IEEE Custom Integrated Circuits Conference 9-2: An Energy-Efficient and Runtime-**Reconfigurable FPGA-Based Accelerator for Robotic Localization Systems** Qiang Liu^{1,*}, **Zishen Wan^{2,*}**, Bo Yu^{3,*}, Weizhuang Liu¹, Shaoshan Liu³, Arijit Raychowdhury² * Equally Contributed Authors ² Georgia Institute of Technology, USA ¹ Tianjin University, China ³ Perceptin, USA

April 25, 2022

Bio

- Speaker: Zishen Wan
 - PhD Student in Georgia Tech (20Fall-Now)
 - Advisor: Prof. Arijit Raychowdhury
 - MS in Harvard University
 - Advisor: Prof. Vijay Janapa Reddi
 - BS in Harbin Institute of Technology

Email: <u>zishenwan@gatech.edu</u> Homepage: <u>https://zishenwan.github.io</u>

Research Interest

- VLSI, computer architecture, edge computing.
- Efficient and resilient hardware and system design for autonomous machines.

Motivation: Autonomous Systems

Self-Driving Cars

Robots

Motivation: Autonomous Systems

Self-Driving Cars

Robots

Applications

Search & Rescue

Package Delivery

Surveillance

How Does Autonomous System Work?

How Does Autonomous System Work?

7

9

Energy-Efficient Localization and Mapping

FPGA Zynq-7000 SoC ZC706 with XC7Z045 FFG900-2

- Energy-efficient & real-time localization and mapping
- Dynamic reconfiguration at runtime
- Real-time performance of 61 fps at 3.45W (56mJ/frame)

Outline

- SLAM: Simultaneously Localization & Mapping
- Hardware Architecture
- Main Contributions
- Evaluations and Comparisons
- Summary

Outline

- SLAM: Simultaneously Localization & Mapping
- Hardware Architecture
- Main Contributions
- Evaluations and Comparisons
- Summary

Localization and Mapping Using SLAM

Localization and Mapping Using SLAM

Localization and Mapping Using SLAM

Camera Feature Tracks IMU (Inertial Measurement Unit) Estimated States

Outline

- SLAM: Simultaneously Localization & Mapping
- Hardware Architecture
- Main Contributions
- Evaluations and Comparisons
- Summary

Hardware Architecture - Overview

Hardware Architecture – Perception

Hardware Architecture – SLAM (NLS Optimization)

Hardware Architecture – SLAM Marginalization

Jacobian, Schur elimination, Cholesky Decomposition, etc

Outline

- SLAM: Simultaneously Localization & Mapping
- Hardware Architecture
- Main Contributions
- Evaluations and Comparisons
- Summary

Method 1

Data Reuse

2 Keyframes 3 Feature Points (F1~F3) 4 Observations (O1~O4)

3 Feature Points (F1~F3)

4 Observations (O1~O4)

<feature point, observation> pairs have non-zero values

Jacobian Matrix

2 Keyframes 3 Feature Points (F1~F3) 4 Observations (O1~O4) <feature point, observation> pairs have non-zero values

Jacobian Matrix

2 Keyframes 3 Feature Points (F1~F3) 4 Observations (O1~O4) <feature point, observation> pairs have non-zero values

Three-Level Block Designs:

- Keyframe-level: Rotation matrix of keyframes
- Feature-level: 3D coordinates
- Observation-level: Jacobian matrix

Two-Level Data Reuses:

滬 CICC

- Feature-reuse: across associated observations
- Keyframe-reuse: over all obsn. within keyframe

Three-Level Block Designs:

- Keyframe-level: Rotation matrix of keyframes
- Feature-level: 3D coordinates
- Observation-level: Jacobian matrix

Two-Level Data Reuses:

Feature-reuse: across associated observations

feature (row)-stationary

• Keyframe-reuse: over all obsn. within keyframe

Three-Level Block Designs:

- Keyframe-level: Rotation matrix of keyframes
- Feature-level: 3D coordinates
- Observation-level: Jacobian matrix

Method 2

Symmetry & Sparsity

Shure Elimination:

Shure Elimination:

Shure Elimination:

<u>Make U as diagonal matrix:</u> O(n³)->O(n) computational complexity

X becomes the transpose of W: 1.34x on-chip memory reduction

Shure Elimination:

Shure Elimination:

<u>Make M as diagonal matrix:</u> O(n³)->O(n) computational complexity

Reuse Schur Elimination circuit in Marginalization:

Reduce resource consumption without performance degradation

S matrix: store the parameters for the system (40%-80% of total storage)

720 kb

Method 3

Time-Multiplex & Pipeline

Cholesky decomposition: $S = LL^{T}$ (S: symmetric matrix; L: lower triangular matrix)

Cholesky decomposition: $S = LL^{T}$ (S: symmetric matrix; L: lower triangular matrix)

滬 CICC

滬 CICC

Method 4

Outline

- SLAM: Simultaneously Localization & Mapping
- Hardware Architecture
- Main Contributions
- Evaluations and Comparisons
- Summary

