NSFlow: An End-to-End FPGA Frgmework
with Scalable Dataflow Architecture
for Neuro-Symbolic Al

=,

Hanchen Yang'*, Zishen Wan'*, Ritik Raj', Joongun Park’, Ziwei Li',
Ananda Samajdar?, Arijit Raychowdhury’, Tushar Krishna®
(*Equal Contributions)

'Georgia Tech, Atlanta, GA, USA)
M Research, Yorktown Heights, NY, USA

6 \

TO SYSTEMS

2|

spoNsOrREDBY CEEmMA Sl a

Y
@&
¥"

Background

S

TO SYSTEMS _
SPONSORED BY GFE[B)A % 3

Background

Traditional NNs are not good at reasoning

Complex Question Answering
NN accuracy: 50%

Interactive Learning
NN accuracy: 71%

rx

®

(i) Remove all gray spheres. How many @ V e O ®
A

spheres are there? (3), (ii) Take away 3 a o
cubes. How many objects are there? (7),
(iii) How many blocks must be removed to
get 1 block? (2)

o ©

® »
-9 2

.

b A
m QO

m® o

<

®¢c 0

o‘f

Abstract Reasoning

NN accuracy: 53%

Scenario

Imagine that a stranger will give Hank one thousand dol-
lars to break all the windows in his neighbor’s house
without his neighbor’s permission. Hank carries out the
stranger’s request.

Imagine that there are five people who are waiting in line
to use a single-occupancy bathreom at a concert venue.
Someone at the back of the line needs to throw up imme-
diately. That person skips to the front of the line instead
of waiting in the back.

At a summer camp, there is a pool. Right next to the pool
is a tent where the kids at the camp have art class. The
camp made a rule that there would be no cannonballing in
the pool so that the art wouldn't get ruined by the splashing
water. Today, there is a bee attacking this kid, and she
needs to jump into the water quickly. This kid cannonballs .
into the pool.

Ethical Decision Making

NN accuracy: 65%

IMO 2015 P3

“Let ABC be an acute triangle. Let
(O) be its circumcircle, H its
orthocenter, and F the foot of the
altitude from A. Let M be the
midpoint of BC. Let Q be the point
on (O) such that QH L QA and let K
be the point on (O) such that KH L
KQ. Prove that the circumcircles
(0,) and (O,) of triangles FKM and
KQH are tangent to each other.”

Automated Theorem Proving
NN accuracy: 0%

Farmer John has N cows (2 € N < 10%). Each cow has a breed that is either
Guernsey or Holstein. As is often the case, the cows are standing in a line,
numbered 1--- N in this order.

Over the course of the day, each cow writes down a list of cows. Specifically,
cow 1's list contains the range of cows starting with herself (cow i) up to and
including cow E; (i < E; < N).

F1J has recently discovered that each breed of cow has exactly one distinct leader.
FJ does not know who the leaders are, but he knows that each leader must have
a list that includes all the cows of their breed, or the other breed’s leader (or
both).

Help FJ count the number of pairs of cows that could be leaders. It is guaranteed

that there is at least one possible pair. [
% Problem

Competitive Programming
NN accuracy: 8.7%

Background

Neural-Symbolic Al (NSAI)
« A compositional system to enhance cognitive capability for reasoning tasks.

Recognition Explainability

Flexibility w Knowledge |
Scalability | Data Efficient !
i L\ ~ i

Background - NSAI

Neural-Symbolic Al example
* Visual Reasoning

Question: Are there an equal number of
large things and metal spheres?

r.l Slide Adapted from MIT 6.5191: Neurosymbolic Al

Background - NSAI

Neural-Symbolic Al example
* Visual Reasoning

Question: Are there an equal number of
large things and metal spheres?

r.l Slide Adapted from MIT 6.5191: Neurosymbolic Al

Background - NSAI

Neural-Symbolic Al example
* Visual Reasoning

Question: Are there an equal number of
large things and metal spheres?

(3 large 3 metal
things!) spheres!

|

O

O

r.l Slide Adapted from MIT 6.5191: Neurosymbolic Al

Background - NSAI

Neural-Symbolic Al example
* Visual Reasoning

Question: Are there an equal number of
large things and metal spheres?

\

/» [Equal? Yes! ‘\
p

3 metal
L spheres!

O

O

r.l Slide Adapted from MIT 6.5191: Neurosymbolic Al

Background - NSAI

Neural-Symbolic Al example
* Visual Reasoning

Question Understanding

Question: Are there an equal number of
large things and metal spheres?

/ | Equal? Yes! I ‘\

I 3 large l 3 metal

things! ®) . spheres!

—
()
‘

. \
O

)

Vicual B _ Logical
Isual Perception .

