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State of Al / Landscape

Language and image recognition capabilities of Al systems have improved rapidly st

Our World

Test scores of the Al relative to human performance
+20

Al systems perform better than
/’ the humans who did these tests

O<Human performance, as the benchmark, is set to zero.
/ 1AI systems perform worse
-20
-40 .
Reading
60 compre-
hension
-80 Handwriting recognition Language understanding
Speech recognition Image recognition
-100
T [ | I | [ | T | I | I [ | T [ I
\ 2000 2005 2010 2015 2020
The capability of each Al system is normalized
to aninitial performance of -100.
Data source: Kiela et al. (2021) - Dynabench: Rethinking Benchmarking in NLP
OurWorldinData.org - Research and data to make progress against the world’s largest problems. Licensed under CC-BY by the author Max Roser
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But... Is That Enough?

IMO 2015 P3
@O

“Let ABC be an acute triangle. Let
(i) Remove all gray spheres. How many @ V e O e B 0 (O) be its circumcircle, H its
spheres are there? (3), (ii) Take away 3 om A . a

¢ O
®

@ O

(o]
orthocenter, and F the foot of the
cubes. How many objects are there? (7), ]

& altitude from A. Let M be the
midpoint of BC. Let Q be the point
(iii) How many blocks must be removed to , .\ ‘ o [] v/ <
get 1 block? (2)

on (O) such that QH L QA and let K
. be the point on (O) such that KH L

o
O A

Complex Question Answering

NN accuracy: 50%

AT L]
s
=
oa
I

@ ,

b . .
Ew L |
2 W
Interactive Learning
NN accuracy: 71%

«O| © n |
4 (O -

Abstract Reasoning
NN accuracy: 53%

Scenario

Imagine that a stranger will give Hank one thousand dol-
lars to break all the windows in his neighbor’s house
without his neighbor’s permission. Hank carries out the
stranger’s request.

Imagine that there are five people who are waiting in line
to use a single-occupancy bathroom at a concert venue.
Someone at the back of the line needs to throw up imme-
diately. That person skips to the front of the line instead
of waiting in the back.

At a summer camp, there is a pool. Right next to the pool
is a tent where the kids at the camp have art class. The
camp made a rule that there would be no cannonballing in
the pool so that the art wouldn’t get ruined by the splashing
water. Today, there is a bee attacking this kid, and she
needs to jump into the water quickly. This kid cannonballs . [
into the pool.

NN accuracy: 65%

Ethical Decision Makfng

KQ. Prove that the circumcircles
(0,) and (O,) of triangles FKM and
KQH are tangent to each other.”

Automated Theorem Proving
NN accuracy: 0%

Farmer John has N cows (2 < N < 10°). Each cow has a breed that is either
Guernsey or Holstein. As is often the case, the cows are standing in a line,
numbered 1--- N in this order.

Over the course of the day, each cow writes down a list of cows. Specifically,
cow ’s list contains the range of cows starting with herself (cow 7) up to and
including cow E; (i < E; < N).

FJ has recently discovered that each breed of cow has exactly one distinct leader.
FJ does not know who the leaders are, but he knows that each leader must have
a list that includes all the cows of their breed, or the other breed’s leader (or
both).

Help FJ count the number of pairs of cows that could be leaders. It is guaranteed

that there is at least one possible pair. T
»* Problem

Competitive Programming
NN accuracy: 8.7%
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But... Is That Enough?

Neuro-Symbolic Al
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Outline

* Neuro-symbolic Al 101

* Neuro-symbolic Al workload characterization

* Neuro-symbolic Al hardware architecture

* Final project: neuro-symbolic kernel optimization

.
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What is Neuro-Symbolic Al?

. /Symbolic\ o
Recognition Explainability

FIeX|b|I|ty WE Know|edge i
Scalability E/’_—-\i % i
| L\ / |

Data Efficient

Towards Cognitive and Trustworthy Al Systems

Guest Lecture @ ECE8893 Zishen Wan | School of ECE | Georgia Institute of Technology



Neural Network

Input

pooled Fully-connected 1

feature maps pooled  featuremaps foatyre maps
feature maps

ply|x)

Convolutional Pooling 1 Convolutional

Pooling 2
layer 1 layer 2

Slide Adapted from MIT 6.5191: Neurosymbolic Al
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Symbolic Al

apple

origin structure

/ N \

apple tree body stem

Guest Lecture @ ECE8893

N

shape size color taste
/ I [\ \
round hand red green apple

Slide Adapted from MIT 6.5191: Neurosymbolic Al
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Neuro-Symbolic Al Example: Visual Reasoning

Question: Are there an equal number of
large things and metal spheres?

Slide Adapted from MIT 6.5191: Neurosymbolic Al

Guest Lecture @ ECE8893 Zishen Wan | School of ECE | Georgia Institute of Technology 10



Neuro-Symbolic Al Example: Visual Reasoning

Question: Are there an equal number of
large things and metal spheres?

Slide Adapted from MIT 6.5191: Neurosymbolic Al
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Neuro-Symbolic Al Example: Visual Reasoning

Question: Are there an equal number of
large things and metal spheres?

3 large 3 metal
things! spheres!

e

Slide Adapted from MIT 6.5191: Neurosymbolic Al
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Neuro-Symbolic Al Example: Visual Reasoning

Question: Are there an equal number of
large things and metal spheres?

\

[ Equal? Yes! ‘\
a J
p

3 metal
! spheres!
O

O

Slide Adapted from MIT 6.5191: Neurosymbolic Al
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Neuro-Symbolic Al Example: Visual Reasoning

Question Understanding

Question: Are there an equal number of
large things and metal spheres?

\

/v [Equal? Yes! ‘\
J

3 large O i 3 metal
0O _ spheres!

O

O

Visual Perception Logical Reasoning
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Neuro-Symbolic Al Example: Visual Reasoning

(c) Structural Scene Representation \

ID Size  Shape Material  Color X y

1 Small { @b Metal Purple 045 -1.10 035
Large  Cuve Ml Gieen 28, -0.04 070

Vision 2
(CNN / Transformers) ~ Representation

Large  Cube Metal Green 1.58 -1.60 0.70

Language
- Symbolic Program

(RNN / Transformers)
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Advantage 1: High Accuracy

Vision Method Accuracy (%)
| Human 92.6 |
RN 95.5
[EP 96.9
FLM 976
Language I\::IS | 32?
the redobject? NVOA gy gl

NS-VQA [Yi et al.]
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Advantage 2: Data Efficiency

High accuracy when
trained with just 1% the of
the data that other
methods require

Accuracy (%)

7000 70000 700000
Number of training questions

NS-VQA [Yi et al.]
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Advantage 3: Transparency and Interpretability

scene

filter cyan

filter metal
count

... (4 modules)
scene

filter yellow

filter rubber
count

greater_ than

Question: Are there more yellow
matte things that are right of the gray
ball than cyan metallic objects?

Answer: no

NS-VQA [Yi et al.]
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Other Examples

Google DeepMind Q A simple problem AlphaGeometry Solution
g
A A
. 1 Language model
AlphaGeometry: An Olympiad-level Al system i i |48 arvoge moce | i i
for geometry . . Add 2 Not Ao O
CONStIUCE «ocuves .| solved ’
17 JANUARY 2024 Theorem premises: feccmns |> « Construct D: midpoint BC
2 < Let ABC be any triangle with AB=AC Solved « AB=AC, BD=DC, AD=AD ZABD= £DCA
Trieu Trinh and Thang Luong Prove that angle () ABC= ZBCA | { a Symbolic engine OI\JGC : [LABDb_ ——— coz;lineor ‘! A
‘\ ZABC=ZBCA

< Share

LLM: construct auxiliary points and lines
Symbolic: deductive reasoning

" Eval on 30 Int. Math Olympics (IMO) problems:
—A  GPT-4: 0/30

%

=\
\\\‘A\/\ * AlphaGeometry (Neuro-Symbolic): 25/30

\‘7 * Human Gold Medalist: 26/30

|

A

Trinh et al, “Solving Olympiad Geometry without Human Demonstrations”, Nature 2024
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Relationship to Human Minds

‘A lifetime’s worth of wisdom’
Steven D. Levitt, co-author of Freakonontics

The International

Bestseller AlphaGeometry adopts a neuro-symbolic

approach
e WU AlphaGeometry is a neuro-symbolic system made up of a neural language model

Thinkin ,V T and a symbolic deduction engine, which work together to find proofs for complex

Fast and Slow geometry theorems. Akin to the idea of “thinking, fast and slow”, one system
provides fast, “intuitive” ideas, and the other, more deliberate, rational decision-

W‘ s .

making.

Daniel Kahneman o

Winner of the Nobel Prize

Daniel Kahneman
(1934-2024)
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Relationship to Human Minds

Daniel Kahneman
(1934-2024)

Guest Lecture @ ECE8893

‘A lifetime’s worth of wisdom’
Steven D. Levitt, co-author of Freakonomics e u r a

'}13“het Inltlernational 4 Flexible, Scalable
estseller
p= X Black-box, Data

System 1: thinking fast
(intuitive perception)

Thinkiﬁé
Fast and Slow
P

Winner of the Nobel Prize

Daniel Kahneman o

Zishen Wan | School of ECE | Georgia Institute of Technology
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Relationship to Human Minds

‘A lifetime’s worth of wisdom’
Steven D. Levitt, co-author of Freakonomics e u ra

Bestseller

% Symbolic

The International 4 Flexible, Scalable Reasoning, Transparent
X Black-box, Data X Scalable, Learnable

~— (intuitive perception)
Thinking,
Fast and Slow

M—

Daniel Kahneman O

Winner of the Nobel Prize

Daniel Kahneman
(1934-2024)

Guest Lecture @ ECE8893 Zishen Wan | School of ECE | Georgia Institute of Technology

System 1: thinking fast System 2: thinking slow
(logical reasoning)

22



Relationship to Human Minds

| A ifetime’sworth obwisdom’ 09, \ f °
2P Neural n ‘ﬁ% Symbolic
DieInnaions Flexible, Scalable ™ € Reasoning, Transparent
= X Black-box, Data X Scalable, Learnable

System 1: thinking fast System 2: thinking slow

— (intuitive perception) (logical reasoning)
Thinking, %

Fast and Slow i . )
N bolic Syst
I eurosym 011C yS cm

Human-like Cognition, Reasoning, Transparent
Scalable, Flexible, Learning, Data-efficient )

Daniel Kahneman O

Winner of the Nobel Prize

Daniel Kahneman
(1934-2024)

Guest Lecture @ ECE8893 Zishen Wan | School of ECE | Georgia Institute of Technology 23



However.. From Computing Perspective

100%

80%

60%

Cognitive Task Accuracy (%)
N
S
=

Better

2P Neural
Flexible, Scalable M

-
.?i% Symbolic

Reasoning, Transparent

X Black-box, Data P
System 1: thinking fast

(X Scalable, Learnable
System 2: thinking slow

(intuitive perception) D (logical reasoning)

-

10-1
Latency (s): @ TPU ©GPU

100

10!

