

Paper

H3DFact: <u>H</u>eterogeneous <u>3D</u> Integrated CIM for <u>Fact</u>orization with Holographic Perceptual Representations

<u>Zishen Wan</u>*, Che-Kai Liu*, Mohamed Ibrahim, Hanchen Yang, Samuel Spetalnick, Tushar Krishna, Arijit Raychowdhury (*Equal Contributions)

Georgia Institute of Technology

SRC TECHCON 09/09/2024, Session 8.1 zishenwan@gatech.edu

JUMP 2.0-CoCoSys-3131.005

Presenter

Presenter: Zishen Wan

- PhD Student at Georgia Tech
- Advisors: Prof. Arijit Raychowdhury and Prof. Tushar Krishna
- SRC Research Scholar (CBRIC, CoCoSys)

Webpage: <u>https://zishenwan.github.io</u>

Outline

- Hierarchical Cognition
- Background Holographic Vector Factorization
- H3DFact
 - Architecture
 - Floorplan
 - Interconnect
 - Circuitry
- Evaluation Results

TECHCON 2024

Conclusion

Outline

- Hierarchical Cognition
- Background Holographic Vector Factorization
- H3DFact
 - Architecture
 - Floorplan
 - Interconnect
 - Circuitry
- Evaluation Results
- Conclusion

Human-like Hierarchical Cognition

- Hierarchical Cognition Procedure: Perception Reasoning Control.
- **Perception** is the foundation for high-order cognition, like problem thinking and reasoning.
- Disentangling the attributes of sensory signal is central to sensory perception and cognition,

Zishen Wan | School of ECE | Georgia Institute of Technology

JUMP2.0-CoCoSys-3131.005 6

Foundational Unbinding problem: separate causes of a raw sensory signal that contain multiple attributes.

(figure generated by DALL.E)

TECHCON 2024

(figure generated by DALL.E)

Foundational Unbinding problem: separate causes of a raw sensory signal that contain multiple attributes. **Examples**:

- Pixel intensities sensed by photoreceptors: from the combination of different physical attributes.
- Observed luminance at a point: from a multiplicative combination of reflectance and shading

TECHCON 2024

(figure generated by DALL.E)

Foundational Unbinding problem: separate causes of a raw sensory signal that contain multiple attributes. Examples:

- Pixel intensities sensed by photoreceptors: from the combination of different physical attributes.
- Observed luminance at a point: from a multiplicative combination of reflectance and shading

Factorization Problem

(figure generated by DALL.E)

Foundational Unbinding problem: separate causes of a raw sensory signal that contain multiple attributes. Examples:

- Pixel intensities sensed by photoreceptors: from the combination of different physical attributes.
- Observed luminance at a point: from a multiplicative combination of reflectance and shading

Factorization Problem

- Factoring scene pixels into persistent and dynamic components
- Factoring sentence structure into roles and fillers
- Factoring cognitive analogical reasoning

Outline

- Hierarchical Cognition
- Background Holographic Vector Factorization
- H3DFact
 - Architecture
 - Floorplan
 - Interconnect
 - Circuitry
- Evaluation Results
- Conclusion

- Holographic Vector Factorization: brain-inspired vector-symbolic architecture.
- Each sensory attribute is encoded and processed using a unique holographic vector, thereby creating distinct and separable representations.
 Langenegger et al, "In-memory factorization of holographic

SRCTECHCON 2024

perceptual representations", Nature Nanotechnology, 2024

SRC

SRC TECHCON 2024

Step 1: Unbinding

• Step I Unbinding: unbinding the contribution of the other factors from product vector

Langenegger et al, "In-memory factorization of holographic perceptual representations", Nature Nanotechnology, 2024

13

- Step I Unbinding: unbinding the contribution of the other factors from product vector
- Step 2 Similarity: compute similarity values for each unbound estimate

- Step I Unbinding: unbinding the contribution of the other factors from product vector
- Step 2 Similarity: compute similarity values for each unbound estimate
- Step 3 Projection: compute the factors for the subsequent time step

Challenge I: Intensive computation

Dominated by matrix-vector multiplication operations

Challenge 2: Limited scalability

Factorization accuracy drops greatly with increasing the problem size Challenge 3: CPU/GPU stuck in limited cycle Factorization constantly end up checking the same solutions

JUMP2.0-CoCoSys-3131.005 16

H3DFact

How to enable efficient and scalable factorization of holographic vector representations for human-like sensory cognitive perception?