A P Reasoning
r.l Slide Adapted from MIT 6.5191: Neurosymbolic Al

Background - NSAI

Neural-Symbolic Al example
* Visual Reasoning

NLP

CNN
Symbolic

Background - NSAI

NSAI algorithm structure

Representative Neuro- Neuro-Vector-Symbolic Multiple-Input-Multiple-Output | Probabilistic Abduction via Learning Rules Probabilistic Abduction and
Symbolic AI Workloads Architecture (NVSA) [13] Neural Networks (MIMONet) [24] |in Vector-symbolic Architecture (LVRF) [12] Execution Learner (PrAE) [40]
Compute Neuro CNN CNN/Transformer CNN CNN
Pattern Symbolic | VSA binding/unbinding (Circular Conv) VSA binding (Circular Conv) VSA binding/unbinding (Circular Conv) Probabilistic abduction
Abblication Use Case | Spatial-temporal and abstract reasoning | Multi-input simultaneously processing | Probabilistic reasoning, OOD data processing | Spatial-temporal and abstract reasoning
& Advantage | Higher joint representation efficiency, Higher throughput, Lower latency, Stronger OOD handling capability, One-pass | Higher generalization, Transparency,
vs. Neural |Better reasoning capability, Transparency | Compositional compute, Transparency learning, Higher flexibility, Transparency Interpretability, Robustness
(a) NVSA (b) MIMONet (c) LVRF (d) PrAE
Scene |Frontend|| Backend Input | \/SA Encoder < || Backend Scene |Frontend Backend
images B ey i 2| 1| images B |-
= [ﬁ ® =
S 0 :
T Cel o ol Lad] I N E [Answer N < I
o 8 T & | panel
(@) . ? (‘ 8 --------- __\fctors
© o VSA Keys | | g | | Ll
VSA vector = E (vectors) VSA Keyy E 1 [prob reps | =1 —

Major operation categories: . Matrix-wise NN operations I:l Elem-wise NN operations . Other GEMMs I:l Vector-wise VSA operations |:| Elem-wise VSA operations

a

11

Motivation

é

TO SYSTEMS _
SPONSORED BY GFE[B)A % 3

Motivation

NSAI workloads system characterization

92.1%

(B8 Neuro [Symbolic)
Lo

Mg MontVrefrar

Motivation

NSAI workloads system characterization

() 100% (2 s| NVSA MIMONet LVRF PrAE
2| o800 [5 o
ElE P =
7| 8 60% 5107
)& 3
= 40% =
c | E =
H = g =101 7 L
ﬁ ooy, LIES] B s : 0 LS B8 bl | 1904 Eo ol | 57 I b | B S
= Vg dMopEVRPrag TxaNX Ry TXoNXRTy TxoNx Ry TxoNxRTy
(a) Workloads (b) Hardware Devices

Motivation

NSAI workloads system characterization

() 100% ¥ o| NVSA MIMONet | LVRF | PrAE 102
£ e | = = & 10!
& 8 60 2 S
5 %“F E 100
U S 40% 2 2
: £ S0 élﬂ-l
: =
S 20% | 52 2 94 5
“ | Eﬁl {|] P " :S I il I LE 102
E 0% 1 = : 0 LA el bl | fol) Hief ol |FT e b | bt Bl m | =
) Mg MonEVRpPrag XN Ry TxoNx R ToNx Ry TxoNx Ry 102 107! 100 10" 10° 10°
(a) Workloads (b) Hardware Devices (c) Arith Intensity (FLOPS/Byte)

N, 62 @

Motivation

NSAI workloads system characterization

Lo

(B8 Neuro [Symbolic)
nme E

L MNVSA MIMONet LVEF PrAE 102
o

- = I — =19 ”}]
| A . R -
i | 5102l b u| fui I o
{27 1 e |5
12 W B EE

E =1
'é' .Elﬂl I I ey m I I I I I é 10
< || L] P E
55 _:-:_ _:- __:-:_ .-. .-.__. .t LE lﬂ-l
et =
RETAE

et 0 . _
ew.;, v ?xghwﬁrxtmwﬂm?xgwﬁm ?:r_;h-:sf&nf 102 1077 100 10!

‘W‘E-"!

Wurklna-tis (b) Hardware Devices
Neuro-symbolic workload exhibits high latency compared to neural models;
Symbolic component is processed inefficiently on off-the-shelf CPU/GPUs

10¢ 108
(c) Arith Intensity (FLOPS/Byte)

Motivation

NSAI algorithms deployment challenges:

 Memory & compute inefficiency

17

Motivation

NSAI algorithms deployment challenges:

 Memory & compute inefficiency
 Heterogeneous compute kernel

18

Motivation

NSAI algorithms deployment challenges:

Memory & compute inefficiency

Heterogeneous compute kernel

Algorithm diversity

19

Motivation

NSAI algorithms deployment challenges:

Memory & compute inefficiency <:I Efficient and flexible architecture
Heterogeneous compute kernel

Algorithm diversity

20

Motivation

NSAI algorithms deployment challenges:

Memory & compute inefficiency <:I Efficient and flexible architecture
Heterogeneous compute kernel

Automated and customized
FPGA deployment

W J

é FPGA

Algorithm diversity

Motivation

NSFlow

>

Workload Dataflow Architecture Generation
[0 User-provided files
[0 NSFlow-integrated NSAI B i Program Dataflow Graph
“ompile Trace
O NSFlow-generated w“(f::;“d P json) >
= Data/Control flow
\—/_\ [Veetor Conv] [GEMM |
HW-Mapping | <~
iy
\—% Co-explore
Hardware Excutables Generaied Configs
Y Y
- Host Accelerator RTL basic
- . 08 - Host Code blocks
_ Binary | | Compile (-cpp) v
-1 o \p
. § HW Design Instantiation
- =)
i Synthesiz [Accelerator Design
- Bitstream Systolic
i v L ‘BRAM| |URAM | R ‘SIMD| Ctrl
Compile