Neurosymbolic System

Human-like Cognition, Reasoning, Transparent
102 Scalable, Flexible, Learning, Data-efficient

\

_/
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However.. From Computing Perspective

100%

80%

60%

Cognitive Task Accuracy (%)
S
O
=

Better

Neural

Mo

2P Neural
Flexible, Scalable M

-
.?i% Symbolic

Reasoning, Transparent

X Black-box, Data P
System 1: thinking fast

(X Scalable, Learnable
System 2: thinking slow

(intuitive perception) D (logical reasoning)

-

101
Latency (s): @ TPU ©GPU

10°

10!

Neurosymbolic System

Human-like Cognition, Reasoning, Transparent
102 Scalable, Flexible, Learning, Data-efficient

\

_/
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However.. From Computing Perspective

100%

80%

60%

40%

Cognitive Task Accuracy (%)

Better
o
Symbolic
Neural (e.g., rules, logic,
mo coded knowledge)
10-1 100 10! 102

Latency (s): @m TPU ©GPU

) 4 :

X2* Neural R n N éé% Symbolic
Flexible, Scalable ™ € Reasoning, Transparent
X Black-box, Data P (X Scalable, Learnable

System 1: thinking fast System 2: thinking slow
(intuitive perception) D (logical reasoning)

‘ Neurosymbolic System

Human-like Cognition, Reasoning, Transparent
Scalable, Flexible, Learning, Data-efficient )

\
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However.. From Computing Perspective

100%

’; @ f °

S Better Sl 2P Neural o\ aé% Symbolic

§ . Neurosymbolic Flexible, Scalable ™ @ Reasoning, Transparent
= 80% X Black-box, Data | (X Scalable, Learnable

Q

<Q:) o System 1: thinking fast System 2: thinking slow
Y S , (intuitive perception) (logical reasoning)

7 0 ymbolic %

< .

- Neural (e.g., rules, logic, e : N
g mo coded knowledge) Neurosymbolic System

= 40% Human-like Cognition, Reasoning, Transparent
oD 10! 100 10! 102 Scalable, Flexible, Learning, Data-efficient )
O Latency (s): @ TPU ©GPU
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However... From Computing Perspective

fé@j} These neuro-symbolic approaches are typically very slow

104

‘ . ® = NLM Workload NVSA Workload
O e ‘ oo m@® ol o 5103
a o A@e o o) J 02
Q® b -0 o e0 K £
<O ® o °°° ¢ =
4 3 O ) ""IX2 T NX 2080Ti TX2  NX 2080Ti
(b) Hardware Devices

Spatial-Temporal Abstract Reasoning

ResNet accuracy: 53% The neuro-symbolic approach takes ~100s
GPT-4 accuracy: 84% even on desktop GPU, ~700s on Jetson TX2
Neuro-Symbolic accuracy: 98%
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Research Question:

What’s the system implications of neuro-symbolic
workloads?

Why neuro-symbolic workloads are inefficient on
off-the-shelf hardware?



Outline

* Neuro-symbolic Al 101

* Neuro-symbolic Al workload characterization

* Neuro-symbolic Al hardware architecture

* Final project: neuro-symbolic kernel optimization

.Uy
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Neuro-Symbolic Al Workload and Characterization

Neuro-Symbolic AT Algorithms

e N ~ ™ ~ S R
[ ] L[] .
Categorize Neuro-Symbolic @o g%}
- o O
A I gO Il t h ms Neural Network | T Symbolic T | Probabilistic
Scalable, Flexible, Interpretable, Explainable, Robust to
_ Handle inconsistency) L Data-efficient y L uncertainty y
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Neuro-Symbolic Al Workload and Characterization

Neuro-Symbolic AT Algorithms

e A e A e S A
° . (-]
Categorize Neuro-Symbolic @ é%% a5\
— o O
A | gO Il t h ms Neural Network | T Symbolic * | Probabilistic
Scalable, Flexible, Interpretable, Explainable, Robust to
_ Handle inconsistency) L Data-efficient y uncertainty
. \ Y,
Understand Computational P ——— f - -
Be h av I O r Of N e u ro_Sy m b O I I C NeurO-Symbollc Al Workload Characterization
Hardware Compute Platforms Metrics
Workloads ! % | | Runtime, Memory, Compute
@ ;:% g Operatorg, Operatipn Graph,
CPU GPU  Accelerator Roofline, Sparsity, etc
\ Y,
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Neuro-Symbolic Al Workload and Characterization

Neuro-Symbolic Al Algorithms

e A s A s S A
° . o
Categorize Neuro-Symbolic @) é%% 0%
— O O
A | gO Il t h ms Neural Network | T Symbolic T | Probabilistic
Scalable, Flexible, Interpretable, Explainable, Robust to
kHandle inconsisten% L Data-efficient y L uncertainty )
Understand Computational P p - -
B e h av | or Of N euro- Sy m b 0O I | C Neuro-Symbolic AI Workload Characterization
Hardware Compute Platforms Metrics
Workloads ' % | | Runtime, Memory, Compute
@ .y g Operator_s, Operatic_)n Graph,
CPU GPU  Accelerator Roofline, Sparsity, etc
Identify Co-Design S T /
O ppo rtun |t | es ( Neuro-Symbolic AT Workload Optimization )
Software [« System [«—{Architecturef+— Technology
N Y,
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Neuro-Symbolic Al Workload and Characterization

Neuro-Symbolic AI Algorithms

|
S e A s A e S A
° . = )
Categorize Neuro-Symbolic g @3 6%% s e
B . — @ | )
A | g o) r|th ms f 8 : Neural Network | T Symbolic T | Probabilistic
:E > : Scalable, Flexible, Interpretable, Explainable, Robust to
. E" é |  Handle inconsistency) L Data-efficient y L uncertainty )
Understand Computational S& r-——-—-—----—-—-—-—----—---- e -
P)
. . & — | _ o . .
Be h avior Of N euro- Sym b 0O I iC _;. % : Neuro-Symbolic AT Workload Characterization
8 © Hardware Compute Platforms Metrics
Workloads g ; ! = % | | Runtime, Memory, Compute
= g | et @ LI g Operator_s, Operatic_)n Graph,
< 3 CPU GPU  Accelerator Roofline, Sparsity, etc
[ ] [} \ J
Identify Co-Design PR L T
o, ® o | ~N
O pPpo rtunities = g ! Neuro-Symbolic AI Workload Optimization
§ : Software [« System [«—{Architecturef+— Technology
(AN J

“Towards Cognitive Al Systems: Workload and Characterization of Neuro-Symbolic Al”, in ISPASS 2024 [PDF]
“Towards Efficient Neuro-Symbolic Al: From Workload Characterization to Hardware Architecture”, in TCASAI 2024 [PDF]


https://zishenwan.github.io/publication/ISPASS24_NSAI.pdf
https://zishenwan.github.io/publication/TCASAI24.pdf

Neuro-Symbolic Al Workload and Characterization

Neuro-Symbolic AI Algorithms

( ) 4 ) (" )
P
0 0l%,
0%

Categorize Neuro-Symbolic

[
=
<
2
. — O
AlgO rltth :5 8 Neural Network | T Symbolic T | Probabilistic
= > Scalable, Flexible, Interpretable, Explainable, Robust to
o c - - - . -
§0 2 kHandle inconsistency, L Data-efficient y L uncertainty y
O Y e b -~-— - -
g - : » )
.ﬁ < : Neuro-Symbolic Al Workload Characterization
§ ém : Hardware Compute Platforms Metrics
§ S : ﬁ - | Runtime, Memory, Compute
= = Yosd @ - ~ | Operators, Operation Graph,
< 2 | CPU GPU  Accelerator Roofline, Sparsity, etc
:5 > I\ J
@
E " Peeememecccccccc—————- } ~-- e - - -
= 2! ( . c e . )
g | Neuro-Symbolic AI Workload Optimization
= |
§ : Software [« System [«—|Architecture+— Technology
I\ J
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Lots of Neuro-Symbolic Algorithms

(b} NVSA frontend: perception (Whiskers ® Tail ® (Laser pointer - Chases)) - Cat | g(~'13+ )

\(Cat @ DOg) d Pet; - ] y

/7*7‘_ . (c) NVSA backend: reasoning
fgﬂ:fi o :;:g Probabilistic p(;z;) /D; E;e e ',E\ g(zr:_)
\” — *® [Laserpointer] [Chases] -
Neuro-Vector-Symbolic Arch Logical Neural Network Logical Tensor Network
® vvoo AlphaGeometry
i o |
:v (% Language model ]
m
v, Add a Not
; - 51 A construct ...-..... : solved
, . e i 4{6 Symbolicengin; ]ﬁ
Probabilistic Abduction Image Translation via VSA AlphaGeometry

| Deep Hinge-Loss Markov Random Field |

I Symbolic Inference |
E«ﬂ (4]
:

o=y —9]

y* =argmin F(-) |7
y

[N
Hh

Neural Probabilistic Soft Logic

Neural Logical Machine

MLP, ConvNet, Transformer, etc [ Symbolic ] Vector, Fuzzy logic, Knowledge graph, Decision tree, etc
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Neuro-Symbolic Al Workload Category

e ™ 4 A ) (?
Symbolic Neuro o =
—> N = — D =2
—> [ Neuro ] —> [Symbollcﬂ Z E
. J . J — ;)U)
Symbolic [Neuro] Neuro [Symbolic] Neuro | Symbolic
. ) ) )
[Symbollcj 2| ¥ 2le
7 ol S| = o
—p g —>§—> > —>§—>» ié: —
—»[ Neuro ]—» s 2 I~ >
— ) R ) R D
Neuro:Symbolic->Neuro Neurog, noiic

