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ABSTRACT

Conventional hardware-friendly quantization methods, such as

fixed-point or integer, tend to perform poorly at very low preci-

sion as their shrunken dynamic ranges cannot adequately capture

the wide data distributions commonly seen in sequence transduc-

tion models. We present an algorithm-hardware co-design centered

around a novel floating-point inspired number format,AdaptivFloat,
that dynamically maximizes and optimally clips its available dy-

namic range, at a layer granularity, in order to create faithful encod-

ings of neural network parameters. AdaptivFloat consistently pro-

duces higher inference accuracies compared to block floating-point,

uniform, IEEE-like float or posit encodings at low bit precision (≤
8-bit) across a diverse set of state-of-the-art neural networks, ex-

hibiting narrow to wide weight distribution. Notably, at 4-bit weight

precision, only a 2.1 degradation in BLEU score is observed on the

AdaptivFloat-quantized Transformer network compared to total

accuracy loss when encoded in the above-mentioned prominent

datatypes. Furthermore, experimental results on a deep neural net-

work (DNN) processing element (PE), exploiting AdaptivFloat logic

in its computational datapath, demonstrate per-operation energy

and area that is 0.9× and 1.14×, respectively, that of an equivalent

bit width NVDLA-like integer-based PE.

1 INTRODUCTION

In order to exact higher DNN compute density and energy efficiency

at all computing scales, a plethora of reduced precision quantization

techniques have been proposed. In this line of research, a large body

of work has focused on fixed-point encodings [3, 5, 20] or uniform

quantization via integer [21, 27]. These fixed-point techniques are

frequently evaluated on shallow models or on CNNs exhibiting rel-

atively narrow weight distributions. However, as shown in Figure 1,

sequence transduction NLP models [11] with layer normalization

such as the Transformer [28] contain weights more than an order

of magnitude larger than those from popular CNN models with

batch normalization such as ResNet-50. The reason for this phe-

nomenon is that batch normalization effectively produces a weight

normalization side effect [25] whereas layer normalization adopts

invariance properties that do not reparameterize the network [2].

In the pursuit of wider dynamic range and improved numerical

accuracy, there has been surging interest in floating-point based [6,

18, 26], logarithmic [12, 19] and posit number systems [8], which

also form the inspiration of this work.

AdaptivFloat improves on the aforementioned techniques by

dynamically maximizing its available dynamic range at a neural

network layer granularity. And unlike block floating-point (BFP)

approaches with shared exponents that may lead to degraded ren-

dering of smaller magnitude weights, AdaptivFloat achieves higher
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Figure 1: Range of weights from popular CNN and NLP models.

Weights in NLP models [11] can be more than 10× larger than the

maximum absolute weight value of common CNNs.

inference accuracy by remaining committed to the standard floating-

point delineation of independent exponent and mantissa bits for

each tensor element. However, we break from IEEE 754 standard

compliance with a unique clamping strategy for denormal num-

bers and with a customized proposition for zero assignment, which

enables us to engineer leaner hardware.

Rather than proposing binary or ternary quantization techniques

evaluated on a group of carefully selected models, through Adap-

tivFloat, we aim to inform a generalized floating-point based math-

ematical blueprint for adaptive and resilient DNN quantization that

can be easily applied on neural models of various categories (CNN,

RNN or MLP), layer depths and parameter statistics.

By virtue of an algorithm-hardware co-design, we also propose

a processing element implementation that exploits AdaptivFloat

in its computational datapath in order to yield energy efficiencies

that surpass those of integer-based variants. Furthermore, owing to

the superior performance of AdaptivFloat at very low word sizes,

as it will be shown, higher compute density can be acquired at

a relatively lower penalty for computational accuracy compared

to block floating-point, integer, posit and non-adaptive IEEE-like

float encodings. Altogether, the AdaptivFloat algorithm-hardware

co-design framework offers accuracy and energy advantages over

integer or fixed-point solutions.

Finally, we note that the AdaptivFloat encoding is self-supervised

as it only relies on unlabeled data distributions in the network.

This paper, therefore, makes the following contributions:

• We propose and describe a novel floating-point based data

encoding algorithm for deep learning, AdaptivFloat, which
maximizes its dynamic range at a neural network layer gran-

ularity by dynamically shifting its exponent range and by

optimally clipping its representable datapoints.