22

Motivation

NSFlow

Workload Dataflow Architecture Generation
[0 User-provided files
[0 NSFlow-integrated NSAI B i Program Dataflow Graph
“ompile Trace
O NSFlow-generated w“(f::;“d P json) >
—3 Data/Control flow \/‘\
\—/_\ [Veetor Conv] [GEMM |
HW-Mapping | <~
iy
\—% 1 Co-explore
Hardware Excutables Generaied Configs
Y Y
- Host Accelerator System RTL basic
- Bi 08 - Host Code | |Design Config blocks
- inary || Compile (-cpp) (.json) “v)
-1 o \p |
g § HW Design Parameterized_| Instantiation
- = ™
i Synthesiz [Accelerator Design
- Bitstream Systolic
i v L ‘BRAM| |URAM R SIMD| Ctrl
\/\ Compile

100%

80%

60%

40%

Cognitive Task Accuracy (%)

% This Work <— O

reconfigurable

support for
neural & symbolic

| e

Symbolic
Neural (e.g., rules, logic,
O coded knowledge)

Neurosymbolic

10-1 100 10! 10?
Latency (s): @ TPU ©GPU

23

NSFlow Framework

TO SYSTEMS

J

SPONSORED BY GEE@A %ﬁa

NSFlow Framework

An end-to-end automated FPGA framework for
accelerating and deploying generic NSAI workloads.

o0 i & § 0 § § §W
IS

Worklead Dataflow Architecture Generstion Sec. b
[User-provided files Sec V. B Sec. V. B
[0 MSFlow-integrated NEAL sl Pregram Dataflow Graph
okl oompibe
] MEFlaw generated “I P“.I'].d = . [I;-:::r —
<P Data/Controd flow ' '
aia'Control flow “--.-"'"r-“‘ e
Ser. V. [
-ﬁ_f-“"' |'|-\.'\..1:vrl'-\:|l! | CIiERAM |
ata o[HW-Mupping| . &
- Co-cxplore o)
Hardware Excuinbles th:r}rd Configs
k4
-

Campile

Compile

Fynthesing Aty Dol
— anl vrant| | B o | | o

¥ Y
Accelerator System
Haost Code | |Design Cis

{xp {j=on

HW Design Sec. [V Parametermred, | [nstamiiation

Array

PR

puay g

NSFlow Framework

An end-to-end automated FPGA framework for
accelerating and deploying generic NSAI workloads.

> ldentifies data dependency for the workload O NSFlow-integrated

o0 i & § 0 § § §W
IS

Fynthesing

2

Worklead Dataflow Architecture Generation Sec. %
[Userprovided files Bec V. B Sec. V. ¥
NEAL - . PFrogram Dataflow Graph
orkls ompile
[msFlow generated “I P“.I'].d . 3}-:':; —
—» Data/Controd flow ' '
ataCoired floe “--..-r""r-“‘ e
Sec. V. L —
-ﬁ_f-“"' |'|-\.'\..1r\rl'-|.'|' | | CIiERAM |
i o |TW-Mapping | «— v
q..____,f-"“' Co-explore [2ymb Logs |
Hardware Excuinbles ﬂtlnr}rd Configs
¥ ¥
Accelerator System
B3 Hast Code | |[Design Confi
Campile {ap i.jeon

HW Design Sec. [V Parametermred, | [nstamiiation

Accelerator Design
Syatudic
URAM e SIMI | | Cird

Compile

(=

,Hv,
Ao

PR

puay g

NSFlow Framework

An end-to-end automated FPGA framework for
accelerating and deploying generic NSAI workloads.

> ldentifies data dependency for the workload

» Explores design space with parameterizable
HW blocks.

A

’Q\ ;;
\y

0 User provided fles
O MEFlow-integrated
[NSFlow generated
=¥ Data/'Control flow

Hardware

Worklead Dataflow Architecture Generstion Sec. b
Sec. V. B Sec. V. B
NEAL - . PFrogram Dataflow Graph
Wiorklsnd oampie Truce —_
{-p¥l > {.jsan} | LayeelocL]
— ayee |
e, W "
-ﬁ_f-“"' |'|-\.x1r\rl'-|.'|' | | CIiERAM |
ot 5| HVW-Mapping | «— A &
“.\‘-_..-’_,...—-.ﬁ| Co-explore |-‘“Zr"*'_|_-."]:)
Excuinbles ﬂtlnr}rd Configs

o0 i & § 0 § § §W
WA

Lampiie

¥ ¥
Accelerator System
Haost Code | |Design Confi
{cp {j=on

Fynthesiz

2

HW Design Sec. [V Parametermred, | [nstamiiation

Accelerator Design
LiKaM Ej::: IR Cirl

Compile

(=

PR

puay g

NSFlow Framework

An end-to-end automated FPGA framework for
accelerating and deploying generic NSAI workloads.

> ldentifies data dependency for the workload

» Explores design space with parameterizable
HW blocks.

