	164	5.00		
Software	Anomaly Detection	24.2	245	5.47		
Software	Temporal Redundancy	11.7	347	6.05		
Hardware	Modular Redundancy	0	164	5.00		
11ai uwai c	Checkpointing	0	610	7.56		
Adaptive Protection Paradigm (VPP)		0	173	5.05		
Front-end	Software + Back-end Hardware	U	175	5.05		

<u>**Takeaway</u>**: VPP reduce end-to-end compute latency overhead and reduce obstacle avoidance distance.</u>

Fa	ault Protection Scheme	Resilience	Latency and	l Object Distance	Power Cor	sumption a
l'a	turt i fotection scheme	Error Propagation	Compute	Object Avoidance	AD Component	AD Energy
		Rate (%)	Latency (ms)	Distance (<i>m</i>)	Power $(W)^*$	Change (%)
Baseline	No Protection	46.5	164	5.00	175	-
Software	Anomaly Detection	24.2	245	5.47	175	+33.14
Software	Temporal Redundancy	11.7	347	6.05	175	+75.24
Hardware	Modular Redundancy	0	164	5.00	473	+170.29
Ilaluwale	Checkpointing	0	610	7.56	324	+91.52
Adaptiv	e Protection Paradigm (VPP)	0	173	5.05	175	+4.09
Front-end	Software + Back-end Hardware	0	175	5.05	1/5	74.09

^{*} The vehicle power without autonomous driving (AD) system is 600 W.

Takeaway: VPP reduce autonomous driving compute power and energy overhead.

Fa	ult Protection Scheme	Resilience	Latency and	l Object Distance	Power Consumption and Driving Time				
l I'd	full i fotection scheme	Error Propagation	Compute	Object Avoidance	AD Component	AD Energy	Driving Time	Revenue	
		Rate (%)	Latency (ms)	Distance (<i>m</i>)	Power $(W)^*$	Change (%)	(hour)	Loss (%)	
Baseline	No Protection	46.5	164	5.00	175	-	7.74	-	
Software	Anomaly Detection	24.2	245	5.47	175	+33.14	7.20	-6.99	
Software	Temporal Redundancy	11.7	347	6.05	175	+75.24	6.62	-14.52	
Hardware	Modular Redundancy	0	164	5.00	473	+170.29	5.59	-27.78	
Tatuwate	Checkpointing	0	610	7.56	324	+91.52	6.42	-17.13	
Adaptive Protection Paradigm (VPP)		0	173	5.05	175	+4.09	7.67	-0.92	
Front-end	Software + Back-end Hardware	0	175	5.05	175	+4.07	7.07	-0.92	

The vehicle power without autonomous driving (AD) system is 600 W.

Takeaway: VPP reduce autonomous driving compute power and energy overhead, thus enable longer driving time.

Fa	ult Protection Scheme	Resilience	Latency and	Object Distance	Power Con	sumption a	and Driving T	ime	Cost
I'd			Compute	Object Avoidance	AD Component	AD Energy	Driving Time	Revenue	Extra Dollar
		Rate (%)	Latency (ms)	Distance (<i>m</i>)	Power $(W)^*$	Change (%)	(hour)	Loss (%)	Cost
Baseline	No Protection	46.5	164	5.00	175	_	7.74	-	_
Software	Anomaly Detection	24.2	245	5.47	175	+33.14	7.20	-6.99	negligible
Software	Temporal Redundancy	11.7	347	6.05	175	+75.24	6.62	-14.52	negligible
Hardware	Modular Redundancy	0	164	5.00	473	+170.29	5.59	-27.78	(CPU + GPU)×2
11ai uwai c	Checkpointing	0	610	7.56	324	+91.52	6.42	-17.13	(CPU + GPU)×1
Adaptive Protection Paradigm (VPP)		0	173	5.05	175	+4.09	7.67	-0.92	negligible
Front-end	Front-end Software + Back-end Hardware		175	5.05	175	1.07	7.07	-0.92	negugible

^{*} The vehicle power without autonomous driving (AD) system is 600 W.

