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Background

Traditional NNs are not good at reasoning

Complex Question Answering
NN accuracy: 50%

Interactive Learning
NN accuracy: 71%
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cubes. How many objects are there? (7),
(iii) How many blocks must be removed to
get 1 block? (2)
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Abstract Reasoning

NN accuracy: 53%

Scenario

Imagine that a stranger will give Hank one thousand dol-
lars to break all the windows in his neighbor’s house
without his neighbor’s permission. Hank carries out the
stranger’s request.

Imagine that there are five people who are waiting in line
to use a single-occupancy bathreom at a concert venue.
Someone at the back of the line needs to throw up imme-
diately. That person skips to the front of the line instead
of waiting in the back.

At a summer camp, there is a pool. Right next to the pool
is a tent where the kids at the camp have art class. The
camp made a rule that there would be no cannonballing in
the pool so that the art wouldn't get ruined by the splashing
water. Today, there is a bee attacking this kid, and she
needs to jump into the water quickly. This kid cannonballs .
into the pool.

Ethical Decision Making

NN accuracy: 65%

IMO 2015 P3

“Let ABC be an acute triangle. Let
(O) be its circumcircle, H its
orthocenter, and F the foot of the
altitude from A. Let M be the
midpoint of BC. Let Q be the point
on (O) such that QH L QA and let K
be the point on (O) such that KH L
KQ. Prove that the circumcircles
(0,) and (O,) of triangles FKM and
KQH are tangent to each other.”

Automated Theorem Proving
NN accuracy: 0%

Farmer John has N cows (2 € N < 10%). Each cow has a breed that is either
Guernsey or Holstein. As is often the case, the cows are standing in a line,
numbered 1--- N in this order.

Over the course of the day, each cow writes down a list of cows. Specifically,
cow 1's list contains the range of cows starting with herself (cow i) up to and
including cow E; (i < E; < N).

F1J has recently discovered that each breed of cow has exactly one distinct leader.
FJ does not know who the leaders are, but he knows that each leader must have
a list that includes all the cows of their breed, or the other breed’s leader (or
both).

Help FJ count the number of pairs of cows that could be leaders. It is guaranteed

that there is at least one possible pair. [
% Problem

Competitive Programming
NN accuracy: 8.7%



Background

Neural-Symbolic Al (NSAI)
« A compositional system to enhance cognitive capability for reasoning tasks.

Recognition Explainability

Flexibility w Knowledge |
Scalability | Data Efficient !
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Background - NSAI

Neural-Symbolic Al example
* Visual Reasoning

Question: Are there an equal number of
large things and metal spheres?
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Background - NSAI

Neural-Symbolic Al example
* Visual Reasoning

Question: Are there an equal number of
large things and metal spheres?

( 3 large 3 metal
things! ) spheres!
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Background - NSAI

Neural-Symbolic Al example
* Visual Reasoning

Question: Are there an equal number of
large things and metal spheres?
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Background - NSAI

Neural-Symbolic Al example
* Visual Reasoning

Question Understanding

Question: Are there an equal number of
large things and metal spheres?

/ | Equal? Yes! I ‘\

I 3 large l 3 metal

things! ®) . spheres!
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Vicual B _ Logical
Isual Perception .

A P Reasoning
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Background - NSAI

Neural-Symbolic Al example
* Visual Reasoning

NLP

CNN
Symbolic




Background - NSAI

NSAI algorithm structure

Representative Neuro- Neuro-Vector-Symbolic Multiple-Input-Multiple-Output | Probabilistic Abduction via Learning Rules Probabilistic Abduction and
Symbolic AI Workloads Architecture (NVSA) [13] Neural Networks (MIMONet) [24] |in Vector-symbolic Architecture (LVRF) [12] Execution Learner (PrAE) [40]
Compute Neuro CNN CNN/Transformer CNN CNN
Pattern Symbolic | VSA binding/unbinding (Circular Conv) VSA binding (Circular Conv) VSA binding/unbinding (Circular Conv) Probabilistic abduction
Abblication Use Case | Spatial-temporal and abstract reasoning | Multi-input simultaneously processing | Probabilistic reasoning, OOD data processing | Spatial-temporal and abstract reasoning
& Advantage | Higher joint representation efficiency, Higher throughput, Lower latency, Stronger OOD handling capability, One-pass | Higher generalization, Transparency,
vs. Neural |Better reasoning capability, Transparency | Compositional compute, Transparency learning, Higher flexibility, Transparency Interpretability, Robustness
(a) NVSA (b) MIMONet (c) LVRF (d) PrAE
Scene |Frontend|| Backend Input | \/SA Encoder < || Backend Scene |Frontend Backend
images B ey i 2| 1| images B |-
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o 8 T & | panel
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© o VSA Keys | | g | | Ll
VSA vector = E (vectors) VSA Keyy E 1 [ prob reps | =1 —

