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Human-like Hierarchical Cognition
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PERCEPTION

REASONING CONTROL

Hierarchical Cognition Procedure: Perception — Reasoning — Control.

Perception is the foundation for high-order cognition, like problem thinking and reasoning.
Disentangling the attributes of sensory signal is central to sensory perception and cognition,
hence a critical task for future Al and neuro-symbolic systems.
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Perception Problem — Disentangle Sensory Attributes
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Perception Problem — Disentangle Sensory Attributes

Foundational Unbinding problem: separate causes of a
raw sensory signal that contain multiple attributes.

(figure generated by DALL.E)
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Perception Problem — Disentangle Sensory Attributes

Foundational Unbinding problem: separate causes of a
raw sensory signal that contain multiple attributes.
Inlicties nincries ; Examples:
& * Pixel intensities sensed by photoreceptors: from the
combination of different physical attributes.
* Observed luminance at a point: from a multiplicative
combination of reflectance and shading

(figure generated by DALL.E)
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Perception Problem — Disentangle Sensory Attributes

Foundational Unbinding problem: separate causes of a
raw sensory signal that contain multiple attributes.
Inlicties nincries 7 Examples:
* Pixel intensities sensed by photoreceptors: from the
combination of different physical attributes.
* Observed luminance at a point: from a multiplicative
combination of reflectance and shading

l

Factorization Problem

(figure generated by DALL.E)
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Perception Problem — Disentangle Sensory Attributes

Foundational Unbinding problem: separate causes of a
raw sensory signal that contain multiple attributes.
Inlicties nincries 7 Examples:
* Pixel intensities sensed by photoreceptors: from the
combination of different physical attributes.
* Observed luminance at a point: from a multiplicative
combination of reflectance and shading

l

Factorization Problem

* Factoring scene pixels into persistent and dynamic components
* Factoring sentence structure into roles and fillers
* Factoring cognitive analogical reasoning

(figure generated by DALL.E)
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Holographic Vector Factorization

Convolutional neural network
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* HolographicVector Factorization: brain-inspired vector-symbolic architecture.
* Each sensory attribute is encoded and processed using a unique holographic vector, thereby
creating distinct and separable representations.

Langenegger et al,“In-memory factorization of holographic
perceptual representations”, Nature Nanotechnology, 2024
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Holographic Vector Factorization
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Step I:
Unbinding

* Step | Unbinding: unbinding the contribution of the other factors from product vector

Langenegger et al,“In-memory factorization of holographic

@ SR c perceptual representations”, Nature Nanotechnology, 2024
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Holographic Vector Factorization
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Step I: Step 2: Step 3:
Unbinding Similarity Projection

* Step | Unbinding: unbinding the contribution of the other factors from product vector
* Step 2 Similarity: compute similarity values for each unbound estimate
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Holographic Vector Factorization
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Step I: Step 2: Step 3:
Unbinding Similarity Projection

* Step | Unbinding: unbinding the contribution of the other factors from product vector
* Step 2 Similarity: compute similarity values for each unbound estimate

@ * Step 3 Projection: compute the factors for the subsequent time step
S

SRCTECHCON 2024 Zishen Wan | School of ECE | Georgia Institute of Technology JUMP2.0-CoCoSys-3131.005



Challenges

O
Factorization Computation §100 Cn x(D) ?
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Challenge I: Challenge 2: Challenge 3:
Intensive computation Limited scalability CPU/GPU stuck in limited cycle
Dominated by matrix-vector Factorization accuracy drops greatly  Factorization constantly end up checking
multiplication operations with increasing the problem size the same solutions
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H3DFact
'How<to enable efficient and scalable

factorization of holographic vector representations
for human-like sensory cognitive perception!?
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H3DFact Features

Factorization Computation
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Feature I:

Computation-in-superposition
CIM paradigm for efficient
factorization computation

Feature 2:

Feature 3:

~

Heterogeneous 3D integration Nanoscale memristive devices
system design for scalable intrinsic stochasticity to break the

factorization computation

factorization limited cycles

_/
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H3gDFact Architecture - Overview
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H3gDFact Architecture - Overview

H3DFACT Factorization
Hardware Architecture ™ - Operations
A
/”“L,/ W Tier 3:
= R
Similarity