• We evaluate AdaptivFloat across a diverse set of DNNmodels

and tasks and show that it achieves higher classification

and prediction accuracies compared to equivalent bit width

uniform, block floating-point and non-adaptive posit and

float quantization techniques.



• We propose a hybrid float-integer (HFINT) PE implementa-

tion that exploits the AdaptivFloat mechanism and provides

a cost-effective compromise between the high accuracy of

floating-point computations and the greater hardware den-

sity of fixed-point post-processing. We show that the HFINT

PE produces higher energy efficiencies compared to NVDLA-

like monolithic integer-based PEs.

2 RELATEDWORK

Adaptive Precision Techniques. [24] noticed that large magni-

tude weights bear a higher impact on model performance and pro-

posed outlier-aware quantization, which requires separate low and

high bitwidth precision hardware datapaths for small and outlier

weight values, respectively. [26] observed that the cell state varia-

tion in LSTM networks can be used to switch between high and low

precision during inference, yielding greater energy efficiency as a

result. [22] performs adaptive fixed-point quantization in search

for a minimum energy network. Stripes [14] performs bit-serial

computing to enable configurable per-layer adaptive precision. And

several quantization techniques such as [16] aim to find the suitable

per-layer bitwidth. In this work, rather than physically changing

the bitwidth to adapt to the network precision requirement, we

seek to obtain the best numerical representation out of a chosen

bitwidth regimen by dynamically adapting, per-layer, the floating-

point exponent range.

Floating-point Inspired Data Types. Aware of the dynamic

range limitation of fixed-point encoding, we have seen block

floating-point data types, such as Flexpoint [18] and similar variants

employed in the Brainwave NPU [7]. Block floating-point’s appeal

stems from its potential to achieve floating-point-like dynamic

range with hardware cost and implementation comparable to fixed-

point. However, by collapsing the exponent value of each tensor

element to that of the element with the highest magnitude, elements

with smaller magnitudes will be more prone to data loss. Floating-

point quantization by dividing a symmetrically-thresholded DNN

tensor by a scale factor has been reported [26]. Our quantization

process formulates a floating-point exponent bias from the maxi-

mum absolute value in the DNN tensor.

Finally, we note that Deep Compression techniques [9] such as

pruning andweight sharing can be used in combination to this work,

which evaluates instead against mutually-exclusive numerical data

types prominently used in deep learning hardware acceleration.

3 METHODOLOGY

This section articulates the AdaptivFloat format and describes the

inner workings behind the adjustment of the available dynamic

range of representable values in order to best fit the weights of

neural network layers.

3.1 The AdaptivFloat Format

The AdaptivFloat number representation scheme generally follows

the IEEE 754 Standard floating-point format that includes a sign bit,

exponent bit, and mantissa bit fields. In order to efficiently encode

in hardware all the representable datapoints, we avoid the compu-

tation of denormal values in the AdaptivFloat number system.

The main problem arising as a result of not using denormals

in floating-point is the lack of representation for the "zero" point,
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Figure 2: Illustration of the 0 value representation in AdaptivFloat

which is essential to DNN computations. We solve this constraint

by sacrificing the positive and negative minimum values to allocate

the slot for "zero" as shown in Figure 2. If both exponent bits and

mantissa bits are zeros, the bit vector should be interpreted as zero.

Otherwise, the bit vector is converted by the following equation:

sign ∗ 2 exponent value ∗ mantissa value (1)

where the exponent value is the addition of exponent bits and

𝑒𝑥𝑝𝑏𝑖𝑎𝑠 , and the mantissa value is calculated by appending an im-

plied “one” as the MSB and follow the same format as standard

floating point.

Moreover, at very low bit compression, customization based on

the value range of a neural network layer can greatly reduce the

quantization error with little overhead on the shared extra parame-

ters. Thus, similar to integer quantization that uses a quantization

scale (or step), we formulate a bias value, 𝑒𝑥𝑝𝑏𝑖𝑎𝑠 , to dynamically

shift the range of exponent values at a layer granularity. The cal-

culation of 𝑒𝑥𝑝𝑏𝑖𝑎𝑠 is described in Section 3.2. A benefit of using

𝑒𝑥𝑝𝑏𝑖𝑎𝑠 is the simplicity of the hardware logic required to perform

the adaptive operation compared to the multiplying quantization

scale used in integer quantization. This contrast is discussed in

detail in Section 5.