Outline

- Hierarchical Cognition
- Background Holographic Vector Factorization
- H3DFact
 - Architecture
 - Floorplan
 - Interconnect
 - Circuitry
- Evaluation Results
- Conclusion

H3DFact Features

Challenge I: Intensive computation

Dominated by matrix-vector multiplication operations

Challenge 2: Limited scalability

Factorization accuracy drops greatly with increasing the problem size

Challenge 3: CPU/GPU stuck in limited cycle Factorization constantly end up checking the same solutions

Feature I: Computation-in-superposition CIM paradigm for efficient factorization computation

Feature 2: Heterogeneous 3D integration system design for scalable factorization computation

Feature 3:

Nanoscale memristive devices intrinsic stochasticity to break the factorization limited cycles

Zishen Wan | School of ECE | Georgia Institute of Technology

JUMP2.0-CoCoSys-3131.005 20

Three-Tier architecture: Tier 3 (top): Tech AM

- tion
- Tier I (bottom):
 - Technology: I 6nm SRAM, peripheral, logic
 - Operations: unbinding, others

Three-Tier architecture: • Tier 2 (middle): Technology: 40nm RRAM **Operations:** projection • Tier I (bottom): Technology: I 6nm SRAM, peripheral, logic

Operations: unbinding, others

Compute-In-Memory for Projection and Similarity

Langenegger et al, "In-memory factorization of holographic perceptual representations", Nature Nanotechnology, 2024

SRC TECHCON 2024

SRC

Zishen Wan | School of ECE | Georgia Institute of Technology

JUMP2.0-CoCoSys-3131.005 23

Three-Tier architecture: • Tier 2 (middle): Technology: 40nm RRAM **Operations:** projection • Tier I (bottom): Technology: I 6nm SRAM, peripheral, logic

Operations: unbinding, others

Three-Tier architecture:

- Tier 3 (top):
 - Technology: 40nm RRAM
 - Operations: similarity
- Tier 2 (middle):
 - Technology: 40nm RRAM
 - Operations: projection
- Tier I (bottom):
 - Technology: I 6nm SRAM, peripheral, logic
 - Operations: unbinding, others

Three-Tier architecture:

- Tier 3 (top):
 - Technology: 40nm RRAM
 - Operations: similarity
- Tier 2 (middle):
 - Technology: 40nm RRAM
 - Operations: projection
- Tier I (bottom):
 - Technology: I 6nm SRAM, peripheral, logic
 - Operations: unbinding, others

Advantage of heterogeneous 3D integration: enable (1) different technology nodes, (2) hybrid memories, (3) high density

Three-Tier architecture:

- Tier 3 (top):
 - Technology: 40nm RRAM
 - Operations: similarity
- Tier 2 (middle):
 - Technology: 40nm RRAM
 - Operations: projection
- Tier I (bottom):
 - Technology: I 6nm SRAM, peripheral, logic
 - Operations: unbinding, others

<u>Advantage of heterogeneous 3D integration</u>: enable (1) different technology nodes, (2) hybrid memories, (3) high density <u>Advantages of compute-in-memory</u>: enable (1) efficient factorization, (2) break stuck cycle with device stochasticity

SRC

Three-Tier architecture:

- Tier 3 (top):
 - Technology: 40nm RRAM
 - Operations: similarity
- Tier 2 (middle):
 - Technology: 40nm RRAM
 - Operations: projection
- Tier I (bottom):
 - Technology: 16nm SRAM, peripheral, logic
 - Operations: unbinding, others

H3DFact features a 3-tier architecture,

Three-Tier architecture:

- Tier 3 (top):
 - Technology: 40nm RRAM
 - Operations: similarity
- Tier 2 (middle):
 - Technology: 40nm RRAM
 - Operations: projection
 - Tier I (bottom):
 - Technology: 16nm SRAM, peripheral, logic
 - Operations: unbinding, others

H3DFact features a 3-tier architecture, considering of data traversing format (analog/digital),

Zishen Wan | School of ECE | Georgia Institute of Technology

SRC

SRC TECHCON 2024

Three-Tier architecture:

• Tier 3 (top):