Inspired by Henry Kautz’s terminology
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[ ]
Selected Neuro—Sy' nbolic Workloads
LNN NVSA NLM Input (pre-conditions) Output (conclusions) || PrAE
[ (Whiskers ® Tail ® (Laser point - Chases)) — Cat ] [(Cat @ Dog) - Pet] Scene images (RS Syrinlelie WSAOES forkilcs S 101:1111;r2p§r§8s ' h
H H 4 G o .g. atche
©, & N e a2 ||| ot roperin = ] (=
o |3 S é A E.g. Moveable(x)
@) Object Relat ermutatio
@ VSA vectors Ha E'gj'e(;n(x’e;) ons il1 - . .11
[ Whiskers ] [ Tail ] [ Laser pointer ] [ Chases ] [ Cat ] [ Dog ] - .
. ZeroC
LTN Neural Symbolic —
Neural Symbolic (VSA domain) |:> — rob re
! x my m; ms
| (Fuzy FOL , .
Connectives: ; )Tpers Cline - S
iy sat 8 T m,  [seion
> Quanz'lcigers: < @ perp /rp o . + E(x,mz, M3, Tpayr) (%
.. Cline\™3 E = v
Answer
Representative Neuro- Logic Neural Logic Tensor Neuro-Vector-Symbolic | Vector Symbolic Architecture Neural Logic Zero-shot Concept Recog- | Probabilistic Abduction
mbolic orkloads etwor etwor rchitecture age2lmage Translation achine nition and Acquisition and Execution
Symbolic AT Workload N k [30] N k [34] Archi [4] Image2Image Translation [7] Machine [38] iti d Acquisition [37] d E ion [23]
Abbreviation LNN LTN NVSA VSAIT NLM ZeroC PrAE
Neuro-Symbolic Category | Neuro:Symbolic—Neuro Neurogymbolic Neuro|Symbolic Neuro|Symbolic Neuro[Symbolic] Neuro[Symbolic] Neuro|Symbolic
earning Approac upervise upervised/Unsupervise upervised/Unsupervise upervise upervised/Unsupervise upervise upervised/Unsupervise
L ing A h S ised S ised/U ised S ised/U ised S ised S ised/U ised S ised S ised/U ised
ing, learni i Cross-domain classificati
. L. Learning and reasoning, Querylflg, carning, reaso-mng Fluid intelligence, Unpaired image-to-image Relational reasoning, ross omal‘n classtiication Fluid intelligence,
Application (relational and embedding , . . . . and detection, Concept . .
Full theorem prover learning, query answering) Abstract reasoning translation Decision making acquisition Spatial-temporal reasoning
Deployment Advantage vs Higher interoperability, Higher data efficiency, Higher joint representations | Address semantic flipping and | Higher generalization, | Higher generalization, concept | Higher generalization,
Scenario Neural I\%Io dei resilience to incomplete | comprehensibility, out-of- |efficiency, abstract reasoning hallucinations issue in unpairedlogic reasoning, deduction,| acquisition and recognition, transparency, interpre-
knowledge, generalization distribution generalization capability, transparency image translation tasks explainability capability compositionality capability tability, and robustness
Dataset LUBM benchmark [40], UCI [42], Leptograpsus RAVEN [21], GTA [47], Cityscapes [48], | Family graph reasoning, Abstraction reasoning [50], RAVEN [21],
TPTP benchmark [41] |crabs [43], DeepProbLog [44]| I-RAVEN [22], PGM [45] Google Maps dataset [49] | sorting, path finding [46] Hierarchical-concept corpus [51]I-RAVEN [22], PGM [45]
Datat FP32 FP32 FP32 FP32 FP32 INT64 FP32
Computation aatype -
Pattern Neuro Graph MLP ConvNet ConvNet Sequential tensor Energy-based network ConvNet
Symbolic FOL/Logical operation FOL/Logical operation VSA/Vector operation VSA/Vector operation FOL/Logical operation Graph, vector operation VSA/Vector operation




Selected Neuro-Sy

mbolic Workloads

NVSA

Scene images

Neural Symbolic

A ey

=| |8 c

ol l L=

1 e

L) = =

Z| | o ~
O

VSA vectors

VSA OPs for rules

[
()
o

select

Answer

Representative Neuro-
Symbolic AT Workloads

Abbreviation

Neuro-Symbolic Category

Learning Approach

Application

Deployment

Advantage vs.
Scenario 8

Neural Model

Dataset
Datat
Computation acatype
Pattern Neuro
Symbolic

Neuro-Vector-Symbolic
Architecture [4]

NVSA

Neuro|Symbolic

Supervised/Unsupervised

Fluid intelligence,
Abstract reasoning

Higher joint representations

capability, transparency

efficiency, abstract reasoning]

RAVEN [21],
I-RAVEN [22], PGM [45]

FP32

ConvNet

VSA/Vector operation




Example: Neuro-Vector-Symbolic Architecture

RAVEN example test

Context panels

(1.1) g 8@ |u3
o o O
2N g " 2.3
4P .«
G @ o o o 163
O

L L L o/
Candidate panels /
—

(1) .1&’” (4)
O * 0

O
@ Do e

88— ®)
SO0 L )

“A neuro-vector-symbolic architecture for solving Raven’s progressive matrices”. In Nature Machine Intelligence, 2023
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Example: Neuro-Vector-Symbolic Architecture

RAVEN example test NVSA frontend: perception
Context panels é (| — \)
r 1 Type Size Colour | |Position
) O .. (1.3) Eﬁ ie-ER| (B O(E-ER
O . O \{
2) aq ® (2.3) ) - -
q Frozen W
40 ‘ ( Trainable )
ResNet-18 —w; —|O
CV@ e 2 163 == | o
’ ' Convo- Fully q Wy o}
_ _ . o/——)r lution connected | = | — w, — |O 3
layer + Tanh e |o
Candidate panels 7/ A ) ;
‘ —w, — |0
m| ¢ | @ 5 J
o O A
) oo
(5) 8 O (8) Neuro Perception
o0 L

“A neuro-vector-symbolic architecture for solving Raven’s progressive matrices”. In Nature Machine Intelligence, 2023
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Example: Neuro-Vector-Symbolic Architecture

RAVEN example test NVSA frontend: perception
Context panels é ( —
. 1 Type Size Colour | [Position
ER|EELGER| (LR
o o O \
21 o« ® (2,3) ~ NVSA backend: reasoning
Frozen W pan ~
49 ‘ N ( Trainable h p2
ResNet-18 ——— —‘ O
(3,1 . o o ? (3.3) _ 0] . p32)
O o - Convo- conFr':élgte d _q» - :3 o g Probabilistic o Detect | |Execute| | P*?_| Answer
' ~ lution : _scene rules rules selection
layer + Tanh w0 inference 9
Candidate panels 7/ R ] ; \ )
' W, — ] m pw  pl®) 7
M| & - 4)  \_ h
C 1O *® OO
® Ooe : : :
©) & ol ®) Neuro Perception Symbolic Reasoning
®o0 et
“A neuro-vector-symbolic architecture for solving Raven’s progressive matrices”. In Nature Machine Intelligence, 2023
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Example: Neuro-Vector-Symbolic Architecture

RAVEN example test

Contextpanels * Neuro-Symbolic Category: Neuro | Symbolic

* Learning Approach: Supervised and Unsupervised
(1,1) O 8@ |03
o o O
) 3q . (2.3)
4@ .«
@) @ I 2 |(3,3)
o

L JL L 0/-
Candidate panels 7/

Q) .’I‘{ ‘ (4)
O, *®
&} oo
©) | PPN (®)
o o0 et

“A neuro-vector-symbolic architecture for solving Raven’s progressive matrices”. In Nature Machine Intelligence, 2023
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Example: Neuro-Vector-Symbolic Architecture

RAVEN example test

Neuro-Symbolic Category: Neuro | Symbolic

Context panels

» . lse lus * Learning Approach: Supervised and Unsupervised
oo |T@ | ' * Application: Fluid Intelligence, Abstract reasoning
2 o4 o e * Advantages over Neural Model: Accuracy
48 .- | * Higher joint representation efficiency ResNet: 53%
GN@ oo | 9 [GI * Higher abstract reasoning capability = GPT-4: 84%
? | - / * Higher transparency Neuro-Symbolic: 98%
C""”“"’."’“epa”e‘s o * Dataset: RAVEN, I-RAVEN, PGM
M| & ' | (4)
€O O je@
&} oo
(5) I le—ol (8)
*00 \ A

“A neuro-vector-symbolic architecture for solving Raven’s progressive matrices”. In Nature Machine Intelligence, 2023
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2,1 O s
T R
(31 O e o 9 |
s

Context panels

Example: Neuro-Vector-Symbolic Architecture

RAVEN example test

Candidate panels

\ 4

*O

<

NS

(8)

Neuro-Symbolic Category: Neuro | Symbolic
Learning Approach: Supervised and Unsupervised
Application: Fluid Intelligence, Abstract reasoning

Advantages over Neural Model.: Accuracy
* Higher joint representation efficiency ResNet: 53%
* Higher abstract reasoning capability  GPT-4: 84%

* Higher transparency
Dataset: RAVEN, I-RAVEN, PGM
Computational Components:

* Neuro: ConvNet

* Symbolic: vector-symbolic operation, circular convolution

Neuro-Symbolic: 98%

“A neuro-vector-symbolic architecture for solving Raven’s progressive matrices”. In Nature Machine Intelligence, 2023
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Example: Neuro-Vector-Symbolic Architecture

RAVEN example test NVSA frontend: perception
Context panels é ( — N
. T . Type Size Colour | |Position
) & e . .3) @ | B (SRR
O o O \
21 o« ® (2,3) ~ ) N g NVSA backend: reasoning
< Frozen W pin p
40 ‘ [ Trainable A pi2)
ResNet-18 — W —‘ o
(3,1) 7Y ¢ ) (3,3) EwE==o pla2)
! i Fully q W3 o Probabilistic pa.3)
_ ’ _ . o — - Cl‘Stri];(r: connected | =/ | — w, — |o : scene Detlect Exef:ute Arsw_er
layer + Tanh ] inference rules || rules selection
Candidate panels 7/ A ] : \ |
' —w, — | @ PO, ., P ]
m| ¢ | @ [ : _
o O *® *e
) oo
©) oo 8 O (®) Neuro Perception Symbolic Reasoning
L 4 e

“A neuro-vector-symbolic architecture for solving Raven’s progressive matrices”. In Nature Machine Intelligence, 2023
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Binding Problem in Neural Network

Localist distributed representation

] A HA

v ¥ v
{Mapping] [Mapping] [Mapping]
v v v
Representation . o . O O . o . . . . .
Red Blue Square Triangle Red Blue Square Triangle Red Blue Square Triangle
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Solutions in Vector-Symbolic Architecture

High-dimensional VSA representations and operators

N A HA

¥ ¥

Mapping Mapping Mapping

Representation of
multiple objects .
s
b
:¢ :¢ 3

Y

Representation L
of objects oo
res

4
1 W, d square wblue triangle

-+

3,2°

Representation $8¢
of attributes 8¢

(oJoleX I X oI JeoJe)
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Solutions in Vector-Symbolic Architecture

Absolute pairwise cosine similarity between VSA representations

High-dimensional VSA representations and operators

Input . A

¥ ¥

Mapping Mapping

Representation of
multiple objects

Y

[
Representation L .:8
of objects oo °
e
A
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L]
>
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1 wred square wblue triangle

Representation §

-+

of attributes g

-+

et £

| & MR
quuare xtriangle

(eJoleXl I Y JoI Yole)

0

1

.0

Xplue

g

o'

xsquare

X

xtriangle a

ol

=
8
4

h:

=
B L

i

r.sq.

