BERRY: Bit Error Robustness for Energy-Efficient G §eorgia

Reinforcement Learning-Based Autonomous Systems

Zishen Wan?, Nandhini Chandramoorthy?, Karthik Swaminathan?, Pin-Yu Chen?, Vijay Janapa
1Georgia Tech, GA 2IBM Research, NY 3Harvard University, MA
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+¢ Background: A growing demand for on-device auto. system

v’ Two bottlenecks: size-weight-and-power constraint + safety-critical

v’ Lowering operating voltage: reduce energy quadratically but induce
bit errors bringing reliability concern

+¢ A Startling Observation
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+» The Proposed Framework: Bit-Error Robustness for Energy-
Efficient RL-Based Autonomous System (BERRY)

v" Robust learning framework, applies error-aware training to optimize
system robustness, thus boosting processing efficiency and
improving mission-level performance under low operating voltage.
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++ Key Features:

v' For the first time, demonstrate the practicality of robust low-voltage
operation on unmanned aerial vehicles (UAVs)

< Target Challenge v’ Support both offline and on-device robust learning

v' Enable aggressive energy-saving yet computational-safe auto. system v’ Generalize across devices, voltages, environments, models, tasks,
under low-voltage (performance-efficiency-resilience co-optimization) ~ algorithms, UAV types, etc

SRAM MACRO VOLTAGE, ENERGY, BIT ERROR SILICON MEASUREMENT

+* SRAM Macro ++ Energy and Low-Voltage Operation +» Exemplary SRAM Bit Error Patterns
v 2.05mm x 1.13mm in 14nm tech node v’ Reducing voltage leads to energy savings v Inclusive fault model: bit errors under high
v’ 128 KB weight memory, 16 KB input memory but exponentially increasing bit error rates voltage are subset of lower voltage
v’ 330 MHz for V44=0.8V v Normalized to min error-free voltage v’ Various bit error distribution patterns
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EVALUATION RESULTS

<+ Evaluation Setups
v" Closed-loop end-to-end UAV system evaluation

Python modules as bullding blocks
-

10 Pad ring
Weight memory (for 2)

DNN weights) [D. Stutz et al. MLSys’21]

+» Resilience-Efficiency Improvement
v' Observation: improve resilience,
processing efficiency, and mission

+» On-Device BERRY Robust Learning
v Observation: on-device BERRY enables more

energy savings, improved resilience with
efficiency over classical RL system lower operating voltage over offline BERRY

v’ Metric: Resilience: mission success rate  v* Learn bit errors directly at low-voltage chips
Processing efficiency: processing energy v Trade off learning-consumed on-the-fly
Mission efficiency: flight energy, #mission  energy and mission efficiency
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Platform in
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v’ Environments: sparse, medium, dense
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