- Technology: 40nm RRAM
- Operations: similarity
- Tier 2 (middle):
 - Technology: 40nm RRAM
 - Operations: projection
- Tier I (bottom):
 - Technology: I 6nm SRAM, peripheral, logic
 - Operations: unbinding, others

H3DFact features a 3-tier architecture, considering of data traversing format (analog/digital), one RRAM tier is activated at any given time

Zishen Wan | School of ECE | Georgia Institute of Technology

JUMP2.0-CoCoSys-3131.005 31

H3DFACT Hardware Architecture

Zishen Wan | School of ECE | Georgia Institute of Technology

JUMP2.0-CoCoSys-3131.005 32

Floorplan:

SRC

• Tier-2/3 RRAM: each tier has four RRAM subarrays, each RRAM subarray has 256x256 size

Floorplan:

- Tier-2/3 RRAM: each tier has four RRAM subarrays, each RRAM subarray has 256x256 size
- Tier-I SRAM, digital, and peripherals: External pins and bumps

DCAP

õ

Bias

Out

Dig

2

RRAM

TSV

SRC

- Tier-2/3 RRAM: each tier has four RRAM subarrays, each RRAM subarray has 256x256 size
- Tier-I SRAM, digital, and peripherals: External pins and bumps
- Generalized design method to determine hardware configurations

RRAM Prog.

RRAM

TSV

RRAM Prog

RRAM

TSV

Calibrated

ADC

Calibrated

ADC

Bias & DCAP

DCAP

õ

Bias

Out

Dig

2

RRAM

TS

SRAM Buffe

Level Shifter

solation NS

S

	ΓSV	TSV	TSV Oxide	TSV	Hybrid Bonding	Hybrid Bonding
Dia	ameter	Pitch	Thickness	Height	Pitch	Thickness
2	μm	$4 \ \mu m$	100 nm	$10 \ \mu m$	$10 \ \mu m$	3 µm

Interconnect & Bonding:

- Interconnect: through-silicon vias (TSVs). One (MxN) RRAM subarray needs (M+N+N/2) TSVs
- Bonding: mix of face-to-face (F2F) and face-to-back (F2B) bonding
 SRC

Zishen Wan | School of ECE | Georgia Institute of Technology

JUMP2.0-CoCoSys-3131.005 37

- Circuitry: capable of executing high-dimensional bipolar space ({-1, +1})^D
 - -1's counter and adder: process bipolar quantities

- **Circuitry**: capable of executing high-dimensional bipolar space ({-1, +1})^D
- Isolated switches: protect peripherals against high-voltages for RRAM setting and resetting

- **Circuitry**: capable of executing high-dimensional bipolar space ({-1, +1})^D
- Isolated switches: protect peripherals against high-voltages for RRAM setting and resetting
- Voltage regulation: power supply (AVDD) with operational amplifier

- **Circuitry**: capable of executing high-dimensional bipolar space ({-1, +1})^D
- Isolated switches: protect peripherals against high-voltages for RRAM setting and resetting
- Voltage regulation: power supply (AVDD) with operational amplifier
- Current-sensing resistor (Rsense): enhance the process-voltage-temperature (PVT) immunity

- **Circuitry**: capable of executing high-dimensional bipolar space ({-1, +1})^D
- Isolated switches: protect peripherals against high-voltages for RRAM setting and resetting
- Voltage regulation: power supply (AVDD) with operational amplifier
- Current-sensing resistor (Rsense): enhance the process-voltage-temperature (PVT) immunity
- Power mode: allow for different power-off models when enabling other tiers to remain active

- **Circuitry**: capable of executing high-dimensional bipolar space ({-1, +1})^D
- Isolated switches: protect peripherals against high-voltages for RRAM setting and resetting
- Voltage regulation: power supply (AVDD) with operational amplifier
- Current-sensing resistor (Rsense): enhance the process-voltage-temperature (PVT) immunity
- Power mode: allow for different power-off models when enabling other tiers to remain active
- Hybrid memory: RRAM for read-intensive operations, SRAM for write-intensive operations

H3DFact Architecture – Stochastic Factorizer

Deterministic factorization

Stuck in the local minima and long convergence time

TECHCON 2024

H3DFact Architecture – Stochastic Factorizer

Deterministic factorization

Stuck in the local minima and long convergence time

H3D RRAM/SRAM-based stochastic factorization

Intrinsic stochasticity of memristive devices can break being stuck at limited cycles, enabling ability to explore larger space