3.2 Quantization

Having defined the AdaptivFloat data format, the quantization

problem is simply mapping a full precision value to the nearest

representable datapoint. For this purpose, we need to determine the

optimal AdaptivFloat 𝑒𝑥𝑝𝑏𝑖𝑎𝑠 which will maximize the available

dynamic range of the encoding format in order to provide the most

accurate rendering of a particular matrix (or NN layer). This is

analogous to determining the quantization scale for integer quan-

tizations, but 𝑒𝑥𝑝𝑏𝑖𝑎𝑠 is a small, typically negative, integer value

rather than the high-precision floating-point scaling factor needed

in integer quantization [21].

Algorithm 1 describes how to find the most suitable 𝑒𝑥𝑝𝑏𝑖𝑎𝑠 in

order to faithfully encode the AdaptivFloat-quantized weight ma-

trix. We first compute the sign matrix,𝑊𝑠𝑖𝑔𝑛 , and the matrix of

absolute values,𝑊𝑎𝑏𝑠 , from the full precision weight matrix𝑊𝑓 𝑝 .

Then, the algorithm finds the maximum absolute value from𝑊𝑎𝑏𝑠

to determine the 𝑒𝑥𝑝𝑏𝑖𝑎𝑠 corresponding to a suitable range of repre-

sentable datapoints for the weight matrix to quantize. Before doing

quantization on𝑊𝑎𝑏𝑠 , we first round the values smaller than the

AdaptivFloat minimum representable value to zero or 𝑣𝑎𝑙𝑢𝑒𝑚𝑖𝑛 at

a halfway threshold. Then, we clamp values larger than the max

value, 𝑣𝑎𝑙𝑢𝑒𝑚𝑎𝑥 , to 𝑣𝑎𝑙𝑢𝑒𝑚𝑎𝑥 . The quantization involves rewrit-

ing𝑊𝑎𝑏𝑠 into normalized exponent and mantissa form with an

exponent matrix𝑊𝑒𝑥𝑝 and a mantissa matrix𝑊𝑚𝑎𝑛𝑡 . The man-

tissa matrix is quantized by the quantization scale calculated by

2



Algorithm 1: AdaptivFloat Quantization

Input: Matrix𝑊𝑓 𝑝 , bitwidth 𝑛 and number of exponent bits 𝑒

// Get Mantissa bits
𝑚 := 𝑛 − 𝑒 − 1

// Obtain sign and abs matrices
𝑊𝑠𝑖𝑔𝑛 := 𝑠𝑖𝑔𝑛 (𝑊𝑓 𝑝 ) ;𝑊𝑎𝑏𝑠 := 𝑎𝑏𝑠 (𝑊𝑓 𝑝 )
// Determine 𝑒𝑥𝑝𝑏𝑖𝑎𝑠 and range
Find normalized 𝑒𝑥𝑝𝑚𝑎𝑥 for𝑚𝑎𝑥 (𝑊𝑎𝑏𝑠 ) such that

2
𝑒𝑥𝑝𝑚𝑎𝑥 ≤𝑚𝑎𝑥 (𝑊𝑎𝑏𝑠 ) < 2

𝑒𝑥𝑝𝑚𝑎𝑥 +1

𝑒𝑥𝑝𝑏𝑖𝑎𝑠 := 𝑒𝑥𝑝𝑚𝑎𝑥 − (2𝑒 − 1)
𝑣𝑎𝑙𝑢𝑒𝑚𝑖𝑛 := 2

𝑒𝑥𝑝𝑏𝑖𝑎𝑠 ∗ (1 + 2
−𝑚)

𝑣𝑎𝑙𝑢𝑒𝑚𝑎𝑥 := 2
𝑒𝑥𝑝𝑚𝑎𝑥 ∗ (2 − 2

−𝑚)
// Handle unrepresentable values
Round 𝑣𝑎𝑙𝑢𝑒 < 𝑣𝑎𝑙𝑢𝑒𝑚𝑖𝑛 in𝑊𝑎𝑏𝑠 to 0 or 𝑣𝑎𝑙𝑢𝑒𝑚𝑖𝑛