Major operation categories: . Matrix-wise NN operations I:l Elem-wise NN operations . Other GEMMs I:l Vector-wise VSA operations |:| Elem-wise VSA operations

a
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Motivation

NSAI workloads system characterization

92.1%

(B8 Neuro [ Symbolic )
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Motivation

NSAI workloads system characterization
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2| o800 [5 o
ElE P =
7| 8 60% 5107
)& 3
= 40% =
c | E =
H = g =101 7 L
ﬁ ooy, LIES] B s : 0 LS B8 bl | 1904 Eo ol | 57 I b | B S
= Vg dMopEVRPrag TxaNX Ry TXoNXRTy TxoNx Ry TxoNxRTy
(a) Workloads (b) Hardware Devices



Motivation

NSAI workloads system characterization
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Motivation

NSAI workloads system characterization

Lo

(B8 Neuro [ Symbolic )
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Neuro-symbolic workload exhibits high latency compared to neural models;
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Motivation

NSAI algorithms deployment challenges:

 Memory & compute inefficiency
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NSAI algorithms deployment challenges:

 Memory & compute inefficiency
 Heterogeneous compute kernel
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Motivation

NSAI algorithms deployment challenges:

Memory & compute inefficiency

Heterogeneous compute kernel

Algorithm diversity
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Motivation

NSAI algorithms deployment challenges:

Memory & compute inefficiency <:I Efficient and flexible architecture
Heterogeneous compute kernel

Algorithm diversity
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Motivation

NSAI algorithms deployment challenges:

Memory & compute inefficiency <:I Efficient and flexible architecture
Heterogeneous compute kernel

Automated and customized
FPGA deployment

W J

é FPGA

Algorithm diversity



Motivation

NSFlow

>

Workload Dataflow Architecture Generation
[0 User-provided files
[0 NSFlow-integrated NSAI B i Program Dataflow Graph
“ompile Trace
O NSFlow-generated w“(f::;“d P json) >
= Data/Control flow
\—/_\ [Veetor Conv] [ GEMM |
HW-Mapping | <~
iy
\—% Co-explore
Hardware Excutables Generaied Configs
Y Y
- Host Accelerator RTL basic
- . 08 - Host Code blocks
_ Binary | | Compile (-cpp) v
-1 o \p
. § HW Design Instantiation
- = )
i Synthesiz [ Accelerator Design
- Bitstream Systolic
i v L ‘BRAM| |URAM | R ‘SIMD| Ctrl
Compile
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Motivation

NSFlow

Workload Dataflow Architecture Generation
[0 User-provided files
[0 NSFlow-integrated NSAI B i Program Dataflow Graph
“ompile Trace
O NSFlow-generated w“(f::;“d P json) >
—3 Data/Control flow \/‘\
\—/_\ [Veetor Conv] [ GEMM |
HW-Mapping | <~
iy
\—% 1 Co-explore
Hardware Excutables Generaied Configs
Y Y
- Host Accelerator System RTL basic
- Bi 08 - Host Code | |Design Config blocks
- inary || Compile (-cpp) (.json) “v)
-1 o \p |
g § HW Design Parameterized_|  Instantiation
- = ™
i Synthesiz [ Accelerator Design
- Bitstream Systolic
i v L ‘BRAM| |URAM R SIMD| Ctrl
\/\ Compile

100%

80%

60%

40%

Cognitive Task Accuracy (%)

% This Work <— O

reconfigurable

support for
neural & symbolic

| e

Symbolic
Neural (e.g., rules, logic,
O coded knowledge)

Neurosymbolic

10-1 100 10! 10?
Latency (s): @ TPU ©GPU
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NSFlow Framework

An end-to-end automated FPGA framework for
accelerating and deploying generic NSAI workloads.

o0 i & § 0 § § §W
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NSFlow Framework

An end-to-end automated FPGA framework for
accelerating and deploying generic NSAI workloads.

