

DESIGN, AUTOMATION & TEST IN EUROPE

14 – 15 March 2022 · on-site event 16 – 23 March 2022 · online event

The European Event for Electronic System Design & Test

FRL-FI: Transient Fault Analysis for Federated Reinforcement Learning-Based Navigation Systems

<u>Zishen Wan¹</u>, Aqeel Anwar¹, Abdulrahman Mahmoud², Tianyu Jia³, Yu-Shun Hsiao², Vijay Janapa Reddi², Arijit Raychowdhury¹

¹ Georgia Institute of Technology, ² Harvard University, ³ Carnegie Mellon University

Safety of Autonomous Navigation

- Swarm intelligence
- Specialized hardware accelerator
- Hardware fault
 - Low operational voltage
 - Technology scaling
- Traditional protection method
 - Hardware module redundancy

Safety of Autonomous Navigation

Swarm intelligence

How is resilience of swarm navigation system to hardware faults?

How do we detect and mitigate hardware faults?

method

Hardware module redundancy

Related Work

Reliability of single-agent autonomous system

[1] A. Toschi et al., NPC'19 [2] Y. Hsiao*, Z. Wan* et al., arXiv'21 [3] Z. Wan et al., DAC'21

How about reliability of multi-agent autonomous system (swarm intelligence)?

Related Work

- Fault characterization
 - Neural network in supervised learning: PytorchFI, Ares, TensorFI

How about reliability of reinforcement learning-based (long-term decision making) system?

- Fault mitigation
 - Hardware redundancy-based method: DMR, TMR

Can we propose an application-aware lightweight protection method?

This Work

Transient Fault Analysis for Federated Reinforcement Learning (FRL) -Based Navigation Systems

Transient fault injection for FRL-based navigation systems

<u>Transient fault characterization for FRL-based navigation systems</u>

Transient fault mitigation for FRL-based navigation systems

This Work

Transient Fault Analysis for Federated Reinforcement Learning (FRL) -Based Navigation Systems

Transient fault injection for FRL-based navigation systems

Transient fault characterization for FRL-based navigation systems

Transient fault mitigation for FRL-based navigation systems

Federated Reinforcement Learning (FRL) System

Policy trained on meta environments (simulator)

--> transfer to real scenarios with fine-tuning

<u>Training:</u> phase with changing explorationexploitation ratio

Inference: a greedy exploitation phase

FRL with Faults

- Fault Type: Transient fault
 - Model: random bit-flip
- Fault localization: memory

Fault injection: static injection and dynamic injection

This Work

Transient Fault Analysis for Federated Reinforcement Learning (FRL) -Based Navigation Systems

<u>Transient fault injection</u> for FRL-based navigation systems

Transient fault characterization for FRL-based navigation systems

Transient fault mitigation for FRL-based navigation systems

Grid-Based Navigation Problem (GridWorld)

 Goal: Start from the source position (), reach the goal state () avoiding getting into hell ()

• Evaluation metric: average agents' success rate

12 Environments

Grid-Based Navigation Problem (GridWorld)

Experiment Overview

- Training (on-device fine-tuning)
 - Transient fault impact
 - Server and agent comparison
 - Single and multi-agent comparison
 - Policy convergence
- Inference
 - Transient fault impact
 - Single and multi-agent comparison

Policy performance in the **free of fault**

Policy performance in the **presence of fault**

Training – Transient Fault Impact

Transient fault occurred in later episodes with high BER has higher impact

Training – Transient Fault Impact

- Transient fault occurred in later episodes with high BER has higher impact
- 0 -> 1 bit-flip has higher impact than 1 -> 0 bit-flip

Training – Server and Agent Comparison

Faults in server:

Faults in agents:

- Server faults have higher impact than agent faults
- **→** Apply fault mitigation method in server

Training – Single and Multi-Agent Comparison

Faults in agents of FRL system:

Faults in single-agent system:

Training – Single and Multi-Agent Comparison

Faults in agents of FRL system:

Faults in single-agent system:

 Multi-agent FRL system exhibits higher performance and resilience than singleagent system

Training - Single and Multi-Agent Comparison

TABLE I: [GridWorld] Standard deviation (std) of the consensus policy. Larger std indicates better differentiation between good and bad actions. Multi-agent system has higher std than single-agent system, indicating its higher performance and resilience. n means #agents.

(The larger of the value, the better of policy generalizability)

- Multi-agent FRL system exhibits higher performance and resilience than singleagent system
- Policy in multi-agent system is able to generalize better

Training – Policy Convergence

Question: Whether policy can finally converge after faults occurred?

Faults are injected at 900th episode with different BER

Training – Policy Convergence

Question: Whether policy can finally converge after faults occurred?