=
o
=

*

Xred

“‘

Xplue xsquare xtriangle

W

.ty ".,ﬁ‘:

r.tr.

Wb.sq.

)

r.sg.

Wh tr.

Guest Lecture @ ECE8893

Zishen Wan | School of ECE | Georgia Institute of Technology

Legend

Red triangle (r. tr.)
Blue triangle (b. tr.)
Red square (r. sq.)
Blue square (b. sq.)
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[ ]
Selected NGUFO-SV nbolic Workloads

LNN NVSA NLM Input (pre-conditions) Output (conclusions) || PrAE

[ (Whiskers ® Tail ® (Laser point — Chases)) — Cat ] [(Cat @ Dog) — Pet] Scenc images | Neural Symbolic VSA OPs for rules ]CE}lOt;fllll{)/[ r(ipgrgigs ' .

: H . 4 G B .g. atche
= (A - 2 3 ||| ovice Poperies =P —— emasin Pfrair |——-
£ = o S é A E.g. Moveable(x)
®) Object Relations
@ VSA vectors Ha E'gJ' On(x, y)l ! il1 . .
[ Whiskers ] [ Tail ] [ Laser pointer ] [ Chases ] [ Cat ] [ Dog ] ' .
. ZeroC
LTN Neural Symbolic —
Neural Symbolic (VSA domain) |:> -

! x m m m

suzzy oL J | m
Connectives: | my )Tperp Cline n o :

B sat i s 2 [Abducton]
N Quantifiers: < “:’ -Slm() perp /rpar . + E(x,mz, m3,7p0r) E»__Execution
— v Cline 3 E = i
200 - Answer

Representative Neuro-
Symbolic AT Workloads

Logic Neural
Network [30]

Logic Tensor
Network [34]

Neuro-Vector-Symbolic |Vector Symbolic Architecture
Architecture [4] Image2Image Translation [7]

Neural Logic
Machine [38]

Zero-shot Concept Recog-
nition and Acquisition [37]

Probabilistic Abduction
and Execution [23]

Abbreviation LNN LTN NVSA VSAIT NLM ZeroC PrAE
Neuro-Symbolic Category | Neuro:Symbolic—Neuro Neurogympolic Neuro|Symbolic Neuro|Symbolic Neuro[Symbolic] Neuro[Symbolic] Neuro|Symbolic
Learning Approach Supervised Supervised/Unsupervised Supervised/Unsupervised Supervised Supervised/Unsupervised Supervised Supervised/Unsupervised
ing, learni i Cross-domain classificati
. . Learning and reasoning, Queryn.lg, carnng, reasolmng Fluid intelligence, Unpaired image-to-image Relational reasoning, ross omalln crasstiication Fluid intelligence,
Application (relational and embedding . . . . . and detection, Concept . .
Full theorem prover . . Abstract reasoning translation Decision making . Spatial-temporal reasoning
learning, query answering) acquisition
Deployment Higher interoperability, Higher data efficiency, Higher joint representations | Address semantic flipping and | Higher generalization, | Higher generalization, concept | Higher generalization,

Scenario

Advantage vs.
Neural Model

resilience to incomplete | comprehensibility, out-of-
knowledge, generalization distribution generalization

efficiency, abstract reasoning hallucinations issue in unpaired
capability, transparency image translation tasks

logic reasoning, deduction,
explainability capability

acquisition and recognition,
compositionality capability

transparency, interpre-
tability, and robustness

Dataset LUBM benchmark [40], UCI [42], Leptograpsus RAVEN [21], GTA [47], Cityscapes [48], | Family graph reasoning, Abstraction reasoning [50], RAVEN [21],
TPTP benchmark [41] |crabs [43], DeepProbLog [44] I-RAVEN [22], PGM [45] Google Maps dataset [49] | sorting, path finding [46] [Hierarchical-concept corpus [51][I-RAVEN [22], PGM [45]
. Datatype FP32 FP32 FP32 FP32 FP32 INT64 Fp32
Computation -
Pattern Neuro Graph MLP ConvNet ConvNet Sequential tensor Energy-based network ConvNet
Symbolic FOL/Logical operation FOL/Logical operation VSA/Vector operation VSA/Vector operation FOL/Logical operation Graph, vector operation VSA/Vector operation




Neuro-Symbolic Al Workload and Characterization

Neuro-Symbolic AI Algorithms

( ) 4 ) (" )
P
0 0l%,
0%

Neural Network | T Symbolic T | Probabilistic
Scalable, Flexible, Interpretable, Explainable, Robust to
_  Handle inconsistency) L Data-efficient ) L uncertainty )
Understand Computational ettt p - -

Neuro-Symbolic Al Workload Characterization

Behavior of Neuro-Symbolic

Towards Human-like Cognitive Al

Learning, Reasoning, Logical Thinking, Collaboration

|
|
|
|
| Hardware Compute Platforms Metrics
Workloads ! =5 2 | | Runtime, Memory, Compute
| et @ L ~ | Operators, Operation Graph,
! CPU GPU  Accelerator Roofline, Sparsity, etc
[ ] [} \ )
Identify Co-Design e T
oy . e ~
O pPpPo rtunities ! Neuro-Symbolic AI Workload Optimization
|
: Software [« System [«—|Architecture+— Technology
I\ J

Guest Lecture @ ECE8893 Zishen Wan | School of ECE | Georgia Institute of Technology 51



Neuro-Symbolic Workload Characterization

Profiling setup: CPU+GPU system, using pytorch profiler, seven neuro-symbolic workloads
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Neuro-Symbolic Workload Characterization

Profiling setup: CPU+GPU system, using pytorch profiler, seven neuro-symbolic workloads

* End-to-end runtime latency analysis:

& ) 100%
= X X
1= ® i3 = e > S @ o
€| 280%| | & S = S b & 8
S i3 o i oS o
U>)\ c < Lo & © 00
D
|:| © 60%
D
(el
@
o 40% =
o E o o N
> " — = > =) )
2 I= © S & g2
> 0 st (c°] ] b )
| | > © o
~ - —

LNN LTN NVSA NLM VSAIT ZeroC PrAE
Neuro-Symbolic Al Workloads

~
v}
~

Neuro-symbolic workload exhibits high latency compared to neural models;
Symbolic component is processed inefficiently on off-the-shelf CPU/GPUs

)
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[I:I Neuro [£] Symbolic]

Neuro-Symbolic Workload Characterization

Profiling setup: CPU+GPU system, using pytorch profiler, seven neuro-symbolic workloads

* End-to-end runtime latency analysis:

104

100% 2 s NLM Workload NVSA Workload
S 80%| 1S = S 2 3 2 s =
S i o N o o3 b A 5‘103
c S Lo (o)) © (co) c
S 60% S
8 = 10°
£ 40% g £
= S © ! =
< © o > ™ S LAl
ER N S > s e
L g S 0
LNN LTN NVSA NLM VSAIT ZeroC PrAE X2 NX 2080Ti TX2 NX  2080Ti

(b)

Hardware Devices

~
v}
~

Neuro-Symbolic Al Workloads

)

Neuro-symbolic workload exhibits high latency compared to neural models;
Symbolic component is processed inefficiently on off-the-shelf CPU/GPUs
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Neuro-Symbolic Workload Characterization

100%
(D)
I
o 80% 5
& 2
= ~
g o 2
(] S
T s 13
g =
=
2 20% g
5
PR I i I W S
Ix1 2x2 3x3
(¢) Reasoning Task Sizes (d) Neurosymbolic Workloads

Symbolic components exhibit large memory footprint;
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Neuro-Symbolic Workload Characterization

100% 100% r \

o >

£ . / ¥

o 80% 5 80% o N N & 8

& = o0 N N =
g S s N N2 «
g by NN |5 28
3 60% = 60% 3 X N[5 €
5 = 5 P | [B §
. & & SRR IR
40% S 40% ) N RS o
§= = < NS N | [ -
=) o \\\\\ .\\\\\ ! o
g b = \\\'\\ :\\\\\ 8 ﬁ
2 20% S 20% g AN S | [> S
& Y : AN
0% = 0% 0 e

Ix1  2x2 3x3 Nvg AMI Type Size CO]OIN UmpePSitiop,
(¢) Reasoning Task Sizes (d) Neurosymbolic Workloads (e) Reasoning Task Attibutes

Symbolic components exhibit large memory footprint;
Symbolic operations are dominated by vector-symbolic circular convolutions
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Neuro-Symbolic Workload Characterization

 Compute operator analysis:

Conv - 0.00% 0.00% 0.00% 0.00%

- 0.00% 0.00% geEAXZE 0.00% - 0.00% --
MatMul - 0.51% 0.00% QA4 0.00% 0.52% 0.00% - 0.00% - 0.00% - 0.91%
NN 19.3% - [ERRGY 22.0% R -- 6.75% QJSERRL - 74.9% WARYIN 56.3%

Data - 16.4% 17.3% 7.20% 2.40% 3.11% 6.82% 16.0% 3.85% 2.94% 20.8% 3.96% 2.13% 4.72% 8.11%

Transform
-- 3.48% 6.36% 9.40% 7.12% - 14.36% 0.84% 13.87% 2.52% - 10.6% 6.69%
- 0.00% 18.1% 0.00% 0.00% 0.00% KL%y 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Ll\llN LNN L'i'N L'i'N NVISA NVISA NII;M NLM VSAIT VSI‘AIT Ze';bC Ze'lr'oC Pr}lﬁ\E PrAE
(Neuro) (Symb) (Neuro) (Symb) (Neuro) (Symb) (Neuro) (Symb) (Neuro) (Symb) (Neuro) (Symb) (Neuro) (Symb)

Vector/Ele-
ment wise

Data
Movement

Other - 0.00%
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Neuro-Symbolic Workload Characterization

 Compute operator analysis:

>60%
Conv 0.00% 0.00% 0.00% 0.00% - 0.00% 0.00% geEAXZE 0.00% - 0.00% --
MatMul  0.51% 0.00% QPR 0.00% - 0.52% - 0.00% - 0.00% - 0.00% - 0.91% 45%

Vector/Ele-
ment wise

19.3% - [ERRGY 22.0% R -- 6.75% QJSERRL - 74.9% WARYIN 56.3%
30%

Tra[rzg]%rm 16.4% 17.3% 7.20% 2.40% 3.11% 6.82% 16.0% 3.85% 2.94% 20.8% 3.96% 2.13% 4.72% 8.11%

Data 3.48% 6.36% 9.40% 7.12% - 14.36% 0.84% 13.87% 2.52%- 10.6% 6.69% -15%
Movement

Other 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.00% 18.1% 0.00% 0.00% 0.00% ESEeEZ)

Ll\llN LNN L'i'N L'i'N NVISA NVISA NII;M NLM VSAIT VSI‘AIT Ze';bC Ze'lr'oC Pr}lﬁ\E PrAE
(Neuro) (Symb) (Neuro) (Symb) (Neuro) (Symb) (Neuro) (Symb) (Neuro) (Symb) (Neuro) (Symb) (Neuro) (Symb)