» Generates and deploys optimal dataflow
architecture on FPGA

Worklead

0 User provided fles
O MEFlow-integrated
[NSFlow generated
=¥ Data/'Control flow

NEAIL
Worklead

L.py)

Hardware

Lot

Dataflow Architecture Generstion Sec. b

Sec. V. B Sec. V. B
Pregram Dataflow Graph
Truce — —
o I [Caverlat]]
| Lavesfu] |
Ser. W

w |HW-Mapping
Co=explore

|'|-\.'H.1r\rl'-n'| | CIEDAM |
<« Y

[t Logs |

'ﬂlll’:r}l‘ﬂ Configs

o0 i & § 0 § § §W
WA

Camgpile

Fynthesiz

. { ER.I'I.F'I|
Compile

¥ Y
Accelerator System
Haost Code | |Design Confi
lp {jsom

HW Design Sec. [V Parametermred, | [nstamiiation

Accelerator Design

LiKaM

Syatoli
ArrEy

Sy | | Cird

PR

puay g

NSFlow Framework

An end-to-end automated FPGA framework for
accelerating and deploying generic NSAI workloads.

Worklond Daindflow Architecture Generation Sec. %
.. [Userprovided files Bec V. B Sec. V. ¥
> ldentifies data dependency for the workload O NsFlownigraed | | [NSAL | || Program
. . . ih;l.ul:,:i.z:ﬂ;: -.____I,f;]'-"" " (eon)
» Explores design space with parameterizable iy
HW blocks. N

» Generates and deploys optimal dataflow
architecture on FPGA

v' Enables automated, efficient and scalable
dataflow and architecture solutions for NSA/

g;

Syatulic
‘[BH-!.H| LRAM e S | | Cid

PR

puay g

NSFlow Framework

Frontend

Backend

a

v+t
Compile

BRAM| (URAM

Workload Dataflow Architecture Generation
[] User-provided files
[0 NSFlow-integrated NSAI T Program /" Dataflow Graph \
Workload omp1le Trace
[] NSFlow-generated (zrpy())a = (json) >
=3 Data/Control flow
m HW-Mapping <
Dat .
L > Co-explore | _ P
————— - Hardware— — — — — -Excutables- - - - - =-=-=-=-=-=|- - - —Generaked €onfigs
Y \ 4
- Host Accelerator RTL basie
- Bi 08 Host Code blocks
- mnary Compile (.cpp) (.v)
1¢
E HW Design Parameterized+ Instantiation
1=
i Synthesizé Accelerator Design
- Bitstream Systolic

SIMD | | Ctrl
Array

30

NSFlow Framework

Workload
[] User-provided files
] NSFlow-integrated NSAI
[NSFlow-generated W(zrll:)l(())ad
=3 Data/Control flow)

Frontend

Backend

a

31

NSFlow Framework

‘Workload

[] User-provided files
[0 NSFlow-integrated

[] NSFlow-generated
= Data/Control flow

Frontend

NSAI
Workload

Compile

Dataflow Architecture Generation

(py)

Data

Program
Trace

(.json)

> HW-Mapping

Co-explore

>

(Dataflow Graph \

Backend

a

32

NSFlow Framework

Frontend

Backend

a

Workload

[] User-provided files
[] NSFlow-integrated

[] NSFlow-generated
=3 Data/Control flow

NSAI
Workload

Compile

Dataflow Architecture Generation

(-py)

Data

Program (" Dataflow Graph
Trace
> (.json) >
HW-Mapping | '
> Co-explore \ j
--- —Generaked €onfigs
Y
Accelerator
Host Code

33

NSFlow Framework

Frontend

Backend

a

Workload

[] User-provided files
] NSFlow-integrated

[] NSFlow-generated
=3 Data/Control flow

NSAI
Workload

Compile

Dataflow Architecture Generation

Program

(py)

Trace
> (.json)

—

Data

> HW-Mapping | €—
Co-explore

f Dataflow Graph \
| Layer[n-1] |

[GEMM |

Y

Accelerator
Host Code

(-cpp)

RTL basic

blocks
v)

HW Design Parameterized+ Instantiation
Accelerator Design
Systolic
BRAM| ([URAM SIMD Ctrl
Array

34

NSFlow Framework

Frontend

Backend

a

Workload Dataflow Architecture Generation
[] User-provided files
[] NSFlow-integrated NSAI _— Program /" Dataflow Graph
kl ompile Trace
[] NSFlow-generated W(:py())ad B Ciioi) —>
=3 Data/Control flow
m HW-Mapping | ¢ '
— Hardware— - — - — - Excutables— - —-—-—-—-=-—-—--~- - - - —Gene‘raied €onfigs
Y Y
- Host Accelerator RTL basic
- . o Host Code blocks
i Binary Compile (-cpp) (-v)

11
NvViaa

Bitstream

HW Design

Parameterized+ Instantiation

Synthesiz¢

v++
Compile

Accelerator Design

BRAM| (URAM

Systolic
Array

SIMD

Ctrl

35

NSFlow Backend

Flexible Hardware Architecture

¢é

TO SYSTEMS _
SPONSORED BY GFE[B)A % 3

NSFlow Backend

An accelerator template

w/ RTL blocks parameterizable by config files

Lo

On-chip Cache

C AeLy aoEAg
anndepy

NSFlow Backend

An accelerator template

w/ RTL blocks parameterizable by config files

O Adaptive Systolic Array:

for efficient Neuro & Symbolic processing

Lo

On-chip Cache

© Aeiry ool

NSFlow Backend

Cyelel | Cyele2 | Cyele3 | Cyeled | Cycles.
SRAM | | [srRAM_] [SRAM || [_SRAM
E N l_':r * E 'S _.-;" ¥] E i .';.d' LY £