Tier 2:
Projection

@ Analog Signal

Tier 1:

Unbinding
& Others

Three-Tier architecture:

e Tier | (bottom):
* Technology: |6nm SRAM,
peripheral, logic

* Operations: unbinding, others

SRCTECHCON 2024
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H3gDFact Architecture - Overview

H3DFACT Factorization
Hardware Architecture ™ - Operations
A
/”“L,/ W Tier 3:
= R
Similarity

Tier 2:
Projection

@ Analog Signal

Tier 1:
Unbinding
& Others

Three-Tier architecture:

* Tier 2 (middle):
e Technology: 40nm RRAM
* Operations: projection
e Tier | (bottom):
* Technology: |6nm SRAM,
peripheral, logic

* Operations: unbinding, others
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Compute-In-Memory for Projection and Similarity

@ SRC
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Langenegger et al,“In-memory
factorization of holographic
perceptual representations”,

Nature Nanotechnology, 2024
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H3gDFact Architecture - Overview

H3DFACT Factorization
Hardware Architecture ™ - Operations
A
/”“L,/ W Tier 3:
= R
Similarity

Tier 2:
Projection

@ Analog Signal

Tier 1:
Unbinding
& Others

Three-Tier architecture:

* Tier 2 (middle):
e Technology: 40nm RRAM
* Operations: projection
e Tier | (bottom):
* Technology: |6nm SRAM,
peripheral, logic

* Operations: unbinding, others
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H3gDFact Architecture - Overview

H3DFAcCT
Hardware Architecture s -
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> Similarity

Factorization
Operations

Tier 2:
Projection

@ Analog Signal

Tier 1:

Unbinding
& Others

Three-Tier architecture:
* Tier 3 (top):
e Technology: 40nm RRAM
* Operations: similarity
* Tier 2 (middle):
e Technology: 40nm RRAM
* Operations: projection
e Tier | (bottom):
* Technology: |6nm SRAM,
peripheral, logic

* Operations: unbinding, others
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H3gDFact Architecture - Overview

H3DFAcCT Factorization i - .
Hardware Architecture ~ ——  Operations Three-Tier architecture:

7 . * Tier 3 (top):
) e * Technology: 40nm RRAM
Similarity . L.
* Operations: similarity
* Tier 2 (middle):
e Technology: 40nm RRAM

Tier 2:
Projection

@ Analog Signal

Operations: projection
e Tier | (bottom):

o * Technology: |6nm SRAM,

Unbinding eripheral, logic
& Others PErip 198

* Operations: unbinding, others

Advantage of heterogeneous 3D integration

@ SRC
SRCTECHCON 2024

:enable (1) different technology nodes, (2) hybrid memories, (3) high density

Zishen Wan | School of ECE | Georgia Institute of Technology JUMP2.0-CoCoSys-3131.005 26



H3gDFact Architecture - Overview

H3DFAcCT Factorization i - .
Hardware Architecture ~ ——  Operations Three-Tier architecture:

- 7 77 * Tier 3 (top):
S f  Technology: 40nm RRAM
Similarity . L.
* Operations: similarity
* Tier 2 (middle):
e Technology: 40nm RRAM

Tier 2:
Projection

@ Analog Signal

Operations: projection
e Tier | (bottom):

o * Technology: |6nm SRAM,

Unbinding eripheral, logic
& Others PErip 198

* Operations: unbinding, others

Advantage of heterogeneous 3D integration

Advantages of compute-in-memory: enable (1) efficient factorization, (2) break stuck cycle with device stochasticity

@ SRC
SRCTECHCON 2024

:enable (1) different technology nodes, (2) hybrid memories, (3) high density

Zishen Wan | School of ECE | Georgia Institute of Technology JUMP2.0-CoCoSys-3131.005 27



H3gDFact Architecture - Overview

H3DFAcCT
Hardware Architecture
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Tier 1:

Unbinding
& Others

Three-Tier architecture:
* Tier 3 (top):
e Technology: 40nm RRAM
* Operations: similarity
* Tier 2 (middle):
e Technology: 40nm RRAM
* Operations: projection
e Tier | (bottom):
* Technology: |6nm SRAM,
peripheral, logic

