

Moving Towards Reliable Autonomous Machines: The Vulnerability-Adaptive Protection Paradigm

Zishen Wan^{1*}, Yiming Gan^{2*}, Bo Yu³, Shaoshan Liu³, Arijit Raychowdhury¹, Yuhao Zhu²

*1Georgia Institute of Technology 2University of Rochester 3Shenzhen Institute of AI and Robotics for Society (*Equal Contributions)*

Research and Advances, Communication of the ACM

Outline

- Motivation Why autonomous system needs reliability
- What is Autonomous Machine System
	- The concept of frontend and backend autonomous machine kernels
- VAP Framework
	- System performance and resiliency characterization
	- Vulnerability-adaptive protection
- Evaluations
	- Autonomous vehicle and drone

Motivation

Autonomous Machines

Motivation

[1] Telsa Autopilot System Found Probably at Fault in 2018 Crash, The New York Times, 2021 [2] Surviving an In-Flight Anomaly: What Happened on Ingeuity's Sixth Flight, NASA Science, 2021

What is Autonomous Machine System

What is Autonomous Machine System Sensing \leftarrow Perception \leftarrow Localization \leftarrow Planning \leftarrow Decision Decision **Control Metrics:** Resilience Latency Energy Cost

Design Landscape of Protection Techniques

Challenge

Challenge: Today's resiliency solutions are of "*one-size-fits-all*" nature: they use the same protection scheme throughout entire autonomous machine, bringing *trade-offs* between resiliency and cost

How to provide high protection coverage while introducing little cost for autonomous machine system?

Insight & Solution

Insight & Solution: exploit the *inherent resiliency variations* in autonomous machine system to conduct *vulnerable-proportional protection (VPP)*

VAP Overview

(VPP: Vulnerability-Adaptive Protection)

VAP Overview

(VPP: Vulnerability-Adaptive Protection)

System Characterization - Autonomous Vehicle

Experimental Setup

• Platform: Autonomous Vehicle (Autoware^[1])

[1] Kato et al, IEEE Micro, 2015

System Characterization - Autonomous Vehicle

System Characterization - Autonomous Vehicle

System Characterization - Autonomous Drone

VAP Overview

(VAP: Vulnerability-Adaptive Protection)

Vulnerability-Adaptive Protection

• **Design Principle**: the protection budget, be it spatially or temporally, should be allocated inversely proportionally to kernel inherent resilience

Vulnerability-Adaptive Protection

- **Design Principle**: the protection budget, be it spatially or temporally, should be allocated inversely proportionally to kernel inherent resilience
	- **Frontend**: low vulnerability -> lightweight software-based protection

(Anomaly Detection)

Vulnerability-Adaptive Protection

- **Design Principle**: the protection budget, be it spatially or temporally, should be allocated inversely proportionally to kernel inherent resilience
	- **Frontend**: low vulnerability -> lightweight software-based protection
	- **Backend**: high vulnerability -> more protection efforts, hardware-based protection

Frontend: Anomaly Detection Software-Based Protection Hardware-Based Protection

• **Frontend Insights**:

- Strong **temporal consistency** of inputs and outputs
- Inherent **error-masking** and error-attenuation capabilities
- **Rare false positive** detection

Frontend: Anomaly Detection Software-Based Protection Hardware-Based Protection

• **Frontend Insights**:

- Strong **temporal consistency** of inputs and outputs
- Inherent **error-masking** and error-attenuation capabilities
- **Rare false positive** detection

waypoints

Frontend: Anomaly Detection Software-Based Protection Hardware-Based Protection

• **Frontend Insights**:

- Strong **temporal consistency** of inputs and outputs
- Inherent **error-masking** and error-attenuation capabilities
- **Rare false positive** detection

 $(Checkpointing + Spatial Redundancy)$

Backend: Redundancy & Checkpointing (Checkpointing + Spatial Redundance Drotection

- **Critical** to errors
- **Extremely lightweight** that do not involve complex computation
- **More false positive** detection cases