- 0%
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Neuro-Symbolic Workload Characterization

 Compute operator analysis:

Conv - 0.00% 0.00% 0.00% 0.00%

- 0.00% 0.00% geEAXZE 0.00% - 0.00% --
MatMul - 0.51% 0.00% QA4 0.00% 0.52% 0.00% - 0.00% - 0.00% - 0.91%
NN 19.3% - [ERRGY 22.0% R -- 6.75% QJSERRL - 74.9% WARYIN 56.3%

Data - 16.4% 17.3% 7.20% 2.40% 3.11% 6.82% 16.0% 3.85% 2.94% 20.8% 3.96% 2.13% 4.72% 8.11%

Transform
-- 3.48% 6.36% 9.40% 7.12% - 14.36% 0.84% 13.87% 2.52% - 10.6% 6.69%

0.00% 18.1% 0.00% 0.00% 0.00% [efEeEZy 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Vector/Ele-
ment wise

Data
Movement

Other - 0.00%

LNN LNN LTN LTN NVSA NVSA NLM NLM VSAIT VSAIT ZeroC ZeroC PrAE PrAE
(Neuro) (Symb) (Neuro) (Symb) (Neuro) (Symb) (Neuro) (Symb) (Neuro) (Symb) (Neuro) (Symb) (Neuro) (Symb)
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30%

-15%

- 0%
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Neuro-Symbolic Workload Characterization

* Compute op

erator analysis:

Conv 1 0.00%

MatMul { 0.51%

Vector/Ele-
ment wise

Data

0,
Transform L

Data

Movement

Other 0.00%

0.00% 0.00% 0.00% - 0.00% 0.00% geEAXZE 0.00% - 0.00% --
0.00% KyAstZM 0.00% - 0.52% - 0.00% - 0.00% - 0.00% - 0.91%
19.3% - [ERRGY 22.0% R -- 6.75% JEERM) - 74.9% WARYIN 56.3%

17.3% 7.20% 2.40% 3.11% 6.82% 16.0% 3.85% 2.94% 20.8% 3.96% 2.13% 4.72% 8.11%

3.48% 6.36% 9.40% 7.12% - 14.36% 0.84% 13.87% 2.52% - 10.6% 6.69%

0.00% 18.1% 0.00% 0.00% 0.00% [efEeEZy 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

>00

45%

30%

-15%

- 0%

%

LNN

LNN LTN LTN NVSA NVSA NLM NLM VSAIT VSAIT ZeroC ZeroC PrAE PrAE

(Neuro) (Symb) (Neuro) (Symb) (Neuro) (Symb) (Neuro) (Symb) (Neuro) (Symb) (Neuro) (Symb) (Neuro) (Symb)
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Neuro-Symbolic Workload Characterization

 Compute operator analysis:

>60%
Conv  10.00% | 0.00% 0.00%
MatMul - 0.51%/| 0.00% 0.00% 45%
\ector/Ele-
ment wise 22.0% 22.9%
30%
Data 2.40% | 3.11% 3.85% | 2.94% |20.8% | 3.96% |2.13% | 4.72% | 8.11%
Transform
Data 6.36% | 9.40%)| 7.12% 0.84% |13.87%| 2.52% | 22.9%| 10.6% | 6.69% -15%
Movement
Other 4 0.00% 18.1% | 0.00%| 0.00% 0.00% |0.00% | 0.00% | 0.00% | 0.00% | 0.00%
| | | | | | | | - O%
LTN |NVSA| NVSA VSAIT| ZeroC | ZeroC| PrAE | PrAE
(Symb){(Neuro} (Symb)|(Neuro)| (Symb) (Symb)[(Neuro) | (Symb){ (Neuro){ (Symb)
Neural dominated by MatMul and Conv;
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Neuro-Symbolic Workload Characterization

 Compute operator analysis:

Conv - 0.00% | 0.00% 0.00% o

MatMul - 051% 0.00% 45%
vectoritle- 22.9% 20.1%

30%

D 1649 3.85% | 2.94% | 208% |3.96% | 2.13% | 4.72% | 8.11% 0

DR 14.36% 0.84% |13.87% | 2.52% | 22.9% | 10.6%| 6.69% | - 15%

Other - 0.00% 0.00% | 0.00% |0.00% | 0.00% | 0.00% | 0.00%

- 0%

LNN VSAIT| VSAIT| ZeroC | ZeroC | PrAE | PrAE

(Neuro) (Symb)|(Neuro)| (Symb)|(Neuro){ (Symb)

Neural dominated by MatMul and Conv; Symbolic dominated by vector/element/logical
operations;
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Neuro-Symbolic Workload Characterization

e Data Dependence Graph analysis:

L/
(Neural Network) Neural _
y [ H Symbolic ]
(__Symbolic ) Network
v v Structure
(__ Output ) (_Output )

NVSA, VSAIT, PrAE NLM, ZeroC, LTN

( Input J+—{Symbolic )

Knowledge
Neural
Network

v
( Output )

LNN

Neural dominated by MatMul and Conv; Symbolic dominated by vector/element/logical
operations; Complex control flow of neuro-symbolic interaction
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Neuro-Symbolic Workload Characterization

segmm_nn relu_nn vectorized elementwise

Runtime Percentage (%)
Compute Throughput (%)
ALU Utilization (%)

L1 Cache Hit Rate (%)
L2 Cache Hit Rate (%)
L1 Cache Throughput (%)
L2 Cache Throughput (%)
DRAM BW Utilization (%)

Why system Inefficiency?
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Neuro-Symbolic Workload Characterization

segmm_nn relu_nn vectorized elementwise

Runtime Percentage (%) 18.2 10.4 37.5 12.4
Compute Throughput (%) 95.1 92.9 3.0 2.3
ALU Utilization (%) 90.1 48.3 5.9 4.5

L1 Cache Hit Rate (%)
L2 Cache Hit Rate (%)
L1 Cache Throughput (%)
L2 Cache Throughput (%)
DRAM BW Utilization (%)

Symbolic exhibits low ALU utilization,
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Neuro-Symbolic Workload Characterization

segmm_nn relu_nn vectorized elementwise

Runtime Percentage (%) 18.2 10.4 37.5 12.4
Compute Throughput (%) 95.1 92.9 3.0 2.3
ALU Utilization (%) 90.1 48.3 5.9 4.5

L1 Cache Hit Rate (%) 1.6 51.6 29.5 33.3
L2 Cache Hit Rate (%) 86.8 65.5 48.6 34.3

L1 Cache Throughput (%)
L2 Cache Throughput (%)
DRAM BW Utilization (%)

Symbolic exhibits low ALU utilization, low cache hit rate,
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Neuro-Symbolic Workload Characterization

segmm_nn relu_nn vectorized elementwise

Runtime Percentage (%) 18.2 10.4 37.5 12.4
Compute Throughput (%) 95.1 92.9 3.0 2.3
ALU Utilization (%) 90.1 48.3 5.9 4.5

L1 Cache Hit Rate (%) 1.6 51.6 29.5 33.3
L2 Cache Hit Rate (%) 86.8 65.5 48.6 34.3
L1 Cache Throughput (%) 79.7 82.6 28.4 10.8
L2 Cache Throughput (%) 19.2 17.5 29.8 22.8
DRAM BW Utilization (%) 14.9 24.2 90.9 78.4

Symbolic exhibits low ALU utilization, low cache hit rate, massive data transfer, resulting
in hardware underutilization and inefficiency
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Neuro-Symbolic Workload Characterization

210" Compute-bound
segmm_nn relu_nn vectorized elementwise % ompu rooun
. O /i ZeroC
Runtime Percentage (%) 18.2 10.4 37.5 12.4 T 101 Neuro)
- PrAE
Compute Throughput (%) 95.1 92.9 3.0 2.3 @ Memory- /m
c
ALU Utilization (%) 90.1 48.3 5.9 4.5 g 100 bound VSAIT.
= Neuro ‘ NVSA
L1 Cache Hit Rate (%) 1.6 51.6 29.5 333 “q:) Neuro
O 11 PrAE
L2 Cache Hit Rate (%) 86.8 65.5 48.6 34.3 210 / Sym NVSA
S Symb,')
L1 Cache Throughput (%) 79.7 82.6 28.4 10.8 k= VSAIT
L2 Cache Throughput (%) 19.2 17.5 29.8 22.8 < Symb
o 07 0T 100 100 17 10
DRAM BW Utilization (%) 14.9 24.2 90.9 78.4 (c) Operation Intensity (FLOPS/Byte)

Neuro operations are compute-bounded, symbolic operations are memory-bounded.
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Neural Network vs. Neuro-Symbolic

_ Neural Network Neuro-Symbolic
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Neural Network vs. Neuro-Symbolic

_ Neural Network Neuro-Symbolic

Runtime [Neural Network] < [Neural-Symbolic]
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Neural Network vs. Neuro-Symbolic

_ Neural Network Neuro-Symbolic

Runtime [Neural Network] < [Neural-Symbolic]
Compute Neural kernels Heterogenous neural and symbolic kernels
Kernels (Conv, MatMul, etc) (vector, element, MatMul, graph, logic, etc)
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Neural Network vs. Neuro-Symbolic

_ Neural Network Neuro-Symbolic

Runtime [Neural Network] < [Neural-Symbolic]

Compute Neural kernels Heterogenous neural and symbolic kernels
Kernels (Conv, MatMul, etc) (vector, element, MatMul, graph, logic, etc)

Hardware Inefficient on CPU/GPU/TPU

Efficient on GPU/TPU (low ALU utilization, low L1 cache hit rate,

Efficiency high data movement, etc)
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Neural Network vs. Neuro-Symbolic

_ Neural Network Neuro-Symbolic

Runtime [Neural Network] < [Neural-Symbolic]
Compute Neural kernels Heterogenous neural and symbolic kernels

Kernels (Conv, MatMul, etc) (vector, element, MatMul, graph, logic, etc)
Hardware Inefficient on CPU/GPU/TPU

.. Efficient on GPU/TPU (low ALU utilization, low L1 cache hit rate,
Efficiency )
high data movement, etc)
System Bound Compute-bound / Memory-bound Memory-bound
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Neural Network vs. Neuro-Symbolic

_ Neural Network Neuro-Symbolic

Runtime [Neural Network] < [Neural-Symbolic]
Compute Neural kernels Heterogenous neural and symbolic kernels

Kernels (Conv, MatMul, etc) (vector, element, MatMul, graph, logic, etc)
Hardware Inefficient on CPU/GPU/TPU

.. Efficient on GPU/TPU (low ALU utilization, low L1 cache hit rate,
Efficiency )
high data movement, etc)
System Bound Compute-bound / Memory-bound Memory-bound