> ldentifies data dependency for the workload O NSFlow-integrated

o0 i & § 0 § § §W
IS

Fynthesing

2

Worklead Dataflow Architecture Generation  Sec. %
[ Userprovided files Bec V. B Sec. V. ¥
NEAL - . PFrogram Dataflow Graph
orkls ompile
[ msFlow generated “I P“.I'].d . 3}-:':; —
—» Data/Controd flow ' '
ataCoired floe “--..-r""r-“‘ e
Sec. V. L —
-ﬁ_f-“"' |'|-\.'\..1r\rl'-|.'|' | | CIiERAM |
i o |TW-Mapping | «— v
q..____,f-"“' Co-explore [2ymb Logs |
Hardware Excuinbles ﬂtlnr}rd Configs
¥ ¥
Accelerator System
B3 Hast Code | |[Design Confi
Campile {ap i.jeon

HW Design Sec. [V Parametermred, | [nstamiiation

Accelerator Design
Syatudic
URAM e SIMI | | Cird

Compile

(=

,Hv,
Ao

PR

puay g



NSFlow Framework

An end-to-end automated FPGA framework for
accelerating and deploying generic NSAI workloads.

> ldentifies data dependency for the workload

» Explores design space with parameterizable
HW blocks.

A
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NSFlow Framework

An end-to-end automated FPGA framework for
accelerating and deploying generic NSAI workloads.

> ldentifies data dependency for the workload

» Explores design space with parameterizable
HW blocks.

» Generates and deploys optimal dataflow
architecture on FPGA

Worklead
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NSFlow Framework

An end-to-end automated FPGA framework for
accelerating and deploying generic NSAI workloads.

Worklond Daindflow Architecture Generation  Sec. %
.. [ Userprovided files Bec V. B Sec. V. ¥
> ldentifies data dependency for the workload O NsFlownigraed | | [ NSAL | || Program
. . . ih;l.ul:,:i.z:ﬂ;: -.____I,f;]'-"" " (eon)
» Explores design space with parameterizable iy
HW blocks. N

» Generates and deploys optimal dataflow
architecture on FPGA

v' Enables automated, efficient and scalable
dataflow and architecture solutions for NSA/
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NSFlow Framework

Frontend

Backend

a

v+t
Compile

BRAM| (URAM

Workload Dataflow Architecture Generation
[] User-provided files
[0 NSFlow-integrated NSAI T Program /" Dataflow Graph \
Workload omp1le Trace
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=3 Data/Control flow
m HW-Mapping <
Dat .
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NSFlow Framework

Workload
[] User-provided files
] NSFlow-integrated NSAI
[ NSFlow-generated W(zrll:)l(())ad
=3 Data/Control flow )

Frontend

Backend

a
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NSFlow Framework

‘Workload

[] User-provided files
[0 NSFlow-integrated

[] NSFlow-generated
= Data/Control flow

Frontend

NSAI
Workload

Compile

Dataflow Architecture Generation

(py)

Data

Program
Trace

(.json)

> HW-Mapping

Co-explore

>

( Dataflow Graph \

Backend

a
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NSFlow Framework

Frontend

Backend

a

Workload

[] User-provided files
[] NSFlow-integrated

[] NSFlow-generated
=3 Data/Control flow

NSAI
Workload

Compile

Dataflow Architecture Generation

(-py)

Data

Program (" Dataflow Graph
Trace
> (.json) >
HW-Mapping | '
> Co-explore \ j
--- —Generaked €onfigs
Y
Accelerator
Host Code
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NSFlow Framework

Frontend

Backend

a

Workload

[] User-provided files
] NSFlow-integrated

[] NSFlow-generated
=3 Data/Control flow

NSAI
Workload

Compile

Dataflow Architecture Generation
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NSFlow Framework

Frontend

Backend

a

Workload Dataflow Architecture Generation
[] User-provided files
[] NSFlow-integrated NSAI _— Program /" Dataflow Graph
kl ompile Trace
[] NSFlow-generated W(:py())ad B Ciioi) —>
=3 Data/Control flow
m HW-Mapping | ¢ '
— Hardware— - — - — - Excutables— - —-—-—-—-=-—-—--~- - - - —Gene‘raied €onfigs
Y Y
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- . o Host Code blocks
i Binary Compile (-cpp) (-v)
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NSFlow Backend

