

Paper

H3DFact: Heterogeneous 3D Integrated CIM for Factorization with Holographic Perceptual Representations

Zishen Wan* , Che-Kai Liu* , Mohamed Ibrahim, Hanchen Yang, Samuel Spetalnick, Tushar Krishna, Arijit Raychowdhury (*Equal Contributions)

Georgia Institute of Technology

SRC TECHCON 09/09/2024, Session 8.1 zishenwan@gatech.edu

JUMP 2.0-CoCoSys-3131.005

Presenter

Presenter:ZishenWan

- **PhD Student at Georgia Tech**
- Advisors: Prof.Arijit Raychowdhury and Prof.Tushar Krishna
- SRC Research Scholar (CBRIC, CoCoSys)

Webpage: https://zishenwan.github.io

Outline

- Hierarchical Cognition
- Background Holographic Vector Factorization
- H3DFact
	- Architecture
	- Floorplan
	- Interconnect
	- Circuitry
- Evaluation Results
- Conclusion

Outline

- Hierarchical Cognition
- Background Holographic Vector Factorization
- H3DFact
	- Architecture
	- Floorplan
	- Interconnect
	- Circuitry
- Evaluation Results
- Conclusion

Human-like Hierarchical Cognition

- **Hierarchical Cognition Procedure**: Perception Reasoning Control.
- Perception is the foundation for high-order cognition, like problem thinking and reasoning.
- **Disentangling the attributes of sensory signal** is central to sensory perception and cognition,
	- hence a critical task for future AI and neuro-symbolic systems.

(figure generated by DALL.E)

7

Foundational Unbinding problem:separate causes of a raw sensory signal that contain multiple attributes.

(figure generated by DALL.E)

Foundational Unbinding problem:separate causes of a raw sensory signal that contain multiple attributes. **Examples**:

- Pixel intensities sensed by photoreceptors: from the combination of different physical attributes.
- Observed luminance at a point: from a multiplicative combination of reflectance and shading

(figure generated by DALL.E)

Foundational Unbinding problem:separate causes of a raw sensory signal that contain multiple attributes. **Examples**:

- Pixel intensities sensed by photoreceptors: from the combination of different physical attributes.
- Observed luminance at a point: from a multiplicative combination of reflectance and shading

Factorization Problem

Zishen Wan | School of ECE | Georgia Institute of Technology | UMP2.0-CoCoSys-3131.005

9

(figure generated by DALL.E)

Foundational Unbinding problem:separate causes of a raw sensory signal that contain multiple attributes. **Examples**:

- Pixel intensities sensed by photoreceptors: from the combination of different physical attributes.
- Observed luminance at a point: from a multiplicative combination of reflectance and shading

Factorization Problem

- Factoring scene pixels into persistent and dynamic components
- Factoring sentence structure into roles and fillers
- Factoring cognitive analogical reasoning

Outline

- Hierarchical Cognition
- Background Holographic Vector Factorization
- H3DFact
	- Architecture
	- Floorplan
	- Interconnect
	- Circuitry
- Evaluation Results
- Conclusion

- **HolographicVector Factorization**: brain-inspired vector-symbolic architecture.
- Each sensory attribute is **encoded** and **processed** using a unique holographic vector, thereby creating distinct and separable representations. Langenegger et al,"In-memory factorization of holographic

perceptual representations", Nature Nanotechnology, 2024

R

Step 1: Unbinding

• **Step 1 Unbinding:** unbinding the contribution of the other factors from product vector

Langenegger et al,"In-memory factorization of holographic perceptual representations", Nature Nanotechnology, 2024

- **Step 1 Unbinding:** unbinding the contribution of the other factors from product vector
- **Step 2 Similarity:** compute similarity values for each unbound estimate

- **Step 1 Unbinding:** unbinding the contribution of the other factors from product vector
- **Step 2 Similarity:** compute similarity values for each unbound estimate
- **Step 3 Projection:** compute the factors for the subsequent time step

Challenge 1: Intensive computation

Dominated by matrix-vector multiplication operations

Challenge 2: Limited scalability

Factorization accuracy drops greatly with increasing the problem size

Challenge 3: CPU/GPU stuck in limited cycle Factorization constantly end up checking the same solutions

H3DFact

How to enable **efficient** and **scalable** factorization of holographic vector representations for human-like sensory cognitive perception?