Dataflow Simple flow control, High parallelism Complex flow control, Low parallelism
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(?2) Research Question:

How to enhance the efficiency and scalability
of neuro-symbolic systems?
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Outline

* Neuro-symbolic Al 101

* Neuro-symbolic Al workload characterization

* Neuro-symbolic Al hardware architecture

* Final project: neuro-symbolic kernel optimization

.Uy
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Our Methodology

Goals

% This Work

X
B2

Neurosymbolic Al

Cognitive Capability

Energy and Latency

Efficiency, Performance f
Scalability, Interpretability
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Our Methodology

Goals

% This Work
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B2

Neurosymbolic Al

Cognitive Capability

Energy and Latency

Efficiency, Performance f
Scalability, Interpretability
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Challenges

Challenge-1:
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footprint

Challenge-2:
Symbolic operation -
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Our Methodology

Goals

% This Work
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Challenge-2:
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Our Methodology

Goals

% This Work

X
B2

Neurosymbolic Al

Cognitive Capability

Energy and Latency

Efficiency, Performance
Scalability, Interpretability
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f

Challenges

Challenge-1:
Large memory  —
footprint

Challenge-2:
Symbolic operation —

inefficiency

Challenge-3:
Hardware —
underutilization

Methodology

Key Idea-1:
Efficient factorization

Key Idea-2:
- Reconfigurable arch
for neural & symbolic

Key Idea-3:
»  Adaptive scheduler
for neural & symbolic

Architecture

Reconfigurable
 Neuro/Symbolic PE |

" Bubble-Streaming |
Dataflow

" Spatial-Temporal |
Mapping

Scaling Up/Out

Adaptive

Scheduling
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Our Methodology

Goals

% This Work

X
B2

Neurosymbolic Al

Cognitive Capability

Energy and Latency

Efficiency, Performance
Scalability, Interpretability

Challenges

Challenge-1:
Large memory  —
footprint

Challenge-2:
Symbolic operation —

inefficiency

Challenge-3:
Hardware —
underutilization

Methodology

Key Idea-1:
Efficient factorization

Key Idea-2:
1 Reconfigurable arch
for neural & symbolic

Key Idea-3:
»  Adaptive scheduler
for neural & symbolic

Architecture

Reconfigurable
Neuro/Symbolic PE

Bubble-Streaming
Dataflow

" Spatial-Temporal |

Mapping

Scaling Up/Out

Adaptive

Deployment

Configurations:
hardware & system

v

Evaluate:across cognitive
tasks, scales, complexities,
hardware configs

\, 7

v

4 w

Target: efficient and
scalable human-fluid

Scheduling

intelligence and cognition

“CogSys: Efficient and Scalable Neurosymbolic Cognition System via Algorithm-Hardware Co-Design”, in HPCA 2025 [PDF]
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https://zishenwan.github.io/publication/HPCA25_CogSys.pdf

Hardware Architecture Overview

(a) Overall Architecture (b) Scalable Compute Array (c) Reconfig. Neuro/Symbolic PE
SRAM A -
Host SoC // | BW:|32 _- -~ 11_ 11_ 11_
CPU DRAM R I e 1o 1.
Controller / @ .["]_[:"[:] — PE PE = |PE
, V4 % ‘ l topiiniA; ltopiiniB ‘ l
tMemory bus Ctrl bus / % wm —! PE — PE Tﬂ;z PE }—

DRAM / : : :
L . Voo g e inB., )
Memory bus ’ m I:‘ 5 i 32x32

v / I
W v W o~
Neuro-SymbolicAccelerato/ _‘? 577 [~ < PE PE — [ PE >

L[] RN e e~ e

Reconfigurable Neuro/ m
Symbolic Compute Array <§E |;| e - RS s
¥ Memory bus__§ Curl bily %L M I—._—l top_in_A top_in_B
Workload | [|* v v v PA'SS
Scheduler | | : e !
\ T W left_in N
S~7 7 he—

SRAM Y 4 cuibus \ | A | | B |
v \ - L g Lo
.| Memory \\ Y left i
X 4" "next
Gontroller . -D—-D‘ |;| —~®

$ Memory bus |, Ctrl bus \ : : :
Custom SIMD Unit \ D, D, I;‘ ~—
\\ | SRAM C | 6 top_in_A,,, Qtop_in_B,,,
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Reconfigurable Neuro/Symbolic PE

top_in A top_in_ B )
v
__PASS
lift_in lﬁ
[ B ]

|_'?\_| f'\B D

X

hd left]in,, ,
‘ _’@

—

v . v .
Qtop_in_4,,, Qlop_in_B,,,

Micro-architecture of
reconfigurable neuro/symbolic PE

[Reconfigurable neuro/symbolic PE incurs low area overhead compared to systolic array PE;]
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Reconfigurable Neuro/Symbolic PE

top_in A top_in_ B )
v
__PASS
lift_in lﬁ
A B
> @ > 2D
_’@ left]in,, ,

—

v . v .
Qtop_in_4,,, Qlop_in_B,,,

Micro-architecture of

reconfigurable neuro/symbolic PE

top_in A

GEMM Mode (Neuro, Symbolic)

top in A )

B PASS
left_in jﬁ

LA | [ B ]

I R
\5 leftin

v

(b) glop_in_A4,,,

Operation mode of

Circular Convolution Mode (Symbolic)

top in AP top_in B'§

v

~—

e
-9
~—

v . .
Qop_in_A4,,, W§tlop_in B,,

reconfigurable neuro/symbolic PE

Reconfigurable neuro/symbolic PE incurs low area overhead compared to systolic array PE;

The PE is reconfigurable for three operation modes: load, neuro, symbolic
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What is Circular Convolution?

A1B1+A2B2+A3B3

fAlx
A2

A3

. ~

(B1) A1B1+A2B2+A3B3
B2| = | A1B3+A2B1+A3B2
B3 A1B2+A2B3+A2B1

Al
X

A1B3+A2B1+A3B2

A1B2+A2B3+A2B1
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Bubble Streaming Dataflow

Vector-Symbolic Circular Convolution Example (3 CircConv): TPU-like Systolic Array: Implement as three GEMV Multlplzcatzon

e == = e

CircConv #1: (A1, A2, A3)® (B1, B2, B3) -+: }F* ﬂ*i

CircConv #2: (C1,C2,C3)o (D1, D2, D3)

CircConv #3: (EL, E2, E3) ® (F1, F2, F3) .—" .—" .—*'
CircConv #1 Computation: . “. F“-I F}‘-

e e o e

CircConv #1 CircConv #2 CircConv #3
(Al,A2,A3) @ (B, B2, B3) = TPU: Finish at (3n+15) = 24 cycles
(A1B1+A2B2+A3B3, A1B3+A2B1+A3B2, A1B2+A2B3+A2B1)

éor symbolic operation: \
* TPU-like array suffers from low
parallelism & high memory access;

- J
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Bubble Streaming Dataflow

Vector-Symbolic Circular Convolution Example (3 CircConv): TPU-like SystolicArray: Implement as three GEMV Multzplzcatzon Cycles:

CircConv #1: (A1, A2, A3)® (B1, B2, B3) ‘ ’F, EJ, [

CircConv #2: (C1,C2,C3)o (D1, D2, D3)

CircConv #3: (E1, E2, E3) ® (FL, F2, F3) .—" .—" .—*'
53— [P o3[}l 1) [r——{sl-[e2-[El

CircConv #1 Computation: T Lo omoa e Lo ool os.
CircConv #1 CircConv #2 Circlony 13
(A1,A2,A3)® (B1,B2,B3) = ircConv ircConv ircConv

TPU: Finish at (3n+15) = 24 cycles
(A1B1+A2B2+A3B3, A1B3+A2B1+A3B2, A1B2+A2B3+A2B1) I:I 2n+6

CogSys: Bubble Streaming Dataflow |:|2n+7

/ . . \ _ |:|2n+8
For symbolic operation: s 9 2 3 9 o2 s 8 eleie e [Jowo

. >>>>>>>>>|>I>>

e TPU-like array suffers from low S5 8888885 81518 & [J2n+10
parallelism & high memory access; | Elbf[sl 5 8 3 8 & & 5‘551'5,'55 gzni

- Bubble streaming dataflow b o e b [ (o) o [ () B (o] bl () ) 5,
improve parallelism, arithmetic :: e [anes
\__ intensity, and data reuse. ) B ERNCERN G ER GG E B
CogSys Finish at (n+5) = 8 cycles prefiiltime)
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Bubble Streaming Dataflow

Vector-Symbolic Circular Convolution Example (CircConv #1): — Roofline TPU(2% PEs)/This Work(214 PEs)\
(A1, A2, A3) ®(B1, B2, B3) = (A1B1+A2B2+A3B3, A1B3+A2B1+A3B2, A1B2+A2B3+A2B1) — Roofline RTX GPU
Cycle n+1 Cycle n+2 Cycle n+3 Cycle n+4 Cycle n+5 @) 1 CircConv, d=2048 (TPU)
Y 1000 CircConv, d=2048 (TPU)
| SRAM | @) 1 CircConyv, d=2048 (GPU)
oot L % 1000 CircConv, d=2048 (GPU)
Eél‘ @) 1 CircConv, d=2048 (This Work)
Y 1000 CircConv, d=2048 (This Work)
@ < 1000 CircConv, d=20480 (This Work)
‘ (. J
A1B1[] @
L = e 130 TELOPS
Q 102
L
’_B—§| = 23 TFLOPS
& 10 ®
c ‘Q\
_IJ I &\() 6 Q)\%
; = S
] 5100
. £ Y O
N a
& 210 ©
[58 . .
[ ] .% d: vector dimension
E= -1 0 1 2
C] Stationary Reg. C] Passing Reg. C] Streaming Reg. C] Partial Sum Reg. [:] MAC Unit < 10 10 10 10

Arithmetic Intensity (FLOPS/Byte)

[Bubble streaming dataflow flow improve parallelism, arithmetic intensity, and data reuse]
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Our Methodology

Goals Challenges Methodology Architecture Deployment
> ) Challenge-1: Key Idea-1: Reconli;%urable Configurations:
= * This Work La;getmem torjy 1™ Efficient factorization - g hardware & system
S ootprin - |
S \ _______ ]_9 _____________________________ Bubble-Streaming +
O q Dataflow ) - 1
o Challenge-2: Key Idea-2: - - Evaluate:across cognitive
= @) + d'é% Symbolic operation =%~ Reconfigurable arch Spatial-Temporal tasks, scales, complexities,
> inefficiency for neural & symbolic L Mapping ) hardware configs
8 Neurosymbolicar | \ | - | S ¢ 7
Scaling Up/Out
Energy and Latenc . . sLp
)% y Challenge-3: Key Idea-3: L J Target: efficient and

Efficiency, Performance f“rd?;.“re. T Adap ”Vf féhed“blelr . Adaptive | scalable human-fluid

