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Safety of Autonomous Navigation

• Hardware Fault
• Transient fault
• Permanent fault

• End-to-end learning-based
autonomous navigation system

• Traditional protection method
• Hardware module redundancy
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• Specialized hardware accelerator
How is resilience of learning-based navigation system to hardware faults?

How do we detect and mitigate hardware faults?
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• Reliability of autonomous systems

• Fault characterization
• Neural network in supervised learning: PytorchFI[3], Ares[4], SC’17[5]
• End-to-end reinforcement learning-based (Our)

• Fault mitigation
• Hardware redundancy-based method: DMR, TMR
• Application-aware method (Our)
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This work

Hardware fault study in learning-based systems

Analyzing and Improving fault tolerance of learning-based
navigation systems, that is:

A fault injection tool-chain for learning-based systems

Fault mitigation techniques for learning-based systems
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Fault Model and Fault Injection
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• Random bit-flip
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• Stuck-at-1
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Grid-Based Navigation Problem

Low obstacle density Middle obstacle density High obstacle density

agent

obstacle

goal
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Grid-Based Navigation Problem

Low obstacle density Middle obstacle density High obstacle density

• Algorithm paradigm: NN-based method, Tabular-based method
• Evaluation metric: agent’s success rate



Faults in Grid World (Training)

NN-based method:

17
Ø Transient fault occurred in later episodes with high BER has higher impact.

(The darker, the worse)



Faults in Grid World (Training)

NN-based method:

18
Ø Permanent fault stuck-at-0 has comparable impact as transient fault.

(The darker, the worse)



Faults in Grid World (Training)

NN-based method:
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NN-based policy weight distribution:

Ø Permanent fault stuck-at-1 has much severer impact than stuck-at-0.

(The darker, the worse)



Faults in Grid World (Training)

NN-based method: Tabular-based method:
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Ø NN-based policy exhibit higher resilience than Tabular-based policy (except stuck-at-1).

(The darker, the worse)



Faults in Grid World (Convergence)

Transient
fault

NN-based method

Ø System can finally achieve
convergence (>95% success rate)
after transient faults injected.

900



Faults in Grid World (Convergence)

Transient
fault

Permanent
fault

NN-based method

Ø System can finally achieve
convergence (>95% success rate)
after transient faults injected.

Ø Extra training time doesn’t bring
obvious improvements under
permanent faults.

900



Faults in Grid World (Convergence)

Transient
fault

Permanent
fault

Tabular-based methodNN-based method
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Faults in Grid World (Inference)

NN-based method:

24

Ø Transient fault: Transient-1 has a negligible effect compared to Transient-M.
Ø Permanent fault: Stuck-at-1 has a much severe impact on policy than Stuck- at-0 

Inference: Long-term decision-making process
Transient-M: impact all steps
Transient-1: impact single step



Faults in Grid World (Inference)

NN-based method:
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Ø Transient fault: Transient-1 has a negligible effect compared to Transient-M.
Ø Permanent fault: Stuck-at-1 has a much severe impact on policy than Stuck- at-0 

Tabular-based method:



Drone Autonomous Navigation Problem

Environments and demos: Policy architecture:
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Ø Evaluation metric: drone safe flight distance (the longer, the better).

(PEDRA: Powered by Unreal Engine and AirSim)



Faults in Drone Navigation (Training)

Ø Training method: offline training -> online fine-tunning using transfer learning
Ø Transient fault: occurred at latter episodes with higher BER impact flight quality more.

27

Higher (lighter)
is better
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Faults in Drone Navigation (Inference)

Different
data locations:
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Ø Weights are sensitive to
transient faults while
input buffer is resilient.

(the higher, the better)



Faults in Drone Navigation (Inference)

Different
data locations:

Different 
NN layers:
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Ø Weights are sensitive to
transient faults while
input buffer is resilient.

Ø Conv3: no followed
pooling layer

Ø FC2: directly dictates
the drone actions

(the higher, the better)

(the higher, the better)



Faults in Drone Navigation (Inference)
Fixed-point datatype: Q (sign, integer, fraction)
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Ø Data types should optimally 
capture the value range 
rather than pursuing an 
unnecessarily large range 

Different
data types:

(the higher, the better)



Faults in Drone Navigation (Inference)

Ø Only sign and high-order 
integer bits are vulnerable
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Ø Data types should optimally 
capture the value range 
rather than pursuing an 
unnecessarily large range 

Different
data types:

Different 
bit locations
in Q (1,4,11):

(the higher, the better)

(the higher, the better)

Fixed-point datatype: Q (sign, integer, fraction)
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Training: Adaptive Exploration Rate
Adjustment

34

• Detection: change in cumulative reward
• Recovery: dynamically adjust exploration-to-exploitation ratio and speed



• Detection: change in cumulative reward
• Recovery: dynamically adjust exploration-to-exploitation ratio and speed

Training: Adaptive Exploration Rate
Adjustment

35

Transient
fault

Permanent
fault

Detection
Reward drop exceeds
x% within y continuous

episodes

Reward is still low after
going to steady-

exploitation states



• Detection: change in cumulative reward
• Recovery: dynamically adjust exploration-to-exploitation ratio and speed

Training: Adaptive Exploration Rate
Adjustment
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Transient
fault

Permanent
fault

Detection Recovery
Reward drop exceeds
x% within y continuous

episodes

Increase
exploration rate (ER)

Reward is still low after
going to steady-

exploitation states

Revert the exploration rate 
to initial and slow down its 
decreasing speed by 2𝑛×

f(r): reward drop
f(t): fault occurrence time



Training: Adaptive Exploration Rate
Adjustment

Before fault mitigation: After fault mitigation:
• Evaluation:

Ø The impact of both transient fault and permanent fault during training can be relieved. 



Inference: Value Range-Based Anomaly
Detection
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• Detection: statistically anomaly detection, (ai, bi) -> (1.1ai, 1.1bi)
• Recovery: skip faulty operations



Inference: Value Range-Based Anomaly
Detection

Grid World navigation Drone autonomous navigation
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• Detection: statistically anomaly detection, (ai, bi) -> (1.1ai, 1.1bi)
• Recovery: skip faulty operations
• Evaluation:

Ø Grid World: agent’s success rate increase by 2x
Ø Drone autonomous navigation: safe flight distance increases by 39%



Drone Flight Trajectory Demo
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No fault:

Start
location



Drone Flight Trajectory Demo
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No fault: Fault injected:

Start
location



Drone Flight Trajectory Demo
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No fault: Fault injected:

Fault mitigated:

Start
location



In this talk, “Analyzing and Improving Fault
Tolerance of Learning-Based Navigation System”

A fault injection tool-chain
that emulates hardware
faults and enables rapid
fault analysis of learning-
based navigation systems

Large-scale fault injection
study in both training and

inference stages of learning-
based systems against

permanent and transient
faults

Low-overhead fault
detection and recovery

techniques for both training
and inference

The safety and reliability of
end-to-end learning-based

navigation systems is
important, but not well

understood
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