Bk
O
oo

Example: (A1, AL AR, BL B3 = (AlB] + AJBE + A3B3, AR} + AZB] + ASBI, ALBI + AZRI + AR
|:| Sationary Reg. D Fasking Reg l:l Streaming Reg, I:l Partial S3um Reg. lgl A

Z. Wan, H. Yang, R. Raj et al., "CogSys: Efficient and Scalable Neurosymbolic Cognition System via Algorithm-
Hardware Co-Design," 2025 IEEE International Symposium on High Performance Computer Architecture (HPCA)

NSFlow Backend

Cyvelel | Cpele2 | Cyele3 | Cycled | Crcle S

“-

aand

ARLIY HJ0OIEAG

Example: (A1, AZ, ATNI(BI, BL B3 = (A1B] + AZB2 + AIB3, AIB3 + AZBI + A3B2, A1BI + AZB3 + AIB1)
[sttianary Reg. [[]Passing Reg []Streaming Reg. [Partial Sum Reg. @ Max

r' Enables efficient Vector Symbolic operation processing on systolic array
®,

NSFlow Backend

An accelerator template

w/ RTL blocks parameterizable by config files

O Adaptive Systolic Array:
for efficient Neuro & processing
O SIMD Unit:

for element-wise ops

%

On-chip Cache

NSFlow Backend

An accelerator template

w/ RTL blocks parameterizable by config files

O Adaptive Systolic Array:

for efficient Neuro & processing
O SIMD Unit:

for element-wise ops
O BRAM Blocks:

for flexible on-chip memory

On-chip Cache

ARLIY HJ0OIEAG
anndepy

NSFlow Backend

An accelerator template

w/ RTL blocks parameterizable by config files

O Adaptive Systolic Array:
for efficient Neuro &
d SIMD Unit:
for element-wise ops
O BRAM Blocks:
for flexible on-chip memory
O Control Logic:

for HW-level task scheduling

processing

On-chip Cache

—— - — === —— o —

:n ¥
OG5 d0

ARLIY HJ0OIEAG

anndepy

NSFlow Frontend

Dataflow Architecture Generation (DAG)

¢é

TO SYSTEMS _
SPONSORED BY GFE[B)A % 3

NSFlow Frontend

* Analyze workload characteristics and data dependencies

« Explore optimal HW configurations and dataflow for backend

45

NSFlow Frontend

1. Extract Execution Trace from the workload:

wokload.py

46

NSFlow Frontend

1. Extract Execution Trace from the workload:

wokload.py => et.json

graph () :
// Neuro Operation - CNN (Resnetl8)
%¥relu_1[16,64,160,160] : call _module[relu] (args = (%bnl
[16,64,160,160]))
Fmaxpool 1[16,64,160,160] : call _module[maxpool] (args =
(%relu_1[16,64,160,160]))
%¥conv2d_1[16,64,160,160] : call _module[conv2d] (args =

($maxpool 1[16,64,160,160]))

// Symbolic Operations
// Inverse binding of two block codes vectors by
blockwise cicular correlation

%inv_binding circular 1[1,4,256] : call function[nvsa.
inv_binding_circular] (args = (%vec_0[1,4,256], %
vec_1[1,4,256]))

%inv_binding _circular_2[1,4,256] : call_ function[nvsa.
inv_binding_circular] (args = (%vec_3[1,4,256], %

vec_4[1,4,256]))
// Compute similarity between two block codes vectors

Smatch_prob_1[1] : call_function[nvsa.match_prob] (args
= (%inv_binding_circular_1[1,4,256], %vec_2
[1,4,256]))

// Compute similarity between a dictionary and a batch
of query vectors

$match_prob_multi_batched_1[1]: call_function[nvsa.
match_prob_multi_batched] (args = (%
inv_binding_circular_2[1,4,256], %vec_5[7,4,256]))

sum_1[1] : call_function[torch.sum] (args = (%
match_prob_multi_batched_1[1]))

%$clamp_1[1] : call_function[torch.clamp] (args = (%sum_1
[(11))

gmul_1[1] : call_function[operator.mul] (args = (%

match_prob_1[1], %clamp_1[11))

47

NSFlow Frontend

2. Generate Dataflow Graph for deployment:
Loop 1

i Perform DFS in the :

1 execution graph, and I

< ® I identify critical path for ai
- : single run. !

1

——————————

48

NSFlow Frontend

2. Generate Dataflow Graph for deployment:
Loop 1 Loop 1

L1

v
Ly

i Perform DFS in the 1 Perform BFS and attach :

1
1
1 execution graph, and 1 | 1 same-level operations to
< o lidentify critical path forat : ! operations on the critical I
(- |
y single run. U ath. I
h | S8 ! P I
@, \ ’ \ ’
o B B B B B B B Em B o B B B B Em e

NSFlow Frontend

2. Generate Dataflow Graph for deployment:

Loop 1

i Perform DFS in the

I execution graph, and

I identify critical path for a
: single run.