* Operations: unbinding, others
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H3gDFact Architecture - Overview

H3DFAcCT Factorization i - .
Hardware Architecture ~ ——  Operations Three-Tier architecture:
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* Operations: similarity
* Tier 2 (middle):
e Technology: 40nm RRAM
* Operations: projection
\- Tier | (bottom):
* Technology: |6nm SRAM,
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@ Analog Signal

Tier 1:
Unbinding
& Others

* Operations: unbinding, others
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H3gDFact Architecture - Overview

H3DFAcCT Factorization i - .
Hardware Architecture ~ ——  Operations Three-Tier architecture:

T * Tier 3 (top):
WW e Technology: 40nm RRAM
Similarity . L.
* Operations: similarity
* Tier 2 (middle):
e Technology: 40nm RRAM
* Operations: projection

e Tier | (bottom):

Tier 2:
Projection

@ Analog Signal

o * Technology: |6nm SRAM,

Unbinding
& Others

peripheral, logic

* Operations: unbinding, others

H3DFact features a 3-tier architecture, considering of data traversing format (analog/digital), one RRAM tier is
activated at any given time
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H3DFact Architecture — Floorplan and Interconnect
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H3DFact Architecture — Floorplan and Interconnect

H3DFAcT
Hardware Architecture

Z

Z

SR/ M

32

JUMP2.0-CoCoSys-3131.005

Zishen Wan | School of ECE | Georgia Institute of Technology

@ SRC
SRCTECHCON 2024




H3DFact Architecture — Floorplan and Interconnect
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Floorplan:

* Tier-2/3 RRAM: each tier has four RRAM subarrays, each RRAM subarray has 256x256 size
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H3DFact Architecture — Floorplan and Interconnect

H3DFAcCT ! RRAMProg.__| & RRAM P
Hardware Architecture o "_é A
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Floorplan:
* Tier-2/3 RRAM: each tier has four RRAM subarrays, each RRAM subarray has 256x256 size
* Tier-1 SRAM, digital, and peripherals: External pins and bumps
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H3DFact Architecture — Floorplan and Interconnect

H3DFAcCT ! RRAM Prog.__| g RRAM P
Hardware Architecture A £
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(b) Bias & DCAP

Floorplan:
* Tier-2/3 RRAM: each tier has four RRAM subarrays, each RRAM subarray has 256x256 size
* Tier-1 SRAM, digital, and peripherals: External pins and bumps

@ c * Generalized design method to determine hardware configurations
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H3DFact Architecture — Floorplan and Interconnect
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Interconnect & Bonding:
* Interconnect: through-silicon vias (TSVs). One (MxN) RRAM subarray needs (M+N+N/2) TSVs
@ * Bonding: mix of face-to-face (F2F) and face-to-back (F2B) bonding
S
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H3gDFact Architecture — Circuit Details
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H3gDFact Architecture — Circuit Details

| RRAM Programming ] I RRAM Programming ] DCAP WR Col. Sel. / Iso. Bias
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 Circuitry: capable of executing high-dimensional bipolar space ({-1, +1})P

@ SRC

e -1’s counter and adder: process bipolar quantities
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H3gDFact Architecture — Circuit Details

| RRAM Programming ] I RRAM Programming ] DCAP WR Col. Sel. / Iso. Bias
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(a) TSVs A TSVs CLK Buf. TSVs to T1 SAR-ADC Adder

 Circuitry: capable of executing high-dimensional bipolar space ({-1, +1})P
Isolated switches: protect peripherals against high-voltages for RRAM setting and resetting

@ SRC
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H3gDFact Architecture — Circuit Details

@ SRC

| RRAM Programming ] I RRAM Programming ] DCAP WR Col. Sel. / Iso. Bias
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 Circuitry: capable of executing high-dimensional bipolar space ({-1, +1})P
* Isolated switches: protect peripherals against high-voltages for RRAM setting and resetting

* Voltage regulation: power supply (AVDD) with operational amplifier
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H3gDFact Architecture — Circuit Details

@ SRC

| RRAM Programming ] I RRAM Programming ] DCAP WR Col. Sel. / Iso. Bias
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Circuitry: capable of executing high-dimensional bipolar space ({-1, +1})°