Evaluation - Dataset

- EuRoC Dataset (for drone)
 - A very challenging, and widely used UAV dataset
 - 11 sequences with three categories: easy, medium & difficult
 - This work: Machine Hall sequences

- KITTI Dataset (for self-driving car)
 - A widely used autonomous driving vision benchmark
 - Task of interest: stereo, optical flow, visual odometry, 3D object detection and 3D tracking
 - This work: odometry (grayscale sequence)

Evaluation – FPGA Platform

FPGA Zynq-7000 SoC ZC706 with XC7Z045 FFG900-2

Operation Frequency	143 MHz
LUT	144108 (65.92%)
Flip-Flop	172935 (39.56%)
BRAM	268 (49.17%)
DSP	869 (96.56%)

- Processing Latency and Energy of FPGA, CPU, and GPU

- FPGA: Xilinx Zynq-7000 SoC ZC706 @ 143 MHz
- CPU: Intel Comet Lake processor, 12 cores @ 2.9 GHz
- TX1: quad-core Arm Cortex-A57 processor @ 1.9 GHz

- Processing Latency and Energy of FPGA, CPU, and GPU

- FPGA: Xilinx Zynq-7000 SoC ZC706 @ 143 MHz
- CPU: Intel Comet Lake processor, 12 cores @ 2.9 GHz
- TX1: quad-core Arm Cortex-A57 processor @ 1.9 GHz

- Processing Latency and Energy of FPGA, CPU, and GPU

• FPGA: Xilinx Zynq-7000 SoC ZC706

@ 143 MHz

- CPU: Intel Comet Lake processor, 12 cores @ 2.9 GHz
- TX1: quad-core Arm Cortex-A57 processor @ 1.9 GHz

- Processing Latency and Energy of FPGA, CPU, and GPU

- Comparison with Related Work

	This work	ISSCC'19 CNN-SLAM [1]	JSSC'19 Navion [2]	TC'20 pi-BA [3]	RSS'17 VIO on Chip [4]	HPCA'21 Eudoxus [5]
Platform	FPGA	ASIC	ASIC	FPGA	FPGA	FPGA
Technology	28 nm	28 nm	65 nm	28nm	28nm	16nm
Design	digital	digital	digital	digital	digital	digital
Туре	SLAM	SLAM	SLAM	SLAM	SLAM	SLAM
Algorithm	Levenberg- Marquardt (optimization-based)	Levenberg- Marquardt (optimization-based)	Gaussian- Newton (optimization-based)	Levenberg- Marquardt (optimization-based)	Gaussian- Newton (optimization-based)	Kalman Filter (Filter-based)
DoF	6-DoF	6-DoF	6-DoF	6-DoF	6-DoF	6-DoF
Voltage	1 V	0.63-0.9V	1.2V	1 V	1 V	0.85 V
Power	3.45W	243.6mW @ 0.9V 61.75mW @ 0.63V	24mW	5.50W	1.46 W	8.96W
Frequency	143 MHz	240 MHz	62.5/83.3 MHz	143 MHz	100 MHz	180 MHz
Throughput	55.8 GOPS	879.6 GOPS @ 0.9V 329.8 GOPS @ 0.63V	10.5-59.1 GOPS	N/A	4.4-24.6 GOPS	N/A
Latency	16.43 ms	N/A	30.8 ms	110 ms	200 ms	44.6 ms
Energy per Frame	56.6 mJ	N/A	739.2 uJ	605 mJ	292 mJ	399.6 mJ
Dynamic Optimiza- tion	Yes	N/A	N/A	No	No	No

Outline

- SLAM: Simultaneously Localization & Mapping
- Hardware Architecture
- Main Contributions
- Evaluations and Comparisons
- Summary

• Energy-efficient and runtime-reconfigurable FPGA accelerator for robotic localization and mapping.

- Energy-efficient and runtime-reconfigurable FPGA accelerator for robotic localization and mapping.
- Leverage data sparsity, locality, and parallelism inherent in localization.
 - 4.1x memory reduction with symmetry and sparsity
 - 5.7x compute time reduction with time-multiplexed and pipeline processing
 - **5.8x** power reduction with runtime reconfiguration and clock gating

- Energy-efficient and runtime-reconfigurable FPGA accelerator for robotic localization and mapping.
- Leverage data sparsity, locality, and parallelism inherent in localization.
 - 4.1x memory reduction with symmetry and sparsity
 - 5.7x compute time reduction with time-multiplexed and pipeline processing
 - **5.8x** power reduction with runtime reconfiguration and clock gating
- Our design is **2 orders of magnitude** more energy efficient than CPU and GPU.