 $(Checkpointing + Spatial Redundancy)$

Backend: Redundancy & Checkpointing (Checkpointing + Spatial Redundance Drotection

- **Critical** to errors
- **Extremely lightweight** that do not involve complex computation
- **More false positive** detection cases

 $(Checkpointing + Spatial Redundancy)$

Backend: Redundancy & Checkpointing (Checkpointing + Spatial Redundance Drotection

- **Critical** to errors
- **Extremely lightweight** that do not involve complex computation
- **More false positive** detection cases

 $(Checkpointina + Spatial Redundancy)$

Backend: Redundancy & Checkpointing (Checkpointing + Spatial Redundance Drotection

- **Critical** to errors
- **Extremely lightweight** that do not involve complex computation
- **More false positive** detection cases

 $(Checkpointina + Spatial Redundancy)$

Backend: Redundancy & Checkpointing (Checkpointing + Spatial Redundance Drotection

- **Critical** to errors
- **Extremely lightweight** that do not involve complex computation
- **More false positive** detection cases

VAP Overview

(VAP: Vulnerability-Adaptive Protection)

Experimental Setup

• Platform: Autonomous Vehicle (Autoware^[1])

[1] Kato et al, IEEE Micro, 2015

Experimental Setup

- Platform: Autonomous Vehicle (Autoware^[1])
- Reliability: soft errors

[1] Kato et al, IEEE Micro, 2015

Takeaway: VPP *improves resilience* and *reduces error propagation rate* by (1) leveraging inherent error-masking capabilities of front-end and (2) strengthening back-end resilience by hardware-based redundancy and checkpointing.

Compute latency breakdown of different protection schemes in the autonomous vehicle system

Actuator

Activated

Latency $($ - 1ms)

 T_{mech} = Mechanical

Latency (~19 ms)

Control

Commands

Generated

 T_{comp} = Computing Latency T_{data} = CAN Bus

Vehicle

Starts

Reacting

 T_{stop}

Vehicle

Fully

Stops

Takeaway: VPP reduce end-to-end compute latency overhead.

Takeaway: VPP reduce end-to-end compute latency overhead and reduce obstacle avoidance distance.

The vehicle power without autonomous driving (AD) system is 600 W.

Takeaway: VPP reduce autonomous driving compute power and energy overhead.

The vehicle power without autonomous driving (AD) system is 600 W.

Takeaway: VPP reduce autonomous driving compute power and energy overhead, thus enable longer driving time.

The vehicle power without autonomous driving (AD) system is 600 W.

Takeaway: VPP reduces compute latency, energy and system overhead by taking advantage of (1) low cost and false-positive detection in front-end and (2) low latency in back-end. Conventional "one-size-fits-all" techniques are limited by tradeoffs in resilience and overhead.

Evaluation – Autonomous Drone

Experimental Setup

- Platform: Autonomous Drone (MAVBench^[2])
- Reliability: soft errors

[2] Boroujerdian et al, MICRO, 2018

Evaluation – Autonomous Drone

Takeaway: For small form factor autonomous machines (e.g., drones), extra compute latency and payload weight brought by fault protection schemes impact drone safe flight velocity, further impacting end-to-end system mission time, mission energy, and flight endurance.

Evaluation – Autonomous Drone

Takeaway: VPP generalizes well to small-scale drone system *with improved resilience and negligible overhead*. By contrast, the large overhead from conventional "one-size-fits-all" protection results in severer performance degradation in SWaP-constrained systems.

Summary

Inherent resiliency variations

Moving Towards Reliable Auton The Vuln[erability-Adapti](mailto:zishenwan@gatech.edu)ve Prot

Zishen Wan1* , Yiming Gan2* , Bo Yu3 ,
, Arijit Raychowdhury¹, Yuha

¹Georgia Institute of Technology ²Unive *3Shenzhen Institute of AI and Robot (*Equal Contributions)*

 \boxtimes zishenwan@gatech.edu, shaoshanli

Research and Advances, Communication