Outline

- Hierarchical Cognition
- Background Holographic Vector Factorization
- H3DFact
	- Architecture
	- Floorplan
	- Interconnect
	- Circuitry
- Evaluation Results
- Conclusion

H3DFact Features

Challenge 1: Intensive computation

Dominated by matrix-vector multiplication operations

Challenge 2: Limited scalability

Factorization accuracy drops greatly with increasing the problem size

Challenge 3: CPU/GPU stuck in limited cycle Factorization constantly end up checking the same solutions

Feature 1: Computation-in-superposition CIM paradigm for **efficient** factorization computation

Feature 2: Heterogeneous 3D integration system design for **scalable** factorization computation

Feature 3:

Nanoscale memristive devices intrinsic **stochasticity** to break the factorization limited cycles

Three-Tier architecture:

- Tier I (bottom):
	- Technology: 16nm SRAM, peripheral, logic
	- Operations: unbinding, others

Three-Tier architecture: • Operations: similarity • Tier 2 (middle): Technology: 40nm RRAM • Operations: projection • Tier I (bottom): • Technology: 16nm SRAM, peripheral, logic • Operations: unbinding, others

Compute-In-Memory for Projection and Similarity

SRC

Langenegger et al,"In-memory factorization of holographic perceptual representations", Nature Nanotechnology, 2024

Three-Tier architecture: • Operations: similarity • Tier 2 (middle): Technology: 40nm RRAM • Operations: projection • Tier I (bottom): • Technology: 16nm SRAM, peripheral, logic • Operations: unbinding, others

SRC

Three-Tier architecture:

- Tier 3 (top):
	- Technology: 40nm RRAM
	- Operations: similarity
- Tier 2 (middle):
	- Technology: 40nm RRAM
	- Operations: projection
- Tier I (bottom):
	- Technology: 16nm SRAM, peripheral, logic
	- Operations: unbinding, others

Three-Tier architecture:

- Tier 3 (top):
	- Technology: 40nm RRAM
	- Operations: similarity
- Tier 2 (middle):
	- Technology: 40nm RRAM
	- Operations: projection
- Tier I (bottom):
	- Technology: 16nm SRAM, peripheral, logic
	- Operations: unbinding, others

Advantage of heterogeneous 3D integration: enable (1) different technology nodes, (2) hybrid memories, (3) high density

Three-Tier architecture:

- Tier 3 (top):
	- Technology: 40nm RRAM
	- Operations: similarity
- Tier 2 (middle):
	- Technology: 40nm RRAM
	- Operations: projection
- Tier I (bottom):
	- Technology: 16nm SRAM, peripheral, logic
	- Operations: unbinding, others

Advantage of heterogeneous 3D integration: enable (1) different technology nodes, (2) hybrid memories, (3) high density Advantages of compute-in-memory: enable (1) efficient factorization, (2) break stuck cycle with device stochasticity

SRC

Three-Tier architecture:

- Tier 3 (top):
	- Technology: 40nm RRAM
	- Operations: similarity
- Tier 2 (middle):
	- Technology: 40nm RRAM
	- Operations: projection
- Tier I (bottom):
	- Technology: 16nm SRAM, peripheral, logic
	- Operations: unbinding, others

H3DFact features a 3-tier architecture,

Three-Tier architecture:

• Tier 3 (top):