Y

@
o)
~

Loop 1 Loop 1
i L i L
i Y i v
E L» I L»
:: Ln :: Ln
S S RPrrr ere O
L V1,23 : V2,3 | L1
| v v
[. L
L Va6 | Vie 2
| S !
I L3
V5 | VS
L e e e e e e e
E \Y
Q- o\ Qo Vs
: y Perform BFS and attach | + | EngageLoop2and 1
' 1 same-level operations to , ' attachitonto Loop 1 at ! V4’6
. 1 operations on the critical1 : 1 the time when its : ¢
path. 1 E I compute unit is |
" I' ' '\ available. 1 VS

NSFlow Frontend

2. Generate Dataflow Graph for deployment:

Loop 1
L

v
L

):
/

i Perform DFS in the

1 execution graph, and

I identify critical path for a
: single run.

Loop 1 Loop 1
L i L
4 i v
L> I L»

Ll Vv \%
: | 1,2,3 C , H, W, Nv[0].,2,3
: v(vl,i,3 v[0]) ¢ * . 0y, H, WN, JUD
' +
3 Vg | |senmem IV L L2 0
+
: +
! v wsmmm |y L3 [ttt 5 N2
; Vs _f W N Vs 1 -
: . & J—.—.--—--—-*.Ctnn(H.PV,Ny
E i \Y
i S R V123
+ 1 Perform BFS and attach : ., EngageLoop2and 1
' 1 same-level operationsto ; ' attach it onto Loop 1 at ! V4,6
. 1 operations on the critical1 : 1 the time when its ! ¢
E ! path. 1 . I compute unit is :
! I+ 1 available.] Vs
\ ’ \

—— -

) . \
! Derive runtime
1 .
I functions and ¢
1 calculate memory

I footprint for VSA :
I and NN operations.,

= - -Loop2._ },_ _l:‘\
L !

NSFlow Frontend

3. Explore optimal HW config and array partition strategy

52

NSFlow Frontend

3. Explore optimal HW config and array partition strategy

Algorithm 1: NSFlow Two-Phase DSE Algorithm
Data: R;, Ry, Rangey (H search range), Rangew, (W search

range), M (max #PEs), Iterpae (Phase II max iterations)

Result: H, W, N (total #sub-arrays), N, N,

1 /% Phase I x /
2 for H in Ranger;, W in Rangew do

F=-T--IE RV

==

15 end

N = |M/(H x W)]| /I get total #sub-arrays
for Ny in [1, N) do

/I get optimal HW config for parallel mapping
Set all elements in N; to N;

Set all elements in N, to N — N;

tpara fmacc(tnn(H %% N;) tusa(H, W, Ny))
Save the H,W, N; (and Ny) with minimal tpara-

end
// get sequential runtime
tseq = SE f1,(H, W, N) +

TR'i?l(Zj f’Uj ,temp (.H, W, N)’ Z:,'vaj,spatial (Ha W, N))
/I Set to sequential mode in case it has better performance
Return and set sequential mode if tseq < tparq else Continue

16 /% Phase 11 x [
17 for it in Itermgq. do

-

[T I)
W

[*]
£

25 end

for layer i in R; do

Locate VSA node j' and 7" where layer 7 starts and ends
if tseq < tpara do Nj[i] — —; Ny[i' : "] 4+ +;

else do Ny[i] + +; Ny[j’ : 7] — —;

tpara = Max(tnn(H, W, N;) tysa(H, W, Ny))

Save the H, W, Ny, N, w rflz minimal tpara.

end

26 Return H, W, N, N;, N,.

53

NSFlow Frontend

3. Explore optimal HW config and array partition strategy

Algorithm 1: NSFlow Two-Phase DSE Algorithm

Phase I-. Assuming Static partition, find the Data: R;, R,, Rangeyg (H search range), Rangey, (W search

range), M (max #PEs), Iterpae (Phase II max iterations)

Opt|ma| array S|Ze (H W N) Result: [T, W. N (total #sub-arrays), Nj. N,
’ ’ 1 /% Phase I x /
2 for H in Ranger;, W in Rangew do
N = |M/(H x W)]| /I get total #sub-arrays
for Ny in [1, N) do
/I get optimal HW config for parallel mapping
Set all elements in N; to N;
Set all elements in N, to N — N;
tpara fmacc(tnn(H %% N;) tusa(H, W, Ny))
Save the H, W, N; (and N) with minimal tpara.
end
// get sequential runtime
12 tseq = XS fi,(H,W,N) +
7”"1:”(2; f’Uj ,temP(Hﬂ W, N)’ fovj,spatial (H, w, N))

F=-T--IE RV

==

13 /I Set to sequential mode in case it has better performance
14 Return and set sequential mode if tseq < tparq else Continue
15 end

16 /% Phase 11 x [
17 for it in Itermgq. do
18 for layer i in R; do
19 Locate VSA node j' and 7" where layer 7 starts and ends
if tseq < tpara do Nj[i] — —; Ny[i' : "] 4+ +;
else do Ny[i] + +; Ny[j’ : 7] — —;
tpara = Max(tnn(H, W, N;) tysa(H, W, Ny))
Save the H, W, Ny, N, unlz minimal tpara.
end

=

[T I)
b =

[*]
B

25 end
26 Return H, W, N, N;, N,.