Clamp 𝑣𝑎𝑙𝑢𝑒 > 𝑣𝑎𝑙𝑢𝑒𝑚𝑎𝑥 in𝑊𝑎𝑏𝑠 to 𝑣𝑎𝑙𝑢𝑒𝑚𝑎𝑥

// Quantize 𝑊𝑓 𝑝

Find normalized𝑊𝑒𝑥𝑝 and𝑊𝑚𝑎𝑛𝑡 such that

𝑊𝑎𝑏𝑠 = 2
𝑊𝑒𝑥𝑝 ∗𝑊𝑚𝑎𝑛𝑡 , and 1 ≤𝑊𝑚𝑎𝑛𝑡 < 2

𝑊𝑞 := quantize and round𝑊𝑚𝑎𝑛𝑡 by 𝑠𝑐𝑎𝑙𝑒 = 2
−𝑚

// Reconstruct output matrix

𝑊𝑎𝑑𝑝𝑡𝑖𝑣 :=𝑊𝑠𝑖𝑔𝑛 ∗ 2𝑊𝑒𝑥𝑝 ∗𝑊𝑞

return𝑊𝑎𝑑𝑝𝑡𝑖𝑣

the number of mantissa bits.𝑊𝑞 indicates the quantized mantissa

matrix. Finally, the AdaptivFloat-quantized matrix is reconstructed

by multiplication of𝑊𝑠𝑖𝑔𝑛, 2
𝑊𝑒𝑥𝑝

, and𝑊𝑞 .

We use the notation 𝐴𝑑𝑎𝑝𝑡𝑖𝑣𝐹𝑙𝑜𝑎𝑡 < 𝑛, 𝑒 > to indicate a 𝑛-bit

AdaptivFloat number with 𝑒 exponent bits. Figure 3 provides an

illustration showing how 𝑒𝑥𝑝𝑏𝑖𝑎𝑠 is chosen to best fit the range of

values in a weight matrix and the resulting quantized datapoints

adhering to the 𝐴𝑑𝑎𝑝𝑡𝑖𝑣𝐹𝑙𝑜𝑎𝑡 < 4, 2 > format. Generally, the nar-

rower the datapoints are, which indicates a smaller absolute maxi-

mum value in the weight tensor, the more negative 𝑒𝑥𝑝𝑏𝑖𝑎𝑠 gets.

4 EXPERIMENTAL RESULTS

For bit compression evaluation, we select three popular DNN mod-

els of distinct neural types and applications, and exhibiting rela-

tively narrow to wide spread in their weight distributions. The mod-

els considered, as shown in Table 1, are: (1) Transformer [28], which

made a very consequential impact in the field of machine transla-

tion and question answering; (2) a 4-layer LSTM encoder, 1-layer

LSTM decoder, attention-based sequence-to-sequence (seq2seq)

network [4] commonly used in speech recognition; and (3) ResNet-

50, a well-known image classification CNN [10]. The Transformer

and the LSTM-based Seq2Seq networks are trained on the Open-

NMT platform [17] using the WMT’17 English-to-German and

LibriSpeech datasets, respectively. And, ResNet-50 is trained on the

Pytorch framework using the ImageNet dataset.

We compare the efficacy of AdaptivFloat along with numeri-

cal data types frequently employed for deep learning acceleration,

namely block floating-point (BFP), IEEE-like float, posit, and uni-

form representations. We created templates of these data types

in Python to be run within the PyTorch framework. The Adap-

tivFloat, uniform, and block floating-point quantization schemes

are self-adaptive in the sense that their dynamic range auto-adjusts,
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Figure 3: Illustration of 𝐴𝑑𝑎𝑝𝑡𝑖𝑣𝐹𝑙𝑜𝑎𝑡 < 4, 2 > quantization from a

full precision weight matrix

layer-by-layer, based on the distribution of the tensor. The num-

ber of exponent bits in the AdaptivFloat, IEEE-like float, and posit

formats is set evenly for all the layers in the network to the value

yielding the highest inference accuracy after doing a search on the

exponent width. Generally, the best inference performance was

obtained with the exponent space set to 3 bits for AdaptivFloat, 4

bits for float (3 bits when the word size becomes 4 bits), and 1 bit

for posit (0 bit when the word size becomes 4 bits).