Flexible Hardware Architecture
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NSFlow Backend

An accelerator template

w/ RTL blocks parameterizable by config files
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On-chip Cache
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NSFlow Backend

An accelerator template

w/ RTL blocks parameterizable by config files

O Adaptive Systolic Array:

for efficient Neuro & Symbolic processing

Lo

On-chip Cache
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NSFlow Backend

Cyelel | Cyele2 | Cyele3 | Cyeled | Cycles.
SRAM | | [srRAM_] [ SRAM || [_SRAM
E N l_':r * E 'S _.-;" ¥ ] E i .';.d' LY £

Bk
O
oo

Example: (A1, AL AR, BL B3 = (AlB] + AJBE + A3B3, AR} + AZB] + ASBI, ALBI + AZRI + AR
|:| Sationary Reg. D Fasking Reg l:l Streaming Reg, I:l Partial S3um Reg. lgl A

Z. Wan, H. Yang, R. Raj et al., "CogSys: Efficient and Scalable Neurosymbolic Cognition System via Algorithm-
Hardware Co-Design," 2025 IEEE International Symposium on High Performance Computer Architecture (HPCA)




NSFlow Backend

Cyvelel | Cpele2 | Cyele3 | Cycled | Crcle S

“-

aand

ARLIY HJ0OIEAG

Example: (A1, AZ, ATNI(BI, BL B3 = (A1B] + AZB2 + AIB3, AIB3 + AZBI + A3B2, A1BI + AZB3 + AIB1)
[ sttianary Reg. [[]Passing Reg [ ]Streaming Reg. [ Partial Sum Reg. @ Max

r' Enables efficient Vector Symbolic operation processing on systolic array
®,



NSFlow Backend

An accelerator template

w/ RTL blocks parameterizable by config files

O Adaptive Systolic Array:
for efficient Neuro & processing
O SIMD Unit:

for element-wise ops
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NSFlow Backend

An accelerator template

w/ RTL blocks parameterizable by config files

O Adaptive Systolic Array:

for efficient Neuro & processing
O SIMD Unit:

for element-wise ops
O BRAM Blocks:

for flexible on-chip memory

On-chip Cache
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NSFlow Backend

An accelerator template

w/ RTL blocks parameterizable by config files

O Adaptive Systolic Array:
for efficient Neuro &
d SIMD Unit:
for element-wise ops
O BRAM Blocks:
for flexible on-chip memory
O Control Logic:

for HW-level task scheduling

processing

On-chip Cache

—— - — === —— o —
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ARLIY HJ0OIEAG

anndepy




NSFlow Frontend

Dataflow Architecture Generation (DAG)
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NSFlow Frontend

* Analyze workload characteristics and data dependencies

« Explore optimal HW configurations and dataflow for backend

45



NSFlow Frontend

1. Extract Execution Trace from the workload:

wokload.py

46



NSFlow Frontend

1. Extract Execution Trace from the workload:

wokload.py => et.json

graph () :
// Neuro Operation - CNN (Resnetl8)
%¥relu_1[16,64,160,160] : call _module[relu] (args = (%bnl
[16,64,160,160]))
Fmaxpool 1[16,64,160,160] : call _module[maxpool] (args =
(%relu_1[16,64,160,160]))
%¥conv2d_1[16,64,160,160] : call _module[conv2d] (args =

($maxpool 1[16,64,160,160]))

// Symbolic Operations
// Inverse binding of two block codes vectors by
blockwise cicular correlation

%inv_binding circular 1[1,4,256] : call function[nvsa.
inv_binding_circular] (args = (%vec_0[1,4,256], %
vec_1[1,4,256]))

%inv_binding _circular_2[1,4,256] : call_ function[nvsa.
inv_binding_circular] (args = (%vec_3[1,4,256], %

vec_4[1,4,256]))
// Compute similarity between two block codes vectors

Smatch_prob_1[1] : call_function[nvsa.match_prob] (args
= (%inv_binding_circular_1[1,4,256], %vec_2
[1,4,256]))

// Compute similarity between a dictionary and a batch
of query vectors

$match_prob_multi_batched_1[1]: call_function[nvsa.
match_prob_multi_batched] (args = (%
inv_binding_circular_2[1,4,256], %vec_5[7,4,256]))

sum_1[1] : call_function[torch.sum] (args = (%
match_prob_multi_batched_1[1]))

%$clamp_1[1] : call_function[torch.clamp] (args = (%sum_1
[(11))

gmul_1[1] : call_function[operator.mul] (args = (%

match_prob_1[1], %clamp_1[11))

47



NSFlow Frontend

2. Generate Dataflow Graph for deployment:
Loop 1

i Perform DFS in the :

1 execution graph, and I

< ® I identify critical path for ai
- : single run. !