Scalability, Interpretability? underutilization Jor neural & symbolic | Scheduling | intelligence and cognition
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Algorithm Optimization — Efficient Factorization

Original Codebook

h_:{ICIPlH]SI_-
_:{ICIPLH]SQ_

—X,C,PN
—X,C,PN

13560KB
11.7s

(From neural system)
scene feature vector g
i
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Algorithm Optimization — Efficient Factorization

Original Codebook Our Proposed Factorization Strategy
[—X,C.P N5 —T Atir. (X) Attr. (C)  Attr. (P)  Atir. (N)  Atir. (8) 1

_xlcll?lN]Si_ —l"!i'.l— —C]—

y — — _E_
—XCPN _2_ —C=
XCPNE ;>| : || |

13560KB
11.7s

(From neural system)
scene feature vector g
¥
Attribute vector §
(To reasoning module)

[ Factorization disentangles large symbolic knowledge codebook into small volume of ]
attributes
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Algorithm Optimization — Efficient Factorization

Original Codebook Our Proposed Factorization Strategy
E > r'—lfiIIIIIZZ‘IPll'wI]S,—' ‘ Attr. (X)  Attr. (C)  Atir. (P)  Atir. (N)  Atir. (S) 1 :.g
2 = —X,C,P\N§,— g
> g : g g
2o —K,C,P]N’: 8 o
E_E—- —X,CPN g -
o5 : = o
£2 | memNs 29
2 3 13560KB =
& e i 11.7s ) | ey =
g = C> = — X(t+1)= @OfC(), P), N(1), (SON)XXT
sim<g, XCPN S > "X@COPENG®S ' i
i q v
Factor Similarity Factor
Unbinding Search Projection
Detailed Operations Stﬂ&ﬂ Step @ Step ?}

Factorization disentangles large symbolic knowledge codebook into small volume of
attributes
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Algorithm Optimization — Efficient Factorization

Original Codebook Our Proposed Factorization Strategy
E > r'—lfif;,lli:‘,Pll'wI]S, 1 Attr. (X) Attr (C)  Attr. (P)  Attr. (N)  Attr. (8) 1 :g
2 8 —X,C,PN,S,— {EE
= : & o
; E —X,C,PN g ::I
E %—r —X,CPN -..1; E
e & : = 2
=< | |- xempNe- | £d
25 13560KB > 190KB 71.4X memory footprinty| < =
& = i 11.7s - . > 2885 4.1% runtime latencyt | =
g = C> = — X(t+1)= @OfC(), P), N(1), (SON)XXT
sim<g, XCPN S > “X®C@PONES i | i
Factor Similarity Factor
Unbinding Search Projection
Detailed Operations Stﬂ&ﬂ Step @ Step ?

Factorization disentangles large symbolic knowledge codebook into small volume of
attributes, thus reducing computational time and space complexity
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Our Methodology

Goals

% This Work

X
B2

Neurosymbolic Al

Cognitive Capability

Energy and Latency

Efficiency, Performance
Scalability, Interpretability

f

Challenges

Challenge-1:
Large memory  —
footprint

Challenge-2:
Symbolic operation —

inefficiency

Challenge-3:
Hardware —
underutilization

Methodology

Key Idea-1:
Efficient factorization

Key Idea-2:
- Reconfigurable arch
for neural & symbolic

Key Idea-3:
®1  Adaptive scheduler
for neural & symbolic

Architecture

Reconfigurable
 Neuro/Symbolic PE |

" Bubble-Streaming |
Dataflow

" Spatial-Temporal |
Mapping

Scaling Up/Out

Deployment

Configurations:
hardware & system

v

Evaluate:across cognitive
tasks, scales, complexities,
hardware configs

\, 7

v

4 w

Target: efficient and
scalable human-fluid

Adaptive
Scheduling

intelligence and cognition
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System Optimization - Adaptive Scheduling

< Neural we¢——— Symbolic ——r¢Neural »r¢—— Symbolic ——»
|

A I I |
g | I I |
ML Accele-g : : :
rators % :
(a) = >

Time
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System Optimization - Adaptive Scheduling

<+Neura] we——— Symbolic ———»<¢Neural r¢&——— Symbolic ———»

= ___ | © Neuro and symbolic 1 | @ Neuro engine inefficient for |
ML Accele--2 3 :E;E | operate sequentially == E: I symbolic kernels !
rators N [efiiid— —> Low throughput and supmsl__ 1 ow utilization and high
T [siniedin performance EElEEE e latenc '
D L EREERlIEE Y
(@) SR 0K 0. | S RN S| -1 -1 s e, 2 o IS Y

Time
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System Optimization - Adaptive Scheduling

o : @ Neuro and symbolic : @ Neuro engine inefficient for :
ML Accele- % : operate sequentially s [ symbol.ic' kqnels . :
rators & , —» Low throughput and am — Low utilization and high |
= performance 2= :
(a) = oo T >
1me
=
S
This work § @ Efficient symbolic execution -
(w/o adSCH) = — Low latency for symbolic operations
5
>
Time
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System Optimization - Adaptive Scheduling

ML Accele-
rators

(@

This work
(w/o adSCH)

This work
(w/ adSCH)

(b)

o | @ Neuro and symbolic | @ Neuro engine inefficient for :
2 | operate sequentially | symbolic kernels :
.g | ! —» Low throughput and '—» Low utilization and high |
g performance latency :
s o o o T RN : £ B P e o s O T s e D] S e e .' 1 >
Time
=
=
‘é @ Efficient symbolic execution
;g 0 — Low latency for symbolic operations
= - >
Time
o
=1
=
N
S| o
Time
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System Optimization - Adaptive Scheduling

<+ Neura] we¢—— Symbolic ———><Neural »r¢—— Symbolic ——»

o _ | @ Neuro and symbolic : | @ Neuro engine inefficient for |
ML Accele--§ 7] |  operatesequentially  FmsfEEl 1 symbolic kemels i
N [t — Low throughput and mmlEsL__ —»] ow utilization and high |
rators Pl |t et EREEE
=g K00 008 S performance sspmspms| latency '
(a) =) e R — EEEEE .-'ﬁ_g—J—] .
Time
g
o 3
This work & | (1) E—fEcIi,ent ?ytmbolitg executgo? -
= | ow latency for symbolic operations
(w/o adSCH) % | s P
s .
@ Interleaved neuro/symbolic processing Time
) g — High parallelism and throughput
This work =4
w/ adSCH) X |
v/ adscr S
(b) Time

Adaptive scheduling enables interleaved
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System Optimization - Adaptive Scheduling

<+Neural we——— Symbolic ——»<«Neural »re——— Symbolic ——»

= @ Neuro and symbolic : | @ Neuro engine inefficient for |
ML Accele- '% . i operate sequentially J symbolic kernels |
rators N | { . — Low throughput and —» Low utilization and high |
’g : ; performance ] latency !
(a) X BB T TTTTITT I ) W T
—>
Time
St
This work E | (1] E_fgcient ?y:nbolig executbio? :
= B ow latency for symbolic operations
(W/o adSCH) z | Y IOTSymBOTe o
B >
A @ Interleaved neuro/symbolic processing Time
. ST == — High parallelism and throughput
This work =g o = % € Reconfigurable neuro/symbolic engine
A e e et B B —» Low latency and high efficiency
(W/ adS CH) Rl (<X R e T T T
= XX X St M- T
- et ol o]t | H N B MY >
(b) Time

Adaptive scheduling enables interleaved and reconfigurable neuro/symbolic processing
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System Optimization - Adaptive Scheduling

<Neural e—— Symbolic ———»<Neural pre———— Symbolic ———» " == :
: . J : e ! | SOCCC]| Column-wise
= @ Neuro and symbolic . @ Neuro engine inefficient for | 2 [ B
ML Accele--2 [F=} | '  operate sequentially | symbolic kernels . <|O0OO[C] symbolic ops
CCCIC-'S [uieifeind I e : | = mE'Em! rtiti
T —» Low throughput and —» Low utilization and high | = I partition
ARl 040 (000, o0 N | N Iemlmml
@) S s, peromance | ey g [
S S e e > B
Tmd  |[EEEE| Cell-wise
.S X XX 101010 neuro/symbolic
This work & aieteheeee @ Efficient symbolic execution . DEEE partition
/0 adSCH) = 000 X — Low latency for symbolic operations A
(w/o aaSCH)  Eatiges | IEEE
RS 58 55 > B
A @) Interleaved neuro/symbolic processin, Time Z
: ySym P g
. g - o8 — High parallelism and throqghpu’g . - . .
This work T Pt @juupm \ €) Reconfigurable neuro/symbolic engine
(W/ adSCH) . ettt arsaaanastes —» Low latency and high efficiency OOaad
Tl 0 KX e T T I @ Partitioned array for neuro/symbolic i [ [ [
o fsgeislipunpanjinn — High compute & bandwidth utilization -
(b) Time (©)

Adaptive scheduling enables interleaved and reconfigurable neuro/symbolic processing
with partitioned array
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System Optimization - Adaptive Scheduling

<+Neural we——— Symbolic ———»<Neural »r¢——— Symbolic ——— 4 |:| D'_ 1 '|_:_|: Column-wise
o | @ Neuro and symbolic ' | @ Neuro engine inefficient for | = 4 g
ML Accele--2 [ | operate sequentially | symbolic kernels | 3 CICJEED|  symbolic ops
CCClC-5 i | R . | = R e
rators =S|t —> Low throughput and +— Low utilization and high | B D DJ:H:’. partition
T s : performance s latenc ' 210085
@) > BEAEEE e ) WO -+ —_—
_ — Time DOOm| Cen-wise
_ 2= ZEZE% _ . . 10000 nemo/symbol1c
Thiswork g | @ Efficient symbolic execution . DEEE partition
(wlo adSCH) el 5000 10 — Low latency for symbolic operations A
LG e ¢4 ¢4
g . =558
@) Interleaved neuro/symbolic processing Time Z . . . .
_ o - 1 e i — High parallelism and throughput 0000
This work 5 [ gh=sfses W €) Reconfigurable neuro/symbolic engine
(w/ adSCH) X R e T TET 44 — Low latency and high efficiency . . . .
g o X X T T T @ Partitioned array for neuro/symbolic BERER
Y 5% 1o X | | T —» High compute & bandwidth utilization -
(b) Time (©)

Adaptive scheduling enables interleaved and reconfigurable neuro/symbolic processing
with partitioned array, improving parallelism, latency, efficiency, and utilization
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Our Methodology

Goals Challenges Methodology Architecture Deployment
> ) Challenge-1: Key Idea-1: Reconli;lfjurable Configurations:
S * This Work La;getmem torjy 1T Efficient factorization - 7 hardware & system
S ootprin - |
S \ _______ ]_9 _____________________________ Bubble-Streaming +
O Dataflow - 1
o Challenge-2: Key Idea-2: - - Evaluate:across cognitive
= @) + ‘% Symbolic operation =%~ Reconfigurable arch Spatial-Temporal tasks, scales, complexities,
> inefficiency for neural & symbolic L Mapping hardware configs
8 Neurosymbolicar | \ | - | S ¢ 7
Scaling Up/Out
Energy and Latenc . . sLp
)% y Challenge-3: Key Idea-3: L J Target: efficient and

Efficiency, Performance f“rd?;.“re. T Adap ”V? féhed“blelr . Adaptive scalable human-fluid

Scalability, Interpretabiligif underutilization Jor neural & symbolic | Scheduling | intelligence and cognition
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Evaluation — Setup and Accelerator Layout

Layout of Neuro-Symbolic Accelerator

Accelerator Specs

Technology | 28 nm Frequency |600 MHz
#Arrays 16 \oltage 1V
Size of Each
Array 32x32 Power 1.48 W
SRAM |45MB Area 4.9 mm?