Finally, we note that the following results are generated by quan-

tizing all of the layers in the DNN models in order to capture the

whole-length performance of these five numerical data types un-

like several works [3] that intentionally skip quantization on the

sensitive first and last layers to escape steeper accuracy loss.

4.1 Root Mean Squared Error

We begin by quantifying the quantization error of the number for-

mats with respect to baseline FP32 precision. The boxplots depicted

in Figure 4 show the distribution of the root mean squared (RMS)

quantization error emanating from the data types and computed

across all layers of the three models under evaluation. AdaptivFloat

consistently produces lower average quantization error compared

to uniform, BFP, posit, or IEEE-like float encoding. Furthermore,

among the self-adaptive data types, AdaptivFloat exhibits the tight-

est error spread for all bit widths of the Transformer and seq2seq

networks, while BFP’s error spread is thinnest for the 6-bit and 8-bit

versions of the ResNet-50 model – although with a higher mean

compared to AdaptivFloat. This suggests that BFP would fare best

in networks with slimmer weight distribution such as ResNet-50.

Among the non-adaptive data types, we see that posit generally

yields both a lower average RMS quantization error and a narrower

interquartile error range compared to Float. These results provide

important insights to quantized DNN performance as we dive into

the bare inference accuracy results in the next subsection.

4.2 Inference Performance

Tables 2 shows the resiliency of the data types under study as they

are put to the test under varying weight bit compression on the

Transformer, sequence-to-sequence, and ResNet-50 models. The

inference results are tabulated post-training quantization (PTQ)

and after quantization-aware re-training (QAR) from the plateaued

FP32 baseline. The training setup and the hyper-parameter recipe

are kept the same for all five data types under evaluation in order

to impose a fair comparison.

The key observation we can distill is that AdaptivFloat demon-

strates much greater resiliency at very low precision (≤ 6-bit) com-

pared to the other four data formats. Notably, at 4-bit encoding,

AdaptivFloat can still yield, after retraining, a decent BLEU score

of 25.5 on the Transformer model while the impact from the other
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Table 1: DNN models under evaluation

Model Application Dataset Structure Number of parameters Range of weights FP32 performance

Transformer Machine translation WMT’17 En-to-De Attention, FC layers 93M [-12.46 , 20.41] BLEU: 27.40

Seq2Seq Speech-to-text LibriSpeech 960h Attention, LSTM, FC layers 20M [-2.21 , 2.39] WER: 13.34

ResNet-50 Image classification ImageNet CNN, FC layers 25M [-0.78, 1.32] Top-1 Acc: 76.2

Figure 4: Root mean square of the quantization error w.r.t. FP32 at 4-bit, 6-bit and 8-bit weight precision across the layers of the Transformer,

Seq2Seq and ResNet-50 models. AdaptivFloat produces the lowest mean error compared to the other number systems.

Table 2: Impact of weight bit compression post-training quantization / post-quantization aware retraining

BLEU Score of Transformer (BLEU @ FP32=27.4) Word Error Rate of Seq2Seq (WER@ FP32=13.34) Top-1 Accuracy of ResNet-50 (Top-1 Acc. @ FP32=76.2)

#Bits Float BFP Uniform Posit AdaptivFloat Float BFP Uniform Posit AdaptivFloat Float BFP Uniform Posit AdaptivFloat

16 27.4 / 27.4 27.4 / 27.4 27.4 / 27.4 27.4 / 27.5 27.4 / 27.6 13.40 / 13.07 13.30 / 13.14 13.27 / 12.82 13.29 / 13.05 13.27 / 12.93 76.1 / 76.3 76.2 / 76.3 76.1 / 76.3 76.1 / 76.3 76.2 / 76.3

8 27.2 / 27.5 26.3 / 27.3 27.3 / 27.4 27.3 / 27.5 27.3 / 27.7 14.06 / 12.74 13.23 / 13.01 13.28 / 12.89 13.24 / 12.88 13.11 / 12.59 75.4 / 75.9 75.7 / 76.0 75.9 / 76.1 75.4 / 76.0 75.7 / 76.3