1

——————————
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NSFlow Frontend

2. Generate Dataflow Graph for deployment:
Loop 1 Loop 1

L1

v
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i Perform DFS in the 1 Perform BFS and attach :
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1
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NSFlow Frontend

2. Generate Dataflow Graph for deployment:

Loop 1

i Perform DFS in the

I execution graph, and

I identify critical path for a
: single run.

Y

@
o)
~

Loop 1 Loop 1
i L i L
i Y i v
E L» I L»
:: Ln :: Ln
S S RPrrr ere O
L V1,23 : V2,3 | L1
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' 1 same-level operations to , '  attachitonto Loop 1 at ! V4’6
. 1 operations on the critical1 : 1 the time when its : ¢
path. 1 E I compute unit is |
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NSFlow Frontend

2. Generate Dataflow Graph for deployment:

Loop 1
L

v
L

):
/

i Perform DFS in the

1 execution graph, and

I identify critical path for a
: single run.

Loop 1 Loop 1
L i L
4 i v
L> I L»

Ll Vv \%
: | 1,2,3 C , H, W, Nv[0 ].,2,3
: v(vl,i,3 v[0]) ¢ * . 0y, H, WN, JUD
' +
3 Vg | |senmem IV L L2 0
+
: +
! v wsmmm |y L3 [ttt 5 N2
; Vs _f W N Vs 1 -
: . & J—.—.--—--—-*.Ctnn(H.PV,Ny
E i \Y
i S R V123
+ 1 Perform BFS and attach : ., EngageLoop2and 1
' 1 same-level operationsto ; '  attach it onto Loop 1 at ! V4,6
. 1 operations on the critical1 : 1 the time when its ! ¢
E ! path. 1 . I compute unit is :
! I+ 1 available. ] Vs
\ ’ \

—— -

) . \
! Derive runtime
1 .
I functions and ¢
1 calculate memory

I footprint for VSA :
I and NN operations.,

= - -Loop2._ },_ _l:‘\
L !




NSFlow Frontend
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3. Explore optimal HW config and array partition strategy

Algorithm 1: NSFlow Two-Phase DSE Algorithm
Data: R;, Ry, Rangey (H search range), Rangew, (W search

range), M (max #PEs), Iterpae (Phase II max iterations)

Result: H, W, N (total #sub-arrays), N, N,

1 /% Phase I x /
2 for H in Ranger;, W in Rangew do

F=-T--IE RV

==

15 end

N = |M/(H x W)]| /I get total #sub-arrays
for Ny in [1, N) do

/I get optimal HW config for parallel mapping
Set all elements in N; to N;

Set all elements in N, to N — N;

tpara fmacc(tnn(H %% N;) tusa(H, W, Ny))
Save the H,W, N; (and Ny) with minimal tpara-

end
// get sequential runtime
tseq = SE f1,(H, W, N) +

TR'i?l(Zj f’Uj ,temp (.H, W, N)’ Z:,'vaj,spatial (Ha W, N))
/I Set to sequential mode in case it has better performance
Return and set sequential mode if tseq < tparq else Continue

16 /% Phase 11 x [
17 for it in Itermgq. do

-

[ T I )
W

[*]
£

25 end

for layer i in R; do

Locate VSA node j' and 7" where layer 7 starts and ends
if tseq < tpara do Nj[i] — —; Ny[i' : "] 4+ +;

else do Ny[i] + +; Ny[j’ : 7] — —;

tpara = Max(tnn(H, W, N;) tysa(H, W, Ny))

Save the H, W, Ny, N, w rflz minimal tpara.

end

26 Return H, W, N, N;, N,.
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Algorithm 1: NSFlow Two-Phase DSE Algorithm

Phase I-. Assuming Static partition, find the Data: R;, R,, Rangeyg (H search range), Rangey, (W search

range), M (max #PEs), Iterpae (Phase II max iterations)