Outline

- Hierarchical Cognition
- Background Holographic Vector Factorization
- H3DFact
 - Architecture
 - Floorplan
 - Interconnect
 - Circuitry
- Evaluation Results
- Conclusion

Evaluation – Accuracy and Operational Capacity

	Factoriz	Factorization Accuracy (%)						
	F=3	3	F=4	ŀ				
	Baseline	H3D	Baseline	H3D				
<i>D</i> =16	99.4	99.3	99.2	99.2				
D=32	99.3	99.3	99.1	99.2				
<i>D</i> =64	99.1	99.3	89.9	99.2				
D=128	96.9	99.3	0	99.2				
D=256	10.8	99.2	0	99.2				
<i>D</i> =512	0.2	99.2	0	99.2				

F: number of attributes D: vector dimensions

H3DFact enhances and maintains accuracy under high dimensionality -> improved scalability and operational capacity

Evaluation – Accuracy and Operational Capacity

	Factoriz	zation	Accuracy	(%)	Number of Iterations [*]				
	F=3	3	F=4	1	F=3	3	<i>F=</i> 4		
	Baseline	H3D	Baseline	H3D	Baseline	H3D	Baseline	H3D	
<i>D</i> =16	99.4	99.3	99.2	99.2	4	5	31	33	
D=32	99.3	99.3	99.1	99.2	13	15	234	140	
<i>D</i> =64	99.1	99.3	89.9	99.2	43	39	Fail	1347	
<i>D</i> =128	96.9	99.3	0	99.2	Fail	108	Fail	17529	
<i>D</i> =256	10.8	99.2	0	99.2	Fail	443	Fail	269931	
<i>D</i> =512	0.2	99.2	0	99.2	Fail	1685	Fail	2824079	

⁵ Number of iterations required to reach at least 99% accuracy under different problem sizes.

F: number of attributes D: vector dimensions

H3DFact enhances and maintains accuracy under high dimensionality -> improved scalability and operational capacity H3DFACT enables faster convergence and solves larger problem -> lowering computational cost

	Decian			Hardv	vare Resource			
	Choice	Technology	Technology	Technology	Unbinding	Similarity & Projection	ADC	TSV
	Choice	(RRAM)	(RRAM Peripheral)	(Digital)	Operation	Operation	Count	Count
					_			
Ours	3-Tier H3D	40 nm	16 nm	16 nm	SRAM Digital	RRAM CIM	1024	5120

	Design			Hardv	vare Resource			
	Choico	Technology	Technology	Technology	Unbinding	Similarity & Projection	ADC	TSV
	Choice	(RRAM)	(RRAM Peripheral)	(Digital)	Operation	Operation	Count	Count
Baseline	SRAM 2D	N/A	N/A	16 nm	SRAM Digital	SRAM CIM	0	0
					_			
Ours	3-Tier H3D	40 nm	16 nm	16 nm	SRAM Digital	RRAM CIM	1024	5120

	Decian			Hardv	vare Resource			
	Choico	Technology	Technology	Technology	Unbinding	Similarity & Projection	ADC	TSV
	Choice	(RRAM)	(RRAM Peripheral)	(Digital)	Operation	Operation	Count	Count
Baseline	SRAM 2D	N/A	N/A	16 nm	SRAM Digital	SRAM CIM	0	0
Baseline	Hybrid 2D	40 nm	40 nm	40 nm	SRAM Digital	RRAM CIM	1024	0
Ours	3-Tier H3D	40 nm	16 nm	16 nm	SRAM Digital	RRAM CIM	1024	5120

SRC

SRC TECHCON 2024

	Docian			Hardv	vare Resource			
	Choico	Technology	Technology	Technology	Unbinding	Similarity & Projection	ADC	TSV
	Choice	(RRAM)	(RRAM Peripheral)	(Digital)	Operation	Operation	Count	Count
Baseline	SRAM 2D	N/A	N/A	16 nm	SRAM Digital	SRAM CIM	0	0
Baseline	Hybrid 2D	40 nm	40 nm	40 nm	SRAM Digital	RRAM CIM	1024	0
Ours	3-Tier H3D	40 nm	16 nm	16 nm	SRAM Digital	RRAM CIM	1024	5120

