BERRY: Bit Error Robustness for Energy-Efficient Reinforcement Learning-Based Autonomous Systems

Zishen Wan¹, Nandhini Chandramoorthy², Karthik Swaminathan², Pin-Yu Chen², Vijay Janapa Reddi³, Arijit Raychowdhury¹ ¹Georgia Tech, GA ²IBM Research, NY ³Harvard University, MA

BACKGROUND & MOTIVATION

- Background: A growing demand for on-device auto. system
- ✓ Two bottlenecks: size-weight-and-power constraint + safety-critical
- ✓ Lowering operating voltage: reduce energy guadratically but induce bit errors bringing reliability concern

A Startling Observation

- ✓ Processing energy (3%) vs. Mechanical energy (97%) in auto. system
- Processing energy has huge impacts on auto. system energy \checkmark
- Low voltage -> Low payload -> high safe flight velocity

Target Challenge

Enable aggressive energy-saving yet computational-safe auto. system under low-voltage (performance-efficiency-resilience co-optimization)

 \checkmark

SRAM Macro

- SRAM Macro
- ✓ 2.05mm x 1.13mm in 14nm tech node
- \checkmark 128 KB weight memory, 16 KB input memory
- 330 MHz for V_{dd}=0.8V \checkmark

Normalized to min error-free voltage \checkmark

Bit Error Rate / SRAM Access Energy vs. Operating Voltage

- 64 rows 10 8 (l) error Rate p (⁰ -01 error (⁰ Access 1 2.5 Å Bit Error Rate SR SRAM Energy 2.00.650.70 0.750.80 0.85 Normalized Operating Voltage (V_{min})
- Exemplary SRAM Bit Error Patterns ✓ Inclusive fault model: bit errors under high
- voltage are subset of lower voltage Various bit error distribution patterns

On-Device BERRY Robust Learning

Observation: on-device BERRY enables more

energy savings, improved resilience with

lower operating voltage over offline BERRY

✓ Learn bit errors directly at low-voltage chips

Trade off learning-consumed on-the-fly

EVALUATION RESULTS

Evaluation Setups

Nano-UAV

27g takeoff weight

15g max payload

250mAh batterv

✓ Closed-loop end-to-end UAV system evaluation

Environments: sparse, medium, dense

Crazyflie Micro-UAV 80g takeoff weight 70g max payload 1100mAh battery

Tello

Resilience-Efficiency Improvement **Observation:** improve resilience, \checkmark

- processing efficiency, and mission efficiency over classical RL system
- \checkmark Metric: Resilience: mission success rate Processing efficiency: processing energy Mission efficiency: flight energy, #mission

Website

Paper

energy and mission efficiency Operating

Low-Voltage Operation				Efficiency	Robustness	Quality-of-Flight	
Num. of		Operating	Learning	Energy	Success	Flight	Num. of
Learning Steps		Voltage	Energy (J)	Savings	Rate (%)	Energy (J)	Missions*
On-Device BERRY	4000	$0.77V_{min}$	1849	3.43×	84.6	264.2	48.19
		$0.70V_{min}$	1807	4.16×	82.4	266.5	46.52
	6000	$0.77V_{min}$	2775	3.43×	85.0	260.9	49.03
		$0.70V_{min}$	2711	4.16×	84.8	255.1	50.01
Offline		$0.77V_{min}$	-	3.43×	84.4	265.5	47.84
BERRY		$0.70V_{min}$	-	4.16×	63.8	375.6	25.56
Baseline		1V	-	1×	85.2	294.7	43.50
*							

Does not include on-device learning flight energy, evaluated for missions after learning

ACKNOWLEDGMENTS

 \checkmark

 \checkmark

This work was supported in part by CoCoSys, a Semiconductor Research Corporation (SRC) JUMP2.0 center sponsored by DARPA; IARPA MicroE4AI Program; CRNCH PhD Fellowship.

PROPOSED BERRY FRAMEWORK

- The Proposed Framework: Bit-Error Robustness for Energy-Efficient RL-Based Autonomous System (BERRY)
- Robust learning framework, applies error-aware training to optimize system robustness, thus boosting processing efficiency and improving mission-level performance under low operating voltage.

Key Features:

- ✓ For the first time, demonstrate the practicality of robust low-voltage operation on unmanned aerial vehicles (UAVs)
- Support both offline and on-device robust learning
- \checkmark Generalize across devices, voltages, environments, models, tasks, algorithms, UAV types, etc

ENERGY, BIT ERROR SILICON MEASUREMENT VOLTAGE.

- Energy and Low-Voltage Operation \checkmark
 - Reducing voltage leads to energy savings but exponentially increasing bit error rates
- 128 columns Chip 1