7 27.1 / 27.5 16.9 / 26.8 26.0 / 27.2 27.3 / 27.4 27.3 / 27.7 13.95 / 12.84 13.54 / 13.27 13.45 / 13.37 13.36 / 12.74 13.19 / 12.80 73.8 / 75.6 74.6 / 75.9 75.3 / 75.9 74.1 / 75.8 75.6 / 76.1

6 26.5 / 27.1 0.16 / 8.4 0.9 / 23.5 26.7 / 27.2 27.2 / 27.6 15.53 / 13.48 14.72 / 14.74 14.05 / 13.90 15.13 / 13.88 13.19 / 12.93 65.7 / 74.8 66.9 / 74.9 72.9 / 75.2 68.8 / 75.0 73.9 / 75.9

5 24.2 / 25.6 0.0 / 0.0 0.0 / 0.0 25.8 / 26.6 26.4 / 27.3 20.86 / 19.63 21.28 / 21.18 16.53 / 16.25 19.65 / 19.13 15.027 / 12.78 16.1 / 73.6 13.2 / 73.4 15.1 / 74.0 33.0 / 73.9 67.2 / 75.6

4 0.0 / 0.0 0.0 / 0.0 0.0 / 0.0 0.0 / 0.0 16.3 / 25.5 inf / inf 76.05 / 75.65 44.55 / 45.99 inf / inf 19.82 / 15.84 0.5 / 66.3 0.5 / 66.1 2.6 / 67.4 0.7 / 66.7 29.0 / 75.1

four number formats is catastrophic due to insufficient dynamic

range or decimal accuracy. We can make similar observations on

the seq2seq and ResNet-50 models as AdaptivFloat show modest

retrained performance degradation at 4-bit and 5-bit weight pre-

cision. For instance, only a 1.2 Top-1 accuracy drop is seen with

a weight width of 4-bit. When the weights of the seq2seq model

are quantized to 4-bit, the non-adaptive data types (Float and Posit)

are essentially unable to provide expressible transcription. This

suggests that, for resilient performance at very low word size, it is

critical to have a quantization scheme that can adjust its available

dynamic range to encode the compressed weights as faithfully as

possible. AdaptivFloat’s marked robustness at very low precision

enables higher compute density into reconfigurable architectures

at a relatively lower penalty for computational accuracy.

Adding noise to weights when computing the parameter gradi-

ents has been shown to produce a regularization effect that can

improve generalization performance [23]. This effect can be seen in

all data types and is particularly pronounced in AdaptivFloat with

performance exceeding FP32 by up to +0.3 in BLEU score, -0.75 in

word error rate and +0.1 in Top-1 accuracy.

4.3 Effect of both Weight and Activation

Quantization

Tables 3 reports the inference performance from reducing the word

size on bothweights and activations.W𝑛/A𝑛 signifies a quantization

of 𝑛-bit weight and 𝑛-bit activation.

We observe that AdaptivFloat’s 8-bit performance is as good

as, if not better than, the baseline FP32 result on all three DNN

models while the degradation at 6-bit is still modest. Interestingly,

in the case of the seq2seq model, the 6-bit AdaptivFloat weight and

activation quantization generates regularization effective enough to

exceed the FP32 baseline. At 4-bit weight and activation precision,

the performance degradation of AdaptivFloat is steeper on the

sequence models than on ResNet-50 as many of the activations

from the attention mechanism fall outside of the available dynamic

range of the number format.

5 PE ARCHITECTURE

AdaptivFloat’s superior bit compression ability paves the way to

efficient bit packing into resource-constrained accelerators. In this

section, we describe the design of a hybrid Float-Integer (HFINT) PE

that exploits the AdaptivFloat logic in its computational datapath
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Table 3: Impact of both weight and activation quantization, measured after quantization-aware retraining

BLEU Score of Transformer (BLEU @ FP32=27.4) Word Error Rate of Seq2Seq (WER@ FP32=13.34) Top-1 Accuracy of ResNet-50 (Top-1 Acc. @ FP32=76.2)

#Bits Float BFP Uniform Posit AdaptivFloat Float BFP Uniform Posit AdaptivFloat Float BFP Uniform Posit AdaptivFloat