NSFlow Frontend

3. Explore optimal HW config and array partition strategy

Algorithm 1: NSFlow Two-Phase DSE Algorithm

Phase I: Assuming static partition, find the
optimal array size (H, W, N).

Data: R;, R,, Rangeyg (H search range), Rangey, (W search

range), M (max #PEs), Iterpae (Phase II max iterations)

Result: H, W_ N (total #sub-arrays), N;, V.

1 /% Phase I x /

2 for H in Ranger;, W in Rangew do

Phase II: Fine-tune for dynamic partition to
better balance Neuro & at runtime

IS - Y

26

5 end

= |M/(H x W)] /I get total #sub-arrays
for Ny in [1, N) do

/I get optimal HW config for parallel mapping
Set all elements in N; to N;

Set all elements in N, to N — N;

tpara fmacc(tnn(H %% N;) tusa(H, W, Ny))
Save the H, W, N; (and N) with minimal tpara.

// get sequential runtime
tseq = XS fi,(H,W,N) +

771'”1(2; f’Uj ,temP(Hﬂ W, N)’ fovj,spatial (H, w, N))
/I Set to sequential mode in case it has better performance
Return and set sequential mode if tseq < tparq else Continue

/ * Phase 11 % /
for it in Iterpmas do

5 end

for layer i in R; do

Locate VSA node j' and 7" where layer 7 starts and ends

if tseq < tpara do Nj[i] — —; Ny[i' : "] 4+ +;
else do Ny[i] + +; Ny[j’ : 7] — —;

tpara = Max(tnn(H, W, N;) tysa(H, W, Ny))
Save the H, W, Ny, N, w rflz minimal tpara.

Return H, W, N, N;, N,.

55

NSFlow Frontend

3. Explore optimal HW config and array partition strategy

Phase I: Assuming static partition, find the

optimal array size (H, W, N).

Phase II: Fine-tune for dynamic partition to
at runtime

better balance Neuro &

v' Reduces search space x10100

HW config (H, W, N)

Array partition and mapping

Total design space, m = 10

Original

m X (m+1)/2

(N — 1) for each N

10300

DAG

Phasel: 1/4 < H/W < 16

PhaselI: Tter x #layers

10°

a

Algorithm 1: NSFlow Two-Phase DSE Algorithm

1

Data: R;, R,, Rangeyg (H search range), Rangey, (W search
range), M (max #PEs), Iterpae (Phase II max iterations)
Result: H, W_ N (total #sub-arrays), N;, V.

/ ®* Phase I x /

2 for H in Ranger;, W in Rangew do

26

= |M/(H x W)]| /I get total #sub-arrays
for Ny in [1, N) do
/I get optimal HW config for parallel mapping
Set all elements in N; to N;
Set all elements in N, to N — N;
tpara fmacc(tnn(H %% N;) tusa(H, W, Ny))
Save the H, W, N; (and N) with minimal tpara.
end
// get sequential runtime
tseq = XS fi,(H,W,N) +
7”"1:”(2; f’Uj ,temP(Hﬂ W, N)’ fovj,spatial (H, w, N))
/I Set to sequential mode in case it has better performance
Return and set sequential mode if tseq < tparq else Continue

5 end

/ * Phase 11 % /
for it in Iterpmas do

for layer i in R; do
Locate VSA node j' and 7" where layer 7 starts and ends
if tseq < tpara do Nj[i] — —; Ny[i' : "] 4+ +;
else do Ny[i] + +; Ny[j’ : 7] — —;
tpara = Max(tnn(H, W, N;) tysa(H, W, Ny))
Save the H, W, Ny, N, unlz minimal tpara.

end

s end
Return H, W, N, N;, N,.

56

Evaluation

é

TO SYSTEMS _
SPONSORED BY GFE[B)A % 3

Evaluation

Experiments setup
» Workloads:

Algorithms: NVSA, MIMONet, LVRF
Datasets: RAVEN, I-RAVEN, PGM, CVR, and SVRT

» Hardwares:
Baselines: TX2, Xavier NX, Xeon CPU, RTX 3080, ML accelerators (TPU, Xilinx DPU)
FPGA deployment: AMD U250

On-chip

Workloads Precision AdArray Configuration SIMD SRAM Blocks On-chip AMD U250 Utilization Frequenc

Size (BRAM) Cache quency
NN | symb | o S;f,e N Defg‘_‘flt P]fif_m)“on MemAl, MemA2 | Mem B | Mem C | (VRAM) | psp | LUT | FF | BRAM | URAM | LUTRAM
3 ’ l - v

NVSA | INT8 | INT4 | 32, 16, 16 14:2 64 | 27MB, .IMB | 27 MB | 1.6 MB | 162 MB | 89% | 56% | 60% | 34% 8% 24% 272 MHz
MIMONet | INT8 | INT8 | 32, 32, 8 6:2 64 | 34MB, 12 MB | 3.4 MB | 2.1 MB | 20.1 MB | 89% | 44% | 52% | 43% | 10% 20% 272 MHz
LVRF | INTS | INT4 | 32, 16, 16 14:2 64 |27 MB, 096 MB | 2.7 MB | 1.4 MB | 155 MB | 89% | 56% | 60% | 31% 7% 24% 272 MHz

a

58

Evaluation

End-to-end runtime improvement
v’ ~2x speedup over GPU, 2~8x speedup over TPU, ~3x speedup over DPU

—

A Tx2 [INX Xeon CPU RTX 2080 2 TPU-like SA DPU [NSFlow

Eg,ﬂ S EIRE

o

g 20

10 : b

E || e
zﬂ 0 %;.