Isolated switches: protect peripherals against high-voltages for RRAM setting and resetting
Voltage regulation: power supply (AVDD) with operational amplifier

Current-sensing resistor (Rsense): enhance the process-voltage-temperature (PVT) immunity
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H3gDFact Architecture — Circuit Details

@ SRC

| RRAM Programming ] I RRAM Programming ] DCAP WR Col. Sel. / Iso. Bias

S 2 i)

2 | |40nm RRAM “ | | 40nm RRAM . % @ @ @ @ g ©
2|2 Jﬂyw J'a’fww ;W allg|l 3
|l s i N A - L (&)

TSVs TSVs 2181 LA W LA - LK v all 5] =
| RRAM Programming_J | RRAM Programming I % [ P : N 14 ‘E o
g19] Licd T Lacdt Licadr |23 2
o @ AVDD _ L AvDD avoo 4 > | x|l 3
2 | |[4onm RRAM [ £ | |40nm RRAM &ﬁ e o "

—— Rsense Rsense "

CLK | | 1 |

(@) _ TSVs A TSVs CLK Buf. TSVs to T1 SAR-ADC el

Circuitry: capable of executing high-dimensional bipolar space ({-1, +1})°

Isolated switches: protect peripherals against high-voltages for RRAM setting and resetting
Voltage regulation: power supply (AVDD) with operational amplifier

Current-sensing resistor (Rsense): enhance the process-voltage-temperature (PVT) immunity
Power mode: allow for different power-off models when enabling other tiers to remain active
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H3gDFact Architecture — Circuit Details

| RRAM Programming ] I RRAM Programming ] DCAP WR Col. Sel. / Iso. Bias
4 2 5
2 | |40nm RRAM “ | | 40nm RRAM . Eﬂ @ @ @ @ g ©
TSVs TSVs @3] | L T i ! i || =
— o .ee \- ) I\ Q Q b
| RRAM Programming_] | RRAM Programming | d>, 7 P | A 14 ‘z I;
= Ll LA ot (B 3l @
o @ AVDD _, ., AvDD AVDD . - a il 3
2 | |[4onm RRAM [ 2 | |40nm RRAM &ﬁ e o "
CLK —— Rsense Rsense
(@) _ TSVs A TSVs CLK Buf. TSVs to T1 SAR-ADC AdTﬁ'e’]l

 Circuitry: capable of executing high-dimensional bipolar space ({-1, +1})°

* Isolated switches: protect peripherals against high-voltages for RRAM setting and resetting

* Voltage regulation: power supply (AVDD) with operational amplifier

* Current-sensing resistor (Rsense): enhance the process-voltage-temperature (PVT) immunity
* Power mode: allow for different power-off models when enabling other tiers to remain active
Hybrid memory: RRAM for read-intensive operations, SRAM for write-intensive operations
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H3sDFact Architecture — Stochastic Factorizer

x(t + 2)

Deterministic factorization

Stuck in the local minima
and long convergence time
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H3sDFact Architecture — Stochastic Factorizer

2 Break free
(2 / 150 Count
" " | i
ox(t+1) ox(t+1) O’t)(‘m 100 -l
{1\& 50 - o d
A 3 01 02 03 0.4 05 0.6 0.7 0.8
x(t +2) x(t +2) Vsense (V)
Deterministic factorization H3D RRAM/SRAM-based stochastic factorization
Stuck in the local minima Intrinsic stochasticity of memristive devices can break being stuck at
and long convergence time limited cycles, enabling ability to explore larger space
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Evaluation — Accuracy and Operational Capacity

P
<

F

Factorization Accuracy (%)

F=3 F=4

Baseline H3D | Baseline H3D

D=16 994 99.3 99.2 99.2
D=32 99.3 99.3 990.1 99.2
D=64 99.1 99.3 89.9 99.2
D=128 96.9 99.3 0 99.2
D=256 10.8 99.2 0 99.2
D=512 0.2 99.2 0 99.2

Object Position Colour
code book code book  code book

O - ! _ o
O d Green

O | Blue

F: number of attributes
D: vector dimensions

H3DFact enhances and maintains accuracy under high dimensionality -> improved scalability and operational capacity

n

A
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Evaluation — Accuracy and Operational Capacity