<u>**Takeaway</u>**: VPP reduces compute latency, energy and system overhead by taking advantage of (1) low cost and false-positive detection in front-end and (2) low latency in back-end. Conventional "one-size-fits-all" techniques are limited by tradeoffs in resilience and overhead.</u>

Evaluation – Autonomous Drone

Fa	ult Protection Scheme	Resilience	Latency	v and Flight T i	ime	Power C	ght Energy	Cost		
I'a	rauter rotection benefic		Compute	Avg. Flight	Mission	Compute	Mission	Num. of	Endurance	Extra Dollar
		Rate (%)	Latency (ms)	Velocity (m/s)	Time (s)	Power (W)	Energy (kJ)	Missions	Reduction (%)	Cost
Baseline	No Protection	12.20	871	2.79	107.53	15	60.09	5.62	-	_
Software	Anomaly Detection	6.44	1201	2.51	119.52	15	66.79	5.05	-10.04	negligible
Soltwale	Temporal Redundancy	3.02	1924	2.14	140.18	15	78.34	4.31	-23.30	negligible
Hardware	Modular Redundancy	0	871	2.74	109.49	45	63.13	5.34	-3.79	TX2×2
	Checkpointing	0	3458	1.75	171.43	30	96.76	3.49	-37.90	TX2×1
Adaptive Protection Design Paradigm		0	897	2.77	108.30	15	60.52	5.58	-0.72	negligible
Frontend S	Software + Backend Hardware	U	077	2.77	100.50	15	00.32	5.50	-0.72	negngible

Experimental Setup

- Platform: Autonomous
 Drone (MAVBench^[2])
- Reliability: soft errors

[2] Boroujerdian et al, MICRO, 2018

Evaluation – Autonomous Drone

Fai	ult Protection Scheme	Resilience	Latency	v and Flight T i	ime	Power C	ght Energy	Cost		
	Tuuri Trotection Scheme		Compute	Avg. Flight	Mission	Compute	Mission	Num. of	Endurance	Extra Dollar
		Rate (%)	Latency (ms)	Velocity (m/s)	Time (s)	Power (W)	Energy (kJ)	Missions	Reduction (%)	Cost
Baseline	No Protection	12.20	871	2.79	107.53	15	60.09	5.62	-	_
Software	Anomaly Detection	6.44	1201	2.51	119.52	15	66.79	5.05	-10.04	negligible
Software	Temporal Redundancy	3.02	1924	2.14	140.18	15	78.34	4.31	-23.30	negligible
Hardware	Modular Redundancy	0	871	2.74	109.49	45	63.13	5.34	-3.79	TX2×2
Ilaluwaic	Checkpointing	0	3458	1.75	171.43	30	96.76	3.49	-37.90	TX2×1
Adaptive Protection Design Paradigm		0	897	2.77	108.30	15	60.52	5.58	-0.72	negligible
Frontend S	Frontend Software + Backend Hardware		077	2.77	100.30	15	00.32	5.50	-0.72	negngible

Takeaway: For small form factor autonomous machines (e.g., drones), extra compute latency and payload weight brought by fault protection schemes impact drone safe flight velocity, further impacting end-to-end system mission time, mission energy, and flight endurance.

Evaluation – Autonomous Drone

Fai	ult Protection Scheme	Resilience	Latency	v and Flight T i	ime	Power C	Consumptio	n and Fli	ght Energy	Cost
	rauter rotection benefic		Compute	Avg. Flight	Mission	Compute	Mission	Num. of	Endurance	Extra Dollar
		Rate (%)	Latency (ms)	Velocity (m/s)	Time (s)	Power (W)	Energy (kJ)	Missions	Reduction (%)	Cost
Baseline	No Protection	12.20	871	2.79	107.53	15	60.09	5.62	-	_
Software	Anomaly Detection	6.44	1201	2.51	119.52	15	66.79	5.05	-10.04	negligible
Software	Temporal Redundancy	3.02	1924	2.14	140.18	15	78.34	4.31	-23.30	negligible
Hardware	Modular Redundancy	0	871	2.74	109.49	45	63.13	5.34	-3.79	TX2×2
11ai uwai c	Checkpointing	0	3458	1.75	171.43	30	96.76	3.49	-37.90	TX2×1
Adaptive Protection Design Paradigm		0	897	2.77	108.30	15	60.52	5.58	-0.72	negligible
Frontend S	Software + Backend Hardware		077	2.77	100.30	15	00.52	5.50	-0.72	negngible

Takeaway: VPP generalizes well to small-scale drone system <u>with improved resilience and</u> <u>negligible overhead</u>. By contrast, the large overhead from conventional "one-size-fits-all" protection results in severer performance degradation in SWaP-constrained systems.

Summary

Inherent resiliency variations

Moving Towards Reliable Autonomous Machines: The Vulnerability-Adaptive Protection Paradigm

Zishen Wan^{1*}, Yiming Gan^{2*}, Bo Yu³, Shaoshan Liu³, Arijit Raychowdhury¹, Yuhao Zhu²

¹Georgia Institute of Technology ²University of Rochester ³Shenzhen Institute of AI and Robotics for Society (*Equal Contributions)

⊠ zishenwan@gatech.edu, shaoshanliu@cuhk.edu.cn

Research and Advances, Communication of the ACM