LVRF MIMONet

>

Evaluation

Mixed-precision optimization

v ~6x Memory reduction

Reasoning Accuracy | FP32 | FP16 | INT8 [MP (IN8 for NN, INT4 for Symb) | INT4
RAVEN [39] 98.9% 198.9% | 98.7% 98.0% 92.5%
[I-RAVEN [16] 99.0% |1 98.9% [98.8% 98.1% 91.3%

PGM [3] 68.7% | 68.6% | 68.4% 67.4% 59.9%
Memory 32MB | 16MB | 8MB 5.5MB 4MB

60

Evaluation

Scalability
v Only 4x runtime increase when symbolic workloads scale by 150x

[ENsFlow [@ w/o Phase 11 DSE @ w/o Phase I (128x64)

210 | 9[:%
== o '-.,"'-.
el E,-w.
g £ SEESE
=) e, .5
b~ LY i .
[] 2 10 VEFE
e — =
g AR Fa—wer AL AT Eel |, 5
0% 5% 10% 20% 0% H0% 80% .

Symbolic data percentage (symb mem footprint / overall mem footprint)

Lo

Conclusion

é

TO SYSTEMS _
SPONSORED BY GFE[B)A % 3

Conclusion

NSFlow is the first end-to-end design automation framework dedicated to
accelerate generic NSAI systems

63

Conclusion

NSFlow is the first end-to-end design automation framework dedicated to
accelerate generic NSAI systems

 Identifies the unique optimization opportunities for NSAI acceleration

64

Conclusion

NSFlow is the first end-to-end design automation framework dedicated to
accelerate generic NSAI systems

 Identifies the unique optimization opportunities for NSAI acceleration
« Explores the dataflow and architecture design space with a novel algorithm

65

Conclusion

NSFlow is the first end-to-end design automation framework dedicated to
accelerate generic NSAI systems

 Identifies the unique optimization opportunities for NSAI acceleration
« Explores the dataflow and architecture design space with a novel algorithm
« Generates a efficient scalable design for FPGA deployment

66

Conclusion

NSFlow paves the way
for advancing efficient cognitive reasoning systems and
unlocking new possibilities in NSAI.

67

Al Security

Systems

_Thank you!

ol | 1
EDA 4 \\,.: ;»:5"‘:-' Pa)

Design

»TO SYSTEMS

SPONSORED BY

	Slide 1: NSFlow: An End-to-End FPGA Framework with Scalable Dataflow Architecture for Neuro-Symbolic AI
	Slide 2: Background
	Slide 3: Background
	Slide 4: Background
	Slide 5: Background - NSAI
	Slide 6: Background - NSAI
	Slide 7: Background - NSAI
	Slide 8: Background - NSAI
	Slide 9: Background - NSAI
	Slide 10: Background - NSAI
	Slide 11: Background - NSAI
	Slide 12: Motivation
	Slide 13: Motivation
	Slide 14: Motivation
	Slide 15: Motivation
	Slide 16: Motivation
	Slide 17: Motivation
	Slide 18: Motivation
	Slide 19: Motivation
	Slide 20: Motivation
	Slide 21: Motivation
	Slide 22: Motivation
	Slide 23: Motivation
	Slide 24: NSFlow Framework
	Slide 25: NSFlow Framework
	Slide 26: NSFlow Framework
	Slide 27: NSFlow Framework
	Slide 28: NSFlow Framework
	Slide 29: NSFlow Framework
	Slide 30: NSFlow Framework
	Slide 31: NSFlow Framework
	Slide 32: NSFlow Framework
	Slide 33: NSFlow Framework
	Slide 34: NSFlow Framework
	Slide 35: NSFlow Framework
	Slide 36: NSFlow Backend Flexible Hardware Architecture
	Slide 37: NSFlow Backend
	Slide 38: NSFlow Backend
	Slide 39: NSFlow Backend
	Slide 40: NSFlow Backend
	Slide 41: NSFlow Backend
	Slide 42: NSFlow Backend
	Slide 43: NSFlow Backend
	Slide 44: NSFlow Frontend Dataflow Architecture Generation (DAG)
	Slide 45: NSFlow Frontend
	Slide 46: NSFlow Frontend
	Slide 47: NSFlow Frontend
	Slide 48: NSFlow Frontend
	Slide 49: NSFlow Frontend
	Slide 50: NSFlow Frontend
	Slide 51: NSFlow Frontend
	Slide 52: NSFlow Frontend
	Slide 53: NSFlow Frontend
	Slide 54: NSFlow Frontend
	Slide 55: NSFlow Frontend
	Slide 56: NSFlow Frontend
	Slide 57: Evaluation
	Slide 58: Evaluation
	Slide 59: Evaluation
	Slide 60: Evaluation
	Slide 61: Evaluation
	Slide 62: Conclusion
	Slide 63: Conclusion
	Slide 64: Conclusion
	Slide 65: Conclusion
	Slide 66: Conclusion
	Slide 67: Conclusion
	Slide 68