W8/A8 27.4 27.4 10.1 26.9 27.5 12.77 12.86 12.86 12.96 12.59 75.7 75.7 75.9 75.8 76.0

W6/A6 25.9 0.0 5.7 25.7 27.1 14.58 14.68 14.04 14.50 12.79 73.5 73.4 74.1 73.6 75.0

W4/A4 0.0 0.0 0.0 0.0 0.3 inf 78.68 48.86 inf 21.94 63.3 63.0 64.3 63.0 72.4
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Figure 5: (a) NVDLA-like 𝑛-bit Integer-based PE [29], (b) Proposed

𝑛-bit Hybrid Float-Integer PE.

and provides an efficient compromise between the high accuracy

of floating-point computations and the greater hardware density of

fixed-point post-processing. We contrast the proposed PE architec-

ture against that of a NVDLA-like PE [29] implementing monolithic

integer arithmetic, which is also observed in the plurality of com-

mercial ML accelerators (TPU [13], ARM ML NPU [1], etc.).

5.1 NVDLA-like Integer PE

The micro-architecture of a NVDLA-like 𝑛-bit integer-based PE

is shown in Figure 5a. It contains fixed-point vector MAC units

receiving 𝑛-bit integer weight and activation vectors. The MAC

partial sums are stored in 2 ∗ 𝑛 + 𝑙𝑜𝑔2 (𝐻 )-bit registers in order

to accumulate up to 𝐻 values without overflow. A high-precision

scaling factor is typically used to dequantize the computation with

high accuracy [21]. Using a 𝑆-bit scaling factor requires the scaled

results to be stored in registers of width 2∗𝑛+𝑙𝑜𝑔2 (𝐻 )+𝑆 , which later
are bit-shifted right by the fractional value of the scaling. Then, the

data is clipped and truncated back to 𝑛 bits before being modulated

by the neural network activation function. As an example, an 8-bit

integer-based PE architecture will be referred later in the document

as INT8/24/40 to designate a datapath with 8-bit MAC operands,

accumulated into 24-bit (to add up to 256 values without overflow)

and then scaled to 40-bit using a 16-bit scaling factor.

5.2 Hybrid Float-Integer PE

Figure 5b illustrates the micro-architecture of our proposed 𝑛-bit

Hybrid Float-Integer (HFINT) PE. The vector MACs units perform

floating-point multiplications between a 𝑛-bit float weight vector

and a 𝑛-bit float activation vector — and accumulate the result as

integer. The weights and activations stored on-chip are quantized

according to the AdaptivFloat algorithm described in Algorithm 1

in Section 3. The extracted AdaptivFloat 𝑒𝑥𝑝𝑏𝑖𝑎𝑠 for weight and

activation tensors are saved in allocated 4-bit registers and are used

to shift the exponent range of the accumulated partial sums. We

PE0 PE1 PE2 PE3 GB

S S S S S

Broadcasting streaming bus

Arbitrated crossbar

AXI bus

IRQ

Figure 6: Accelerator system with 4 PEs and a global buffer (GB) tar-

geting sequence-to-sequence networks.

note that while the AdaptivFloat 𝑒𝑥𝑝𝑏𝑖𝑎𝑠 for the static weights are

extracted post-training, the 𝑒𝑥𝑝𝑏𝑖𝑎𝑠 for the dynamic activations

are informed from statistics during offline batch inference on the

test dataset. The accumulation precision needs to be 2 ∗ (2𝑛𝑒𝑥𝑝 −
1) + 2 ∗ 𝑛𝑚𝑎𝑛𝑡 + 𝑙𝑜𝑔2 (𝐻 ) -bit in order to accumulate up to 𝐻 values

without overflow. The accumulated partial sums are then clipped

and truncated back to 𝑛-bit integer before being processed by the

activation function. At the end of the PE datapath, the integer

activations are converted back to the AdaptivFloat format. An 8-bit

HFINT PE architecture will be referred to as HFINT8/30 to indicate

an 8-bit MAC datapath with 30-bit accumulation.

A key contrast to note between the INT PE and the HFINT PE,

apart from the differing data types employed in the vector MAC

units, is that the INT PE requires a post-accumulation multiplier

in order to perform the adaptive operation of the quantization.

This in turn increases the required post-accumulation precision

by 𝑆-bit before truncation. In the next section, we provide energy,

performance, and area comparisons between the two PE topologies.