F
Factorization Accuracy (%) Number of Iterations™ codn book codo baok codo book
F=3 F=4 F=3 F=4 7 4
Baseline H3D | Baseline H3D | Baseline H3D | Baseline  H3D Q _!» Red
D=16 994 993 99.2  99.2 4 5 31 33 ty
D=32 99.3 99.3 99.1 99.2 13 15 234 140 O . Green | 1D
D=64 | 991 993 | 89.9 99.2 43 39 Fail 1347 . . .
D=128| 969 993| 0 992 | Fail 108 | Fail 17529 <> f .
D=256 | 10.8 99.2 0 99.2 Fail 443 Fail 269931 — v
D=512 0.2 99.2 0 99.2 Fail 1685 Fail 2824079 E: number of ACtE TTEE

* Number of iterations required to reach at least 9% accuracy under different problem sizes. D: vector dimensions

H3DFact enhances and maintains accuracy under high dimensionality -> improved scalability and operational capacity

H3DFACT enables faster convergence and solves larger problem -> lowering computational cost
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Evaluation — Hardware Efficiency

Desi Hardware Resource
esign
Ch g Technology Technology Technology, Unbinding |Similarity & Projection| ADC | TSV
oice
(RRAM) (RRAM Peripheral)| (Digital) Operation Operation Count |Count
Ours  3-Tier H3D| 40 nm 16 nm 16 nm |SRAM Digital RRAM CIM 1024 | 5120
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Evaluation — Hardware Efficiency

Hardware Resource

Design
Ch g Technology Technology Technology| Unbinding |Similarity & Projection| ADC | TSV
oice
(RRAM) (RRAM Peripheral)| (Digital) Operation Operation Count |Count
Baseline SRAM 2D N/A N/A 16 nm | SRAM Digital SRAM CIM 0 0
Ours  3-Tier H3D 40 nm 16 nm 16 nm | SRAM Digital RRAM CIM 1024 | 5120

@ SRC
SRCTECHCON 2024

Zishen Wan | School of ECE | Georgia Institute of Technology

JUMP2.0-CoCoSys-3131.005

50



Evaluation — Hardware Efficiency

Hardware Resource

I(Z;f)ligc:, Technology Technology Technology, Unbinding |Similarity & Projection| ADC | TSV
(RRAM) (RRAM Peripheral) (Digital) Operation Operation Count |Count
Baseline SRAM 2D N/A N/A 16 nm SRAM Digital SRAM CIM 0 0
Baseline Hybrid 2D 40 nm 40 nm 40 nm |SRAM Digital RRAM CIM 1024 | O
Ours  3-Tier H3D| 40 nm 16 nm 16 nm |SRAM Digital RRAM CIM 1024 | 5120

@ SRC
SRCTECHCON 2024

Zishen Wan | School of ECE | Georgia Institute of Technology

JUMP2.0-CoCoSys-3131.005

51



Evaluation — Hardware Efficiency

Design Hardware Resource
Choice Technology Technology Technology| Unbinding |Similarity & Projection| ADC | TSV
(RRAM) (RRAM Peripheral)| (Digital) Operation Operation Count |Count
Baseline SRAM 2D N/A N/A 16 nm |SRAM Digital SRAM CIM 0 0
Baseline Hybrid 2D 40 nm 40 nm 40 nm |SRAM Digital RRAM CIM 1024 | O
Ours  3-Tier H3D| 40 nm 16 nm 16 nm | SRAM Digital RRAM CIM 1024 | 5120
Performance
Design Compute Energy
Choice Area  |Frequency Throughput _ . Accuracy
Density Efficiency
Baseline SRAM 2D 0.114 mm?| |
Baseline Hybrid 2D 0.544 mm?|
Ours  3-Tier H3D|0.091 mm?

