
Neuro-Symbolic Architecture Meets Large
Language Models: A Memory-Centric Perspective

Mohamed Ibrahim1, Zishen Wan1, Haitong Li2, Priyadarshini Panda3,
Tushar Krishna1, Pentti Kanerva4, Yiran Chen5, and Arijit Raychowdhury1

1Georgia Institute of Technology 2Purdue University 3Yale University
4University of California, Berkeley 5Duke University

Abstract—Large language models (LLMs) have significantly
transformed the landscape of artificial intelligence, demonstrat-
ing exceptional capabilities in natural language understanding
and generation. Recently, the integration of LLMs with neuro-
symbolic architectures has gained traction to enhance contextual
awareness and planning capabilities. However, this integration
faces computational challenges that hinder scalability and effi-
ciency, especially in edge computing environments. This paper
provides an in-depth analysis of these challenges and explores
state-of-the-art solutions, focusing on memory-centric comput-
ing principles at both algorithmic and hardware levels. Our
exploration is centered around the key computational elements
of the Transformer, the foundation of all LLMs, and vector-
symbolic architecture, the leading neuro-symbolic model for
edge applications. Additionally, we propose potential research
directions for further investigation. By examining these aspects,
this paper aims to bridge critical gaps in the path toward effective
artificial general intelligence at the edge.

I. INTRODUCTION

Advances in large language models (LLMs) have revo-
lutionized the field of artificial intelligence (AI) with their
powerful capabilities for understanding and generating human
language. LLMs, such as OpenAI’s GPT series [1], [2] and
Google’s BERT [3], leverage vast amounts of data and deep
Transformer architectures to achieve remarkable performance
in a wide range of tasks, from machine translation and
sentiment analysis to content generation and question answer-
ing [4], [5]. By capturing intricate patterns in text, LLMs can
emulate cognitive processes, providing responses that exhibit a
high degree of fluency and coherence. Their ability to process
and generate human-like text has opened new avenues for
AI-driven innovation in various domains, including robotics,
healthcare, and many conversational services [6]–[8].

Research into the integration of LLMs with neuro-symbolic
(NeSy) systems has gained considerable momentum in re-
cent years. NeSy models merge the adaptive learning ca-
pabilities of neural networks with the structured, rule-based
reasoning of symbolic systems [9]. A prominent example of
such a model is the vector-symbolic architecture (VSA), also
known as hyperdimensional computing. This brain-inspired
paradigm encodes and processes neuro-symbolic information
using high-dimensional vectors, enabling efficient representa-
tion and processing of complex data structures for learning
and reasoning [10], [11]. By integrating LLMs with NeSy
models like VSA, researchers aim to enhance the contextual

understanding and reasoning capabilities of LLM-powered
systems. Currently, these systems often struggle to maintain
context and exhibit depth in long interactions, leading to
responses that may be relevant yet lack strategic insight [12]–
[14]. Additionally, training an LLM like GPT-3 can con-
sume substantial amounts of energy and produce significant
carbon emissions, with estimates showing 1,287 MWh of
electricity consumption and approximately 552 metric tons of
CO2 emissions [15]. Integrating NeSy models, which utilize
sparse activation and improved contextual understanding, can
potentially reduce these costs by up to 10 times, significantly
lowering both the energy consumption and the carbon foot-
print without sacrificing accuracy. Hence, addressing these
limitations through the integration of LLMs and NeSy models
holds the promise of advancing the development of effective
and energy-efficient AI systems, particularly in the realm of
embodied cognition [16].

Despite the impressive advancements of this hybrid ap-
proach, current developments still face critical challenges that
hinder their broader adoption and effectiveness. One major
challenge is the “memory-wall” problem, which arises from
the growing disparity between processor speeds and memory-
access speeds. As processors become faster, memory access
has not kept pace, creating bottlenecks that limit overall
system performance [17]. This issue is especially pronounced
in models like LLMs and VSA, where efficient data flow is
crucial [18]. Another challenge is the diverse computational
characteristics within these models. Components within LLMs
and VSA may exhibit varying levels of some important
attributes, such as noise tolerance, intermediate caching needs,
and data sparsity [19]. Addressing these varying demands
necessitates advanced memory systems capable of optimizing
performance across various computational needs.

This paper provides an in-depth analysis of the aforemen-
tioned challenges and investigates memory-centric design and
optimization strategies at both algorithmic and hardware levels
(see Fig. 1). On the algorithmic front, we explore techniques
such as model compression, mixture of experts, federated
learning, and computation-in-superposition, evaluating their
potential to enhance computational efficiency and model per-
formance in both LLMs and NeSy systems. At the hardware
level, we address the transformative shift towards memory-
centric computing (MCC), focusing on compute-in-memory

Transformer
LLMs

Neuro-Symbolic
(VSA)

Motivation for Hybrid Models: LLMs alone
do not bring better contextual awareness and

consume substantial amounts of energy.

N
eu

ro
-S

ym
bo

lic

Ar
ch

ite
ct

ur
e

M
ee

ts
 L

LM
s

C
ha
lle
ng
es

Diverse computational
demands within LLMs
and VSA

The memory-wall
problem in today’s AI
hardware (e.g., GPUs)

1

2

(Section IV)

(Section V)

(Sections I, II) (Section III)
Al

go
rit

hm
-H

ar
dw

ar
e

M
em

or
y-

C
en

tri
c

C
o-

D
ev

el
op

m
en

ts • Model Compression
• Mixture of Experts
• Federated Learning
• Computation in Superposition

• Memory-Centric Computing
• Hybrid Memory Systems
• 2.5/3D System Integration

Fu
tu

re

R
es

ea
rc

h
D

ire
ct

io
ns

(Section VI)

• Variability-Aware In-Memory Fine-tuning of LLM
• Dynamic Reconfiguration for Hybrid CIM-Based Systems
• Evaluation of Hybrid CIM-Based Systems

Algorithm

Hardware

AP
I

LLM
ServerClients

Federated Tuning

CPU
SRAM RRAM

Hybrid Memories
3D ICs

Fig. 1. Overview of Research Topics. This paper aims to identify and under-
stand the system challenges, algorithm and hardware optimization solutions,
and research opportunities of LLM-powered neuro-symbolic systems.

and compute-near-memory approaches that offer significant
improvements in speed and energy efficiency. We also discuss
the efficient integration of memory systems with logic circuits
through 2.5D/3D stacked architectures. Additionally, we pro-
pose potential research directions for MCC to further explore
its benefits. We anticipate that this work will serve as a “call
to action” for interdisciplinary research aimed at enhancing
the efficiency of hybrid cognitive models and promoting their
adoption in resource-constrained AI systems.

The remainder of the paper is organized as follows: Sec-
tion II provides the necessary background information. Sec-
tion III addresses the key challenges encountered by the hybrid
cognitive approach. Memory-centric solutions are detailed in
Sections IV and V, with Section IV focusing on algorith-
mic optimizations and Section V covering advancements in
hardware. Section VI outlines research directions for future
exploration, while Section VII offers the concluding remarks.

II. BACKGROUND

A. Transformer Architecture

The success of LLMs and foundation models in general
can be largely attributed to the Transformer architecture,
introduced by Vaswani et al. in 2017 [5]. This architecture has
gained popularity due to its self-attention mechanism, which
enables capturing long-range dependencies in input features
without the need for complicated recurrent layers. A typical