- Technology: 40nm RRAM
- Operations: similarity
- Tier 2 (middle):
	- Technology: 40nm RRAM
	- Operations: projection
	- Tier I (bottom):
		- Technology: 16nm SRAM, peripheral, logic
		- Operations: unbinding, others

H3DFact features a 3-tier architecture, considering of data traversing format (analog/digital),

SRC

Three-Tier architecture:

- Tier 3 (top):
	- Technology: 40nm RRAM
	- Operations: similarity
- Tier 2 (middle):
	- Technology: 40nm RRAM
	- Operations: projection
- Tier I (bottom):
	- Technology: 16nm SRAM, peripheral, logic
	- Operations: unbinding, others

H3DFact features a 3-tier architecture, considering of data traversing format (analog/digital), one RRAM tier is activated at any given time

H3DFACT Hardware Architecture

Floorplan:

SRC

• Tier-2/3 RRAM: each tier has four RRAM subarrays, each RRAM subarray has 256x256 size

Floorplan:

- Tier-2/3 RRAM: each tier has four RRAM subarrays, each RRAM subarray has 256x256 size
- Tier-1 SRAM, digital, and peripherals: External pins and bumps

DCAP

ೲ

Bias

ō Dig.

 $\overline{\text{ss}}$

Buffe

SRAM RRAM

Floorplan:

SRC

• Tier-2/3 RRAM: each tier has four RRAM subarrays, each RRAM subarray has 256x256 size

RRAM Prog.

RRAM

TSV

RRAM Prog.

RRAM

Calibrated

ADC

Calibrated

ADC

TSV

Shifter
Shifter

Level:

solation \mathbf{S}

TSV: RRAM Out / Dig. In

TSV: RRAM Out / Dig. In Bias & DCAP

ೱ

RRAM Prog.

RRAM

TSV

RRAM Prog.

RRAM

TSV

Calibrated

ADC

Calibrated

ADC

DCAP

න්

Bias

ō

Dig.

 $\overline{\text{ss}}$

Buffe

SRAM RRAM

- Tier-1 SRAM, digital, and peripherals: External pins and bumps
- Generalized design method to determine hardware configurations

Interconnect & Bonding:

- Interconnect: through-silicon vias (TSVs). One (MxN) RRAM subarray needs (M+N+N/2) TSVs
- Bonding: mix of face-to-face (F2F) and face-to-back (F2B) bonding **SRC**

- **Circuitry**: capable of executing high-dimensional bipolar space $({-1, +1})^D$
	- **-1's counter and adder**: process bipolar quantities

- **Circuitry**: capable of executing high-dimensional bipolar space $({-1, +1})^D$
- **Isolated switches**: protect peripherals against high-voltages for RRAM setting and resetting

- **Circuitry**: capable of executing high-dimensional bipolar space $({-1, +1})^D$
- **Isolated switches**: protect peripherals against high-voltages for RRAM setting and resetting
- **Voltage regulation**: power supply (AVDD) with operational amplifier

- **Circuitry**: capable of executing high-dimensional bipolar space $({-1, +1})^D$
- **Isolated switches**: protect peripherals against high-voltages for RRAM setting and resetting
- **Voltage regulation**: power supply (AVDD) with operational amplifier
- **Current-sensing resistor (Rsense)**: enhance the process-voltage-temperature (PVT) immunity

- **Circuitry**: capable of executing high-dimensional bipolar space $({-1, +1})^D$
- **Isolated switches**: protect peripherals against high-voltages for RRAM setting and resetting
- **Voltage regulation**: power supply (AVDD) with operational amplifier
- **Current-sensing resistor (Rsense)**: enhance the process-voltage-temperature (PVT) immunity
- **Power mode**: allow for different power-off models when enabling other tiers to remain active