	Decian		Performance						
	Choice	Area	Frequency	Throughput	Compute Density	Energy Efficiency	Accuracy		
Baseline	SRAM 2D	0.114 mm ²							
Baseline	Hybrid 2D	0.544 mm^2	н -						
Ours	Hybrid 2D 0 3-Tier H3D 0	0.091 mm^2							

Compared to fully SRAM 2D and hybrid SRAM/RRAM 2D design, H3DFact achieves more compact silicon footprint,

Zishen Wan | School of ECE | Georgia Institute of Technology

SRC

SRC TECHCON 2024

	Design			Hardv	vare Resource			
	Choico	Technology	Technology	Technology	Unbinding	Similarity & Projection	ADC	TSV
	Choice	(RRAM)	(RRAM Peripheral)	(Digital)	Operation	Operation	Count	Count
Baseline	SRAM 2D	N/A	N/A	16 nm	SRAM Digital	SRAM CIM	0	0
Baseline	Hybrid 2D	40 nm	40 nm	40 nm	SRAM Digital	RRAM CIM	1024	0
Ours	3-Tier H3D	40 nm	16 nm	16 nm	SRAM Digital	RRAM CIM	1024	5120

	Decian		Performance							
	Choice	Area	Frequency	Throughput	Compute	Energy	Accuracy			
	Choice SRAM 2D	Alea Piequelle		Throughput	Density	Efficiency	Accuracy			
Baseline	SRAM 2D	0.114 mm^2	200 MHz	1.52 TOPS						
Baseline	Hybrid 2D	0.544 mm^2	200 MHz	1.52 TOPS						
Ours	Hybrid 2D (3-Tier H3D (0.091 mm^2	185 MHz	1.41 TOPS						

Compared to fully SRAM 2D and hybrid SRAM/RRAM 2D design, H3DFact achieves more compact silicon footprint,

Zishen Wan | School of ECE | Georgia Institute of Technology

SRC

SRCTECHCON 2024

	Decian			Hardv	vare Resource			
	Choico	Technology	Technology	Technology	Unbinding	Similarity & Projection	ADC	TSV
	Choice	(RRAM)	(RRAM Peripheral)	(Digital)	Operation	Operation	Count	Count
Baseline	SRAM 2D	N/A	N/A	16 nm	SRAM Digital	SRAM CIM	0	0
Baseline	Hybrid 2D	40 nm	40 nm	40 nm	SRAM Digital	RRAM CIM	1024	0
Ours	3-Tier H3D	40 nm	16 nm	16 nm	SRAM Digital	RRAM CIM	1024	5120

	Docian		Performance							
	Choico	Aroo	Fraguanay	Throughput	Compute	Energy	Acouroou			
	Design Choice SRAM 2D Hybrid 2D	Alta	riequency	Throughput	Density	Efficiency	Accuracy			
Baseline	SRAM 2D	0.114 mm ²	200 MHz	1.52 TOPS	13.3 TOPS/mm ^{2}					
Baseline	Hybrid 2D	0.544 mm^2	200 MHz	1.52 TOPS	2.8 TOPS/mm ²					
Ours	3-Tier H3D	0.091 mm^2	185 MHz	1.41 TOPS	15.5 TOPS/mm ²					

Compared to fully SRAM 2D and hybrid SRAM/RRAM 2D design, H3DFact achieves more compact silicon footprint, higher compute density,

Zishen Wan | School of ECE | Georgia Institute of Technology

[UMP2.0-CoCoSys-3131.005

54

SRC

SRCTECHCON 2024

	Decian	Hardware Resource								
	Choico	Technology	Technology	Technology	Unbinding	Similarity & Projection	ADC	TSV		
	Choice	(RRAM)	(RRAM Peripheral)	(Digital)	Operation	Operation	Count	Count		
Baseline	SRAM 2D	N/A	N/A	16 nm	SRAM Digital	SRAM CIM	0	0		
Baseline	Hybrid 2D	40 nm	40 nm	40 nm	SRAM Digital	RRAM CIM	1024	0		
Ours	3-Tier H3D	40 nm	16 nm	16 nm	SRAM Digital	RRAM CIM	1024	5120		