Compared to fully SRAM 2D and hybrid SRAM/RRAM 2D design, H3DFact achieves more compact

silicon footprint,
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Evaluation — Hardware Efficiency

Design Hardware Resource
Choice Technology Technology Technology, Unbinding |Similarity & Projection| ADC | TSV
(RRAM) (RRAM Peripheral)| (Digital) Operation Operation Count |Count
Baseline SRAM 2D N/A N/A 16 nm |SRAM Digital SRAM CIM 0 0
Baseline Hybrid 2D 40 nm 40 nm 40 nm |SRAM Digital RRAM CIM 1024 | O
Ours  3-Tier H3D| 40 nm 16 nm 16 nm |SRAM Digital RRAM CIM 1024 | 5120
Performance
Design Compute Energy
Choice Area  |Frequency Throughput _ . Accuracy
Density Efficiency
Baseline SRAM 2D |0.114 mm? 200 MHz | 1.52 TOPS |
Baseline Hybrid 2D 0.544 mm?| 200 MHz  1.52 TOPS
Ours  3-Tier H3D 0.091 mm? 185 MHz | 1.41 TOPS

Compared to fully SRAM 2D and hybrid SRAM/RRAM 2D design, H3DFact achieves more compact

silicon footprint,
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Evaluation — Hardware Efficiency

Design Hardware Resource
Choice Technology Technology Technology, Unbinding |Similarity & Projection| ADC | TSV
(RRAM) (RRAM Peripheral)| (Digital) Operation Operation Count |Count
Baseline SRAM 2D N/A N/A 16 nm |SRAM Digital SRAM CIM 0 0
Baseline Hybrid 2D 40 nm 40 nm 40 nm |SRAM Digital RRAM CIM 1024 | O
Ours  3-Tier H3D| 40 nm 16 nm 16 nm |SRAM Digital RRAM CIM 1024 | 5120
Performance
Design Compute Energy
Choice Area  |Frequency Throughput _ . Accuracy
Density Efficiency
Baseline SRAM 2D |0.114 mm? 200 MHz | 1.52 TOPS |13.3 TOPS/mm?’ |
Baseline Hybrid 2D 0.544 mm? 200 MHz | 1.52 TOPS | 2.8 TOPS/mm?
Ours  3-Tier H3D 0.091 mm?| 185 MHz 1.41 TOPS 15.5 TOPS/mm?

Compared to fully SRAM 2D and hybrid SRAM/RRAM 2D design, H3DFact achieves more compact

silicon footprint, higher compute density,
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Evaluation — Hardware Efficiency

Design Hardware Resource
Choice Technology Technology Technology, Unbinding |Similarity & Projection| ADC | TSV
(RRAM) (RRAM Peripheral)| (Digital) Operation Operation Count |Count
Baseline SRAM 2D N/A N/A 16 nm |SRAM Digital SRAM CIM 0 0
Baseline Hybrid 2D 40 nm 40 nm 40 nm |SRAM Digital RRAM CIM 1024 | O
Ours  3-Tier H3D| 40 nm 16 nm 16 nm |SRAM Digital RRAM CIM 1024 | 5120
Performance
Design Compute Energy
Choice Area  |Frequency Throughput _ . Accuracy
Density Efficiency
Baseline SRAM 2D 0.114 mm? 200 MHz | 1.52 TOPS |13.3 TOPS/mm? 50.1 TOPS/W
Baseline Hybrid 2D 0.544 mm? 200 MHz | 1.52 TOPS | 2.8 TOPS/mm? 60.6 TOPS/W
Ours  3-Tier H3D 0.091 mm?| 185 MHz  1.41 TOPS |15.5 TOPS/mm? 60.6 TOPS/W

Compared to fully SRAM 2D and hybrid SRAM/RRAM 2D design, H3DFact achieves more compact

silicon footprint, higher compute density, and higher energy efficiency
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Evaluation — Hardware Efficiency

Design Hardware Resource
Choice Technology Technology Technology, Unbinding |Similarity & Projection| ADC | TSV
(RRAM) (RRAM Peripheral)| (Digital) Operation Operation Count |Count
Baseline SRAM 2D N/A N/A 16 nm |SRAM Digital SRAM CIM 0 0
Baseline Hybrid 2D 40 nm 40 nm 40 nm |SRAM Digital RRAM CIM 1024 | O
Ours  3-Tier H3D| 40 nm 16 nm 16 nm |SRAM Digital RRAM CIM 1024 | 5120
Performance
Design Compute Energy
Choice Area  |Frequency Throughput _ . Accuracy
Density Efficiency
Baseline SRAM 2D 0.114 mm? 200 MHz | 1.52 TOPS 13.3 TOPS/mm?50.1 TOPS/W| 95.8%
Baseline Hybrid 2D 0.544 mm? 200 MHz | 1.52 TOPS | 2.8 TOPS/mm? 60.6 TOPS/W| 99.3%
Ours  3-Tier H3D 0.091 mm? 185 MHz | 1.41 TOPS |15.5 TOPS/mm? 60.6 TOPS/W| 99.3%