- **Circuitry**: capable of executing high-dimensional bipolar space $({-1, +1})^D$
- **Isolated switches**: protect peripherals against high-voltages for RRAM setting and resetting
- **Voltage regulation**: power supply (AVDD) with operational amplifier
- **Current-sensing resistor (Rsense)**: enhance the process-voltage-temperature (PVT) immunity
- **Power mode**: allow for different power-off models when enabling other tiers to remain active
- **Hybrid memory**: RRAM for read-intensive operations, SRAM for write-intensive operations

H3DFact Architecture – Stochastic Factorizer

Deterministic factorization

Stuck in the local minima and long convergence time

44

H3DFact Architecture – Stochastic Factorizer

Deterministic factorization **H3D RRAM/SRAM-based stochastic factorization**

Stuck in the local minima and long convergence time Intrinsic stochasticity of memristive devices can break being stuck at limited cycles, enabling ability to explore larger space

Outline

- Hierarchical Cognition
- Background Holographic Vector Factorization
- H3DFact
	- Architecture
	- Floorplan
	- Interconnect
	- Circuitry
- Evaluation Results
- Conclusion

Evaluation – Accuracy and Operational Capacity

F: number of attributes D: vector dimensions

H3DFact enhances and maintains accuracy under high dimensionality -> improved scalability and operational capacity

Evaluation – Accuracy and Operational Capacity

Number of iterations required to reach at least 99% accuracy under different problem sizes.

F: number of attributes D: vector dimensions

H3DFact enhances and maintains accuracy under high dimensionality -> improved scalability and operational capacity H3DFACT enables faster convergence and solves larger problem -> lowering computational cost

SRC

Compared to fully SRAM 2D and hybrid SRAM/RRAM 2D design, H3DFact achieves more compact silicon footprint,

SRC

Compared to fully SRAM 2D and hybrid SRAM/RRAM 2D design, H3DFact achieves more compact silicon footprint,

SRC

Compared to fully SRAM 2D and hybrid SRAM/RRAM 2D design, H3DFact achieves more compact silicon footprint, higher compute density,

SRC

Compared to fully SRAM 2D and hybrid SRAM/RRAM 2D design, H3DFact achieves more compact silicon footprint, higher compute density, and higher energy efficiency

SRC

Compared to fully SRAM 2D and hybrid SRAM/RRAM 2D design, H3DFact achieves more compact silicon footprint, higher compute density, and higher energy efficiency

Evaluation – Thermal Analysis

H3DFact tier temperature ranges from 46.8-47.8°C (2D design 44°C), within SRAM/RRAM thermal limits

Evaluation – Robustness and Convergence Speedup

Lowering ADC precision can reduce hardware costs and enable faster convergence of holographic perceptual factorization with similar accuracy.

Evaluation – 2D RRAM Chip Validation

Chang et al,"A 40nm RRAM/SRAM system with embedded cortex M3 microprocessor for edge recommendation systems", ISSCC, 2022

Fabricated TSMC 40nm RRAM testchip validated H3DFACT achieves > 96% factorization accuracy at one-shot and reaches 99% accuracy after 25 iterations

Evaluation – Holographic Perception Task

Evaluated on the relational and analogical visual reasoning (RAVEN) dataset, H3DFACT achieves 99.4% accuracy of attributes estimation

Outline

- Hierarchical Cognition
- Background Holographic Vector Factorization
- H3DFact
	- Architecture
	- Floorplan
	- Interconnect
	- Circuitry
- Evaluation Results
- Conclusion

Conclusion

• Needs to factorize holographic perceptual repres

- Fundamental to human-like [hierarchical](mailto:zishenwan@gatech.edu) cognitive prog
- Factorization is challenging: intensive [compute,](http://zishenwan.github.io/) limited

• **H3DFact: towards efficient and scalable holographic factorization**

- Heterogeneous 3D architecture
- Hybrid SRAM/RRAM compute-in-memory
- Intrinsic stochasticity for improved convergence

Reach to me at: zishenwan@gatech.edu Learn more about our work at: http://zishenwan.github.io

Semiconductor **Research** Corporation®