Opt|ma| array S|Ze (H W N) Result: [T, W. N (total #sub-arrays), Nj. N,
’ ’ 1 /% Phase I x /
2 for H in Ranger;, W in Rangew do
N = |M/(H x W)]| /I get total #sub-arrays
for Ny in [1, N) do
/I get optimal HW config for parallel mapping
Set all elements in N; to N;
Set all elements in N, to N — N;
tpara fmacc(tnn(H %% N;) tusa(H, W, Ny))
Save the H, W, N; (and N ) with minimal tpara.
end
// get sequential runtime
12 tseq = XS fi,(H,W,N) +
7”"1:”(2; f’Uj ,temP(Hﬂ W, N)’ fovj,spatial (H, w, N))

F=-T--IE RV

==

13 /I Set to sequential mode in case it has better performance
14 Return and set sequential mode if tseq < tparq else Continue
15 end

16 /% Phase 11 x [
17 for it in Itermgq. do
18 for layer i in R; do
19 Locate VSA node j' and 7" where layer 7 starts and ends
if tseq < tpara do Nj[i] — —; Ny[i' : "] 4+ +;
else do Ny[i] + +; Ny[j’ : 7] — —;
tpara = Max(tnn(H, W, N;) tysa(H, W, Ny))
Save the H, W, Ny, N, unlz minimal tpara.
end

=

[ T I )
b =

[*]
B

25 end
26 Return H, W, N, N;, N,.
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3. Explore optimal HW config and array partition strategy

Algorithm 1: NSFlow Two-Phase DSE Algorithm

Phase I: Assuming static partition, find the
optimal array size (H, W, N).

Data: R;, R,, Rangeyg (H search range), Rangey, (W search

range), M (max #PEs), Iterpae (Phase II max iterations)

Result: H, W_ N (total #sub-arrays), N;, V.

1 /% Phase I x /

2 for H in Ranger;, W in Rangew do

Phase II: Fine-tune for dynamic partition to
better balance Neuro & at runtime

IS - Y

26

5 end

= |M/(H x W)] /I get total #sub-arrays
for Ny in [1, N) do

/I get optimal HW config for parallel mapping
Set all elements in N; to N;

Set all elements in N, to N — N;

tpara fmacc(tnn(H %% N;) tusa(H, W, Ny))
Save the H, W, N; (and N ) with minimal tpara.

// get sequential runtime
tseq = XS fi,(H,W,N) +

771'”1(2; f’Uj ,temP(Hﬂ W, N)’ fovj,spatial (H, w, N))
/I Set to sequential mode in case it has better performance
Return and set sequential mode if tseq < tparq else Continue

/ * Phase 11 % /
for it in Iterpmas do

5 end

for layer i in R; do

Locate VSA node j' and 7" where layer 7 starts and ends

if tseq < tpara do Nj[i] — —; Ny[i' : "] 4+ +;
else do Ny[i] + +; Ny[j’ : 7] — —;

tpara = Max(tnn(H, W, N;) tysa(H, W, Ny))
Save the H, W, Ny, N, w rflz minimal tpara.

Return H, W, N, N;, N,.
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3. Explore optimal HW config and array partition strategy

Phase I: Assuming static partition, find the

optimal array size (H, W, N).

Phase II: Fine-tune for dynamic partition to
at runtime

better balance Neuro &

v' Reduces search space x10100

HW config (H, W, N)

Array partition and mapping

Total design space, m = 10

Original

m X (m+1)/2

(N — 1) for each N

10300

DAG

Phasel: 1/4 < H/W < 16

PhaselI: Tter x #layers

10°

a

Algorithm 1: NSFlow Two-Phase DSE Algorithm

1

Data: R;, R,, Rangeyg (H search range), Rangey, (W search
range), M (max #PEs), Iterpae (Phase II max iterations)
Result: H, W_ N (total #sub-arrays), N;, V.