Guest Lecture @ ECE8893

e Task: Cognitive reasoning tasks

Reasoning datasets:

 RAVEN, I-RAVEN, PGM, CVR, SVRT
Neuro-symbolic workloads:

* NVSA, MIMONet, LVRF

Hardware baseline:

* Jetson TX2, Xavier NX, RTX GPU, Xeon CPU
ML accelerators (TPU, MTIA, Gemmini)
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Evaluation — Algorithm Performance

Dataset Neurosymbolic Model Non-neurosymbolic Human
Accuracy NVSA Our Design | Our Design ResNet18| GPT.4
(+Algo Opt.) | (+Quant.)
RAVEN | 98.5% 98.9% 98.7% 534% | 89.0% | 84.4%
[I-RAVEN | 99.0% 99.0% 98.8% 40.3% | 86.0% | 78.6%
PGM 68.3% 68.7% 68.4% 36.8% | 56.0% | N/A
#Parameters | 38 MB 32 MB 8 MB 42 MB | 1.7TB | N/A

Better Reasoning Capability: neurosymbolic methods achieve high accuracy across A
reasoning tasks than NNs and human.

Smaller Memory Footprint: neurosymbolic methods consume much less

#parameter than NNs (e.g., LLM). )
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Evaluation — Hardware Performance

X 102 [0 _ _ 93.76 95.69

] Xavier NX
= 16,47 4x - 90x speedup
= [] Xeon CPU
T 465 | CJRTX GPU Compared to CPU/GPU
S
g 2 i Tl 1.00| B8 This work

PGM CVR SVRT

s ys 2
o 15sy 4 . I
g g.gog-g-z Symbolic operation:

& = 255

2 5 z 75x speedup to TPU

= @, =
N % 18x speedup to GPU

X"
;\\0\\ C,\:rg\\QQ K j
Q
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Evaluation — Hardware Performance

TPU-like (128X128) 12750

MTIA-like (16X32%X32)
GEMMINI-like (64 X16X16)
[E%] This Work (16X32X32)

N
™
o

70.31

o
N

65.94

13.58
13.58
19.89
15.99
13.64

6.69
6.73
4.97
3.68
1.87
1.67
1.00

3.53
2.31
1.00

2.97

1.69

2.32

o
(@)

NVSA LVRF MIMONet NVSA LVRF MIMONet NVSA LVRF MIMONet
Neuro-Only Symbolic-Only End-to-End Neuro+Symbolic

1.00
0.95
1.00
1.00
0.95
1.00
1.87
1.00
0.80
1.00
1.00
1.00
1.00

o
o

Norm. Runtime (X)
H
o

Compared with ML accelerators: similar neuro latency, 7-120x symbolic speedup,
2-16x end-to-end neuro-symbolic speedup
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Evaluation — Ablation Study

=)
a 3

6[L%
v 7

N
(O]

Norm. Runtime (%)
gl
o

B
Dot
.

o

23 w/o (adSCH, SO, nsPE)

[ w/o (adSCH, SO)
1 w/o (adSCH)

(&5 Neuro-Symbolic accelerator

'RAVEN  I-RAVEN

"PGM

Neurosymbolic Cognitive Solution Normalized Runtime (%) on

Algorithm @ Hardware

RAVEN I-RAVEN PGM CVR SVRT

NVSA @ Xavier NX

100 100 100 100 100

Proposed scheduling,
reconfigurable PE,
bubble streaming

dataflow are effective

g Algorithm-system- A
hardware co-design

Proposed Algorithm @ Xavier NX 89.5% 889% 90.7% 87.6% 88.4% is cri tical
Proposed Algorithm @ Proposed Accelerator| 1.76% 1.74% 1.78% 1.72% 1.69% - J
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@ Key Observations:

Compared with systolic arrays that only support neural, our
design provides reconfigurable support for neural and
symbolic operations with only 4.8% area overhead.

Our design achieves 0.3s latency per cognition task, with
1.18W power consumption.
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] % Reasoning, Transpare
X Black-box, Data (X Scalable, Learnable

Neural | [ Symboli
S umimd ry [ F%i)blefgz;able e £, Symbol I‘J

System 1: thinking fast System 2: thinking slow

* Neuro-symbolic Al is a compositional method to (intitive perception) 7 (logical reasoning)
improve reasoning and interpretability. §3 Neurosymbolic System
Human-like Cognition, Reasoning, Transparent
Scalable, Flexible, Learning, Data-efficient

* In this work,
e Characterize system implications
* Propose algorithm-system-hardware co-design
* Algorithm: efficient factorization

* System: adaptive scheduling

* Hardware Architecture: reconfigurable neuro/symbolic
PE, dataflow, mapping, and scaling strategy

* Achieve efficient and scalable neuro-symbolic

execution across reasoning tasks Efficiency, Performance 4
Scalability, Interpretability

% This Work

X
322

Neurosymbolic AI

Cognitive Capability

Energy and Latency
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Outline

* Neuro-symbolic Al 101
* Neuro-symbolic Al workload characterization

* Neuro-symbolic Al hardware architecture

* Final project: neuro-symbolic kernel optimization
 https://github.com/sharc-lab/FPGA ECE8893/tree/main/2025 Spring/topic4
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Project: Neuro-Symbolic Kernel Optimization

* Neural (neural networks): learning, flexibility, scalability
* Symbolic (reasoning-based Al): interpretability, data efficiency, reasoning

* Neuro-Symbolic Al: integrate neural and symbolic towards cognitive and
trustworthy Al systems

N\ ) Fast Slow
@Neural D ;i% Symbolic Thinking Vs- Thinking

Flelele, Scalable - . RCaSOIllng, Transparent System 1 Thinking System 2 Thinking
X Black-box, Data (X Scalable, Learnable

System 1: thinking fast System 2: thinking slow

(intuitive perception) (logical reasoning)
Neurosymbolic System | Y\ © oo
Human-like Cognition, Reasoning, Transparent ~ Y © &
Scalable, Flexible, Learning, Data-efficient . &) scir vareness
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Project: Neuro-Symbolic Kernel Optimization

= Google DeepMind R (C | Asimple problem AlphaGeometry Solution
AlphaGeometry: An Olympiad-level Al system A [ 44 tonguoe moce ] ﬁA
for geometry : . oo A L
b B B B O
< s [ ==
‘Q‘,}@L\, LLM: construct auxiliary points and lines
=V Symbolic: deductive reasoning
AlphaGeometry adopts a heuro-symbolic
approach Eval on 30 Int. Math Olympics (IMO) problems:
AlphaGeometry is a neuro-symbolic system made up of a neural language model * GPT-4: 0/30

and a symbolic deduction engine, which work together to find proofs for complex ° Al ph a Ge omet ry (N eu rO'Sym b0|| C): 25/30

geometry theorems. Akin to the idea of “thinking, fast and slow”, one system

provides fast, “intuitive” ideas, and the other, more deliberate, rational decision- ° H uman GOld M ed aq I iSt: 26/30

making.

“Solving Olympiad Geometry without Human Demonstrations”, Nature 2024
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Project: Neuro-Symbolic Kernel Optimization

* Neuro-Vector-Symbolic Architecture

RAVEN example test NVSA frontend: perception
Context panels 4 - — )
Type Size Colour | [Position
() O . . (1.3) @ EE @
c o O \ /
(2,1) Q< \ ® 2,3 NVSA backend: reasoning
I Frozen W pl
49 \\ Trainable )| pl.2)
N ResNet-18 — W —‘O
G @ o o 2 ‘(3{ | o pa2)
' ) Fully q w; — |@ Probabilistic K |
& o [?33;2} [;:onnectedJ - w, — |© > scene o [Dﬂgt LE);E?;';EJ £ s):{]:::iirn
yer + Tan 0 e inference
Candidate panels / e g : . )
@ ol —w, — @ PO, ..., P ]
o ¢ F—— @ =g J —
*O O A %0
e Do o | -
©) doe ® 0-’ ®) Neural: perception Symbolic: rule reasoning
[ L J

”A neuro-vector-symbolic architecture for solving Raven’s progressive matrices.”, Nature Machine Intelligence, 2023

Guest Lecture @ ECE8893 Zishen Wan | School of ECE | Georgia Institute of Technology 116



Project: Neuro-Symbolic Kernel Optimization

Solving the arithmetic plus rule on number attribute with vector-symbolic reasoning

Row 1 Row 2 Row 3
. o [O0 0 O oo [l
* o OO "= Attribute O
P P P pZn p2 pZ2  (number: CIO"“"“OUS) P P
[] 1 1 | [ [ 1 1
/' 1 | 1 I 1§ L 1 '\
vy v/ v/ v/ v/ v/ W \
|Q| |9‘| Q’I QI gl |9| |9| g PMF-to-VSA
transformation
§ alim al? al aln al? al s aﬁi’ﬂj

p
Rule probability Rule
\ \ computation \ execution Circular
L - Convolution
‘f \ Cloanug | VSA-to-PMF
P transformation

)l . |< R
selected?
[arithmetic plus]

unum

Hersche, et al, "A neuro-vector-symbolic architecture for solving Raven’s progressive matrices.”, Nature Machine Intelligence, 2023
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Project: Neuro-Symbolic Kernel Optimization

e Part 1: Neural Kernel (One layer of ResNet18)
* Reference code: <neural/neural_conv.py>
* Input format: <neural/neural_input/input.npy>
* Output data: <neural/neural_output/output.npy>

e Part 2: Symbolic Kernel (Circular Convolution)
* Reference code: <symbolic/symbolic_circular_conv.py>
* Input format: <symbolic /symbolic_input/input_A.npy, input_B.npy>
* Qutput data: <symbolic/symbolic_output/output_C.npy>

* Bonus!

* Bonus 1: Design a complete version of ResNet18 (Reference: SkyNet)

* Bonus 2: Design a kernel that is reconfigurable to support convolution (neural)
and circular convolution (symbolic)
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