6 HARDWARE EVALUATION

6.1 Experimental Setup

In order to evaluate the hardware on a realistic DNN workload, we

designed an accelerator system, depicted in Figure 6, targeted for

RNN and FC sequence-to-sequence networks where we have seen

wider parameter distributions compared to convolution networks.

The accelerator is evaluated with four PEs that are integrated as

either INT or HFINT. A global buffer (GB) unit with 1MB of storage

collects the computed activations from the individual PEs via the

arbitrated crossbar channel and then broadcasts them back to the

four PEs, in order to process the next time step.

Each PE contains an input/bias buffer with sizes ranging from

1KB to 4KB and a weight buffer whose size ranges from 256KB to

1MB depending on the vector size and operand bit width. We also

note here that the HFINT PE always uses MAC operands with 3

exponent bits which was found to yield the best inference accuracy

across the ResNet-50, Seq2Seq, and Transformer networks.

The INT and HFINT accelerators were both designed in SystemC

with synthesizable components from the MatchLib [15] library.

Verilog RTL was autogenerated by the Catapult high-level synthesis

(HLS) tool with HLS constraints uniformly set with the goal to

achieve maximum throughput on the pipelined designs.
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Figure 7: Per-operation energy (Top) and throughput per unit area

(Bottom) of the INT and HFINT PEs across MAC vector sizes.

Table 4: PPA results of the 8-bit INT and 8-bit HFINT accelerators

Power Area Computational Time for

(𝑚𝑊 ) (𝑚𝑚2
) 100 LSTM Timesteps (𝜇𝑠)

Int Accelerator

61.38 6.9 81.2

with 4 INT8/24/40 PEs

HFInt Accelerator

56.22 7.9 81.2

with 4 HFINT8/30 PEs

For fair comparison, the two designs employ the same evaluation

methodology. Energy, performance and area results are reported

on the post-HLS Verilog netlists by the Catapult tool at 1GHz clock

frequency using a commercial 16nm FinFET standard cell library.

The simulated workload consists of 100 LSTM time steps with 256

hidden units operating in a weight stationary dataflow.

6.2 Energy, Performance and Area Analyses

We evaluate the effect of increasing throughput via the MAC vec-

tor size, K, which also equals the number of parallel MAC lanes,

meaning that a single PE throughput equals K2
10

9𝑂𝑃𝑆 .

Figure 7 (Top) shows that larger vector sizes and operand bit

widths benefits more the HFINT PE than the INT PE in terms of

energy efficiency. Precisely, from 4-bit operands and vector size

of 4 – to 8-bit operands and vector size of 16, the per-operation

energy of the HFINT PE is 0.97× to 0.90× that of the INT PE. The

smaller per-operation energy (i.e. higher energy efficiency) of the

HFINT PE stems from the fact that its vector MACs contain smaller

mantissa multipliers and exponent adders that consume less overall

power than the full bitwidth multipliers used in the INT PE’s MACs.

Increasing the vector size is found to improve overall energy

efficiency due to higher spatial reuse of the accumulated partial

sums. On the other hand, the INT PEs exhibit 1.04× to 1.21× higher

performance per unit area compared to the HFINT PEs due to its

more compact and homogeneous logic in the vector MACs.

Table 4 reports the power, area, and compute time of the 8-bit INT

and 8-bit HFINT accelerator systems with 4 PEs and a global buffer.

The PEs here have a MAC vector size of 16 in both systems. While

both accelerators achieve the same compute time (due to same

aggregate pipelining generated by Catapult), the HFINT accelerator

reports 0.92× the power and 1.14× the area of the integer-based

adaptation, confirming the efficiency trends reported in Figure 7.

7 CONCLUSION

This paper presents an algorithm-hardware co-design centered

around AdaptivFloat, a floating-point based encoding solution that

dynamically maximizes and optimally clips its available dynamic

range, at a layer granularity, in order to create robust encodings

of neural network parameters from narrow to wide weight distri-

bution spread. The proposed HFINT PE, leveraging AdaptivFloat,

produces higher energy efficiencies than integer-based adaptations

at varying vector sizes and MAC operand bit widths. Altogether,

the AdaptivFloat algorithm-hardware co-design framework offers a

tangible accuracy and energy advantage over fixed-point solutions.
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