- Faults are injected at 900th episode with different BER
- The episodes taken to converge after fault injected

Training – Policy Convergence

Question: Whether policy can finally converge after faults occurred?

- Faults are injected at 900th episode with different BER
- The episodes taken to converge after fault injected

 Transient faults will NOT affect policy convergence with longer fine-tuning training time

Inference – Transient Fault Impact

Multi-Trans-M: faults affect <u>all following action steps</u> Multi-Trans-1: faults affect one action step

- The sequential decision-making procedure of FRL system
 - One action step fault does not necessarily result in task failure

Inference-Single and Multi-Agent Comparison

Multi-Trans-M:

faults affect all following action steps (FRL System)

Single-Trans-M:

faults affect all following action steps (Single-agent sys)

Multi-agent FRL system is more resilient than single-agent system

Drone Autonomous Navigation Problem

Environments and Demos

(Powered by Unreal Engine and AirSim)

Policy Architecture

Evaluation Metric

 Drone safe flight distance (the longer, the better)

Drone Autonomous Navigation Problem

Environments and Demos

(Powered by Unreal Engine and AirSim)

Experiment Overview

- Training (on-device fine-tuning)
 - Transient fault impact
 - Single and multi-agent comparison
 - Different number of drones
 - Different communication intervals
- Inference
 - Different layer type
 - Different data type

Training – Transient Fault Impact

FRL system: faults in agent

 Faults occurred in later fine-tuning episodes with a higher BER impact the system more

Training – Single and Multi-Drone Comparison

FRL system: faults in agent

FRL system: faults in server

Single-agent system

Training – Single and Multi-Drone Comparison

 Multi-drone FRL system exhibit higher performance and resilience than single-drone system.

Training – Number of Drones

(6/4/2, Server): (Total number of drones, faults in server)

More drones helps improve FRL system resilience

Training – Number of Drones

More drones helps improve FRL system resilience

Training – Communication Interval

 Longer communication interval makes FRL system more vulnerable to agent faults

Training – Communication Interval

Longer communication interval alleviates impact of server fault

Training – Communication Interval

Longer communication interval reduce communication cost

Inference – Layer Type

 Pooling and activation operations make layers more robust since bitflips have higher probability of being masked and ceased propagation

This Work

Transient Fault Analysis for Federated Reinforcement Learning (FRL) -Based Navigation Systems

Transient fault injection for FRL-based navigation systems

Transient fault characterization for FRL-based navigation systems

Transient fault mitigation for FRL-based navigation systems

Training – Server Checkpointing

• Fault Indicator: Cumulative reward drop exceeds x% within y consecutive episodes (x and y are parameters)

Fault in Agent

Detection: agent i reward drop

Fault in Server

Detection: more than half of agents reward drop

Training – Server Checkpointing

- Fault Indicator: Cumulative reward drop exceeds x% within y consecutive episodes (x and y are parameters)
- <u>Fault Mitigation</u>: save checkpoint in server and update every 5 communication intervals

Fault in Agent

- Detection: agent i reward drop
- Recovery: copy server checkpoint to agent i memory

Fault in Server

- Detection: more than half of agents reward drop
- Recovery: copy server checkpoint to server memory

Training – Server Checkpointing

Evaluation

The impact of transient fault during training can be alleviated

- Detection: Statistically anomaly detection, (ai, bi) -> (1.1ai, 1.1bi)
- Recovery: skip faulty operations

- Detection: Statistically anomaly detection, (ai, bi) -> (1.1ai, 1.1bi)
- Recovery: skip faulty operations
- Evaluation:

Compute overhead

	AirSim Drone	
Type	mini-UAV	
Size (mm)	650	
Weight (g)	1652	
Battery	6250	
Capacity (mAh)		

- Using a drone roofline-like performance model rishnan et al, CAL 2020]
- Negligible overhead compared to DMR, TMR

Compute overhead

	AirSim Drone	DJI Spark
Type	mini-UAV	micro-UAV
Size (mm)	650	170
Weight (g)	1652	300
Battery	6250	1480
Capacity (mAh)	0230	

- Using a drone roofline-like performance model [Krishnan et al, CAL 2020]
- Negligible overhead compared to DMR, TMR

Drone Flight Trajectory Demo

No Fault:

Drone Flight Trajectory Demo

No Fault:

Drone Flight Trajectory Demo

No Fault:

Fault mitigation:

In This Talk

Transient Fault Analysis for Federated Reinforcement Learning (FRL) -Based Navigation Systems

The safety and reliability of swarm intelligence navigation systems is important, but not well understood

A fault injection
framework that emulates
hardware faults and
enables rapid fault
analysis of FRL systems

Large-scale fault injection study in both training and inference stages of FRL systems against transient faults

Low-overhead fault detection and recovery techniques for both training and inference