Reference

1 IEEE CICC 2022					
An Energy-Efficient and Runtime-Reconfigurable PROA- Based Accelerator for Robotic Localization Systems Gang Lu ¹ , Zisten Year ⁰ , Bo'ru ¹ , Weizhaang Lu ¹ , Shaoshan Lu ¹ , Aligi RaychowRu ¹ 'Tanjin University, China, 'Georgia Institute of Technology, USA, ¹ Perceptin, USA 'Equality-Centerd Authors (ECAs) A food unually Costatis Rioff in an environment by estimating the	symmetric matrix is into a lower transplate matrix L such that L. Such that Lies the incruits of collassies (Decomposition, when hardware hearbies) generates the 1-th column of matrix L. (Evaluate and the lies of the lies				
A click causely location a first in an environment by additional for the observation of t	Magnituding uses N.S. solver catalogue and partnerma A. 202 Magnituding in an in Comparison of the partnerma in the second second based and magnituding ender sheeting in the second second second to the second second second second second second second second to the second second second second second second second second that attests in parentsents for inserving second second second second second second second second second second second second second that attests in parentsents for inserving second second second second second second second second second second second second second that attests in parentsents for inserving second				
backless metric attackation, and the second stage catalables for the initial of the second stage catalables of the second s	Fondation of Chear Street Gem (201200), and Cellitic, on distants in JAMP a Stopping inconcenced DARMA. UII 2.1 Lie d.: An 87300'S SAMew Mitty VAR Arg Manual (2012), and Arg Mark Stopping (2012), and and an analysis (2012), and an analysis of the Stepping Antonionau Related Manual International States (2012), and an analysis of the Arg Manual Arg Mark States (2012), and an analysis of the Arg Manual Arg Mark States (2012), and an analysis of the Arg Manual Arg Mark States (2012), and an analysis of the Arg Mark States (2012), and an analysis of the Arg Mark Manual (2012), and an analysis of the Arg Mark Manual Mark Mark Mark Mark Mark Mark Mark Mark				

[Wan, CICC 2022]
Reference

1 IEEE CICC 2022	
An Energy-Efficient and Runtime-Reconfigurable FPGA- Based Accelerator for Robotic Localization Systems	symmetric matrix S into a lower triangular matrix L such that LL ¹ =S. Fig. 3b illustrates the circuit for Cholesky Decomposition, where the hardware iteratively generates the i-th column of matrix L (Evaluate)
Qiang Liu* ¹ , Zishen Wan* ² , Bo Yu* ³ , Weizhuang Liu ¹ , Shaoshan Liu ³ , Arijit Raychowdhury ²	and updates \$ for calculating (i-f)-th column of L (Update). We find that at i-th iteration, the number of operations of Evaluate and Update
¹ Tianjin University, China, ² Georgia Institute of Technology, USA, ³ Perceptin, USA *Equally-Credited Authors (ECAs)	are i and Ki-1)/2, respectively. Thus, we propose to pipeline Evaluate and Update, where multiple Update units are time-multiplexed with the Evaluate unit. With pipelining and time-multiplexing, the latency is reduced by 5.75x with 3.3x loss resources consumption.
A cold causely location a card in an environment by estimating the model of the set of	Despection uses N.S. due to control and enform A. 192 of 2. the second
residual and stores Jacobian and residual. Zero and identities of IMU	centers in JUMP, a SRC program sponsored by DARPA.
Jacobian matrix will not be atom, which can reduce memory by 72%. SUM regions to a solve the limit any parken have $A_{\rm PM}$ by use Stoken to the start of the	References: 10.2.L. et al., "An 67/BCOP5 243me 80(tps VGA Fuby Visual CNN 10.2.L. et al., "An 67/BCOP5 243me 80(tps VGA Fuby Visual CNN Feb. 2019. 10.3. Sustaine at al. "Navior: A 2-mer fully tegretate Real-Time Visual-Intelligible Topological Content of the Astronomous Networks," (TVA, 222 10.2.L. et al., "Analest Tetal Content Horders Acceleration 10.2.L. Visual, "Analest Tetal Content Horders Acceleration 10.2.L. Visual, "Analest Tetal Content Horders Acceleration 10.2.L. Visual, "Analest Tetal Content on Clear Analogical 10.2.L. Visual, "Analest Tetal Content Horders Acceleration 10.2.L. Visual, "L. Tudostat," Content Content of the Analogical 10.2.L. Visual, "L. Tudostat," Characterizing and Accelerating Contaction Nations, "The Visual, National Contenting Contaction Nations, "The Visual, National Contenting Contaction Nations, "The Visual, National Contenting Contaction Nations," (TVA, National), "Contenting Contaction Nations, "TVA, National Contenting Contaction Nations, "TVA, National Content Nations, "TVA, National Content Nations," TVA, National Content Nations, "TVA, National Content Nations," TVA, National Content Nations, "TVA, National Content Nations, "TVA, National Content Nations, "TVA, National Content Nations," TVA, National Content Nations, "TVA, National Con

Feature A Survey

A Survey of FPGA-Based Robotic Computing

Zishen Wan," Bo Yu," Thomas Yuang Li, Jie Tang, Yuhao Zhu, Yu Wang, Arijit Raychowdhury, and Shaoshan Liu

[Wan, Synthesis Lectures on Comp Arch 2021]

[Wan, CICC 2022]

[Wan, Circuits and Systems Magazine 2021]

滬 CICC