Compared to fully SRAM 2D and hybrid SRAM/RRAM 2D design, H3DFact achieves more compact

silicon footprint, higher compute density, and higher energy efficiency
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Evaluation — Thermal Analysis

0.00015 Attribute Value
E . Number of tiers 3
= PCB thickness 2 mm
9
i
g : Bumping thickness 100 pm
E | Package thickness 1 mm
©
02 , TIM1: 20 pm
E | TIM thickness TIM2: 20 um
>
Heat transfer 20
0_'0 | | | 0 6002 Ambient temperature 25°C

Horizontal Position (mm)

H3DFact tier temperature ranges from 46.8-47.8°C (2D design 44°C), within SRAM/RRAM thermal limits
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Evaluation — Robustness and Convergence Speedup

: Effects between low/high-precision ADC

308t -

<

£ o R

o 0.6

N

- L

S 0.4

o ' = 0€

L‘E 0.2 —e— High-pre ADC |

—»— Low-pre ADC

0 1 1 1

0 5 10 15 20 25 30 35
# of Iterations

Lowering ADC precision can reduce hardware costs and enable faster convergence of

holographic perceptual factorization with similar accuracy.

@ SRC TECHCON 2024 Zishen Wan | School of ECE | Georgia Institute of Technology JUMP2.0-CoCoSys-3131.005 58



Evaluation — 2D RRAM Chip Validation

5.0 mm 163.8 um

r
A 4
-

\ 4

>
72 RRAM ég’ 72 RRAM
Modules g Modules : RRAM Chip Validation

O o 1 S
3| | srams | . | SRAMs = = (B Q 0.98
Ml | (6*64KB) (6 * 64KB) — | RRAM Controller | = |l <
& A B 0.96
(@] (@] N
g < 0.94
72 RRAM ég' 72 RRAM o™
Modules 3 Modules O
a © 0.
£ g 0.92
| ! 0.9 1 1 1 1 Il 1 1
Technology TSMC 40nm ULP General Purpose 10s 32 (16*2) 1 4 7 1 0 1 3 1 6 1 9 22 25
Chip Size 5mm x 5mm Debug Interface JTAG / Serial Wire(SW) # of |terations
Package QFN7x7-60 Voltage Domains 6 +VSS
Embedded Mi rocess Cortex M3 Low P Design Techni Clock gating / Power gatini .
- e e R e Chang et al,“A 40nm RRAM/SRAM system with embedded cortex M3
Number of RRAM Module 288 Clock Source / Max. Clock Rate | Crystal or External / 200 MHz

On-Chip RRAM | SRAM P — Core 10 S pply Voltage P—— microprocessor for edge recommendation systems”, ISSCC, 2022

Fabricated TSMC 40nm RRAM testchip validated H3DFACT achieves > 96% factorization
accuracy at one-shot and reaches 99% accuracy after 25 iterations
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Evaluation — Holographic Perception Task

Input Image

Neuro

ResNet-18

Symbolic

(Neuro Network) (Holographic vector) ‘/l

v

Vi

—’O\/

Q<>

Evaluated on the relational and analogical visual reasoning (RAVEN) dataset, H3DFACT achieves

99.4% accuracy of attributes estimation
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Conclusion

* Needs to factorize holographic perceptual representation efficiently & scalable
* Fundamental to human-like hierarchical cognitive progress
* Factorization is challenging: intensive compute, limited scalability, suboptimal stuck

* H3DFact: towards efficient and scalable holographic factorization

* Heterogeneous 3D architecture
* Hybrid SRAM/RRAM compute-in-memory
* Intrinsic stochasticity for improved convergence

. B, T THANK
Reach to me at: zishenwan(@gatech.edu .; YOU!
Learn more about our work at: http://zishenwan.github.io :
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