	Design Choice	Performance							
		Area	Fraguanov	Throughput	Compute	Energy	Accuracy		
		Alta	riequency	Throughput	Density	Efficiency			
Baseline	SRAM 2D	0.114 mm^2	200 MHz	1.52 TOPS	13.3 TOPS/mm ^{2}	50.1 TOPS/W			
Baseline	Hybrid 2D	0.544 mm^2	200 MHz	1.52 TOPS	2.8 TOPS/mm ²	60.6 TOPS/W			
Ours	3-Tier H3D	0.091 mm^2	185 MHz	1.41 TOPS	15.5 TOPS/mm^2	60.6 TOPS/W			

Compared to fully SRAM 2D and hybrid SRAM/RRAM 2D design, H3DFact achieves more compact silicon footprint, higher compute density, and higher energy efficiency

Zishen Wan | School of ECE | Georgia Institute of Technology

SRC

SRCTECHCON 2024

	Decian	Hardware Resource								
	Choico	Technology	Technology	Technology	Unbinding	Similarity & Projection	ADC	TSV		
	Choice	(RRAM)	(RRAM Peripheral)	(Digital)	Operation	Operation	Count	Count		
Baseline	SRAM 2D	N/A	N/A	16 nm	SRAM Digital	SRAM CIM	0	0		
Baseline	Hybrid 2D	40 nm	40 nm	40 nm	SRAM Digital	RRAM CIM	1024	0		
Ours	3-Tier H3D	40 nm	16 nm	16 nm	SRAM Digital	RRAM CIM	1024	5120		

	Design	Performance							
	Choice	Area	Frequency	Throughput	Compute	Energy	Acouroou		
	Choice				Density	Efficiency	' Accuracy		
Baseline	SRAM 2D	0.114 mm^2	200 MHz	1.52 TOPS	13.3 TOPS/mm ²	50.1 TOPS/W	95.8%		
Baseline	Hybrid 2D	0.544 mm^2	200 MHz	1.52 TOPS	2.8 TOPS/mm ²	60.6 TOPS/W	99.3%		
Ours	3-Tier H3D	0.091 mm^2	185 MHz	1.41 TOPS	15.5 TOPS/mm^2	60.6 TOPS/W	99.3%		

Compared to fully SRAM 2D and hybrid SRAM/RRAM 2D design, H3DFact achieves more compact silicon footprint, higher compute density, and higher energy efficiency

Zishen Wan | School of ECE | Georgia Institute of Technology

Evaluation – Thermal Analysis

H3DFact tier temperature ranges from 46.8-47.8°C (2D design 44°C), within SRAM/RRAM thermal limits

SRC TECHCON 2024

Evaluation – Robustness and Convergence Speedup

Lowering ADC precision can reduce hardware costs and enable faster convergence of holographic perceptual factorization with similar accuracy.

Evaluation – 2D RRAM Chip Validation

Chang et al, "A 40nm RRAM/SRAM system with embedded cortex M3 microprocessor for edge recommendation systems", ISSCC, 2022

Fabricated TSMC 40nm RRAM testchip validated H3DFACT achieves > 96% factorization accuracy at one-shot and reaches 99% accuracy after 25 iterations

SRC TECHCON 2024 Zishen Wan | School of ECE | Georgia Institute of Technology

JUMP2.0-CoCoSys-3131.005 59

Evaluation – Holographic Perception Task

Evaluated on the relational and analogical visual reasoning (RAVEN) dataset, H3DFACT achieves 99.4% accuracy of attributes estimation

Zishen Wan | School of ECE | Georgia Institute of Technology

JUMP2.0-CoCoSys-3131.005 60

Outline

- Hierarchical Cognition
- Background Holographic Vector Factorization
- H3DFact
 - Architecture
 - Floorplan
 - Interconnect
 - Circuitry
- Evaluation Results

SRC TECHCON 2024

Conclusion

Conclusion

- Needs to factorize holographic perceptual representation efficiently & scalable
 - Fundamental to human-like hierarchical cognitive progress
 - Factorization is challenging: intensive compute, limited scalability, suboptimal stuck

• H3DFact: towards efficient and scalable holographic factorization

- Heterogeneous 3D architecture
- Hybrid SRAM/RRAM compute-in-memory
- Intrinsic stochasticity for improved convergence

Reach to me at: <u>zishenwan@gatech.edu</u> Learn more about our work at: <u>http://zishenwan.github.io</u>

THANK

YOU!

Semiconductor Research Corporation®

Zishen Wan | School of ECE | Georgia Institute of Technology

JUMP2.0-CoCoSys-3131.005 63