/ ®* Phase I x /

2 for H in Ranger;, W in Rangew do

26

= |M/(H x W)]| /I get total #sub-arrays
for Ny in [1, N) do
/I get optimal HW config for parallel mapping
Set all elements in N; to N;
Set all elements in N, to N — N;
tpara fmacc(tnn(H %% N;) tusa(H, W, Ny))
Save the H, W, N; (and N ) with minimal tpara.
end
// get sequential runtime
tseq = XS fi,(H,W,N) +
7”"1:”(2; f’Uj ,temP(Hﬂ W, N)’ fovj,spatial (H, w, N))
/I Set to sequential mode in case it has better performance
Return and set sequential mode if tseq < tparq else Continue

5 end

/ * Phase 11 % /
for it in Iterpmas do

for layer i in R; do
Locate VSA node j' and 7" where layer 7 starts and ends
if tseq < tpara do Nj[i] — —; Ny[i' : "] 4+ +;
else do Ny[i] + +; Ny[j’ : 7] — —;
tpara = Max(tnn(H, W, N;) tysa(H, W, Ny))
Save the H, W, Ny, N, unlz minimal tpara.

end

s end
Return H, W, N, N;, N,.
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Evaluation

Experiments setup
» Workloads:

Algorithms: NVSA, MIMONet, LVRF
Datasets: RAVEN, I-RAVEN, PGM, CVR, and SVRT

» Hardwares:
Baselines: TX2, Xavier NX, Xeon CPU, RTX 3080, ML accelerators (TPU, Xilinx DPU)
FPGA deployment: AMD U250

On-chip

Workloads Precision AdArray Configuration SIMD SRAM Blocks On-chip AMD U250 Utilization Frequenc

Size (BRAM) Cache quency
NN | symb | o S;f,e N Defg‘\_‘flt P ]fif_m)“on MemAl, MemA2 | Mem B | Mem C | (VRAM) | psp | LUT | FF | BRAM | URAM | LUTRAM
3 ’ l - v

NVSA | INT8 | INT4 | 32, 16, 16 14:2 64 | 27MB, .IMB | 27 MB | 1.6 MB | 162 MB | 89% | 56% | 60% | 34% 8% 24% 272 MHz
MIMONet | INT8 | INT8 | 32, 32, 8 6:2 64 | 34MB, 12 MB | 3.4 MB | 2.1 MB | 20.1 MB | 89% | 44% | 52% | 43% | 10% 20% 272 MHz
LVRF | INTS | INT4 | 32, 16, 16 14:2 64 |27 MB, 096 MB | 2.7 MB | 1.4 MB | 155 MB | 89% | 56% | 60% | 31% 7% 24% 272 MHz

a
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Evaluation

End-to-end runtime improvement
v’ ~2x speedup over GPU, 2~8x speedup over TPU, ~3x speedup over DPU

—

A Tx2 [INX Xeon CPU RTX 2080 2 TPU-like SA DPU [ NSFlow

Eg,ﬂ S EIRE

o

g 20

10 : b

E || e
zﬂ 0 %;.

LVRF MIMONet

>



Evaluation

Mixed-precision optimization

v ~6x Memory reduction

Reasoning Accuracy | FP32 | FP16 | INT8 [ MP (IN8 for NN, INT4 for Symb) | INT4
RAVEN [39] 98.9% 198.9% | 98.7% 98.0% 92.5%
[I-RAVEN [16] 99.0% |1 98.9% [ 98.8% 98.1% 91.3%

PGM [3] 68.7% | 68.6% | 68.4% 67.4% 59.9%
Memory 32MB | 16MB | 8MB 5.5MB 4MB
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Evaluation

Scalability
v Only 4x runtime increase when symbolic workloads scale by 150x

[ENsFlow [ @ w/o Phase 11 DSE @ w/o Phase I (128x64)

210 | 9[:%
== o '-.,"'-.
el E,-w.
g £ SEESE
= ) e, .5
b~ LY i .
[] 2 10 VEFE
e — =
g AR Fa—wer AL AT Eel |, 5
0% 5% 10% 20% 0% H0% 80% .

Symbolic data percentage (symb mem footprint / overall mem footprint)

Lo
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Conclusion

NSFlow is the first end-to-end design automation framework dedicated to
accelerate generic NSAI systems
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Conclusion

NSFlow is the first end-to-end design automation framework dedicated to
accelerate generic NSAI systems

 Identifies the unique optimization opportunities for NSAI acceleration
« Explores the dataflow and architecture design space with a novel algorithm
« Generates a efficient scalable design for FPGA deployment
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Conclusion

NSFlow paves the way
for advancing efficient cognitive reasoning systems and
unlocking new possibilities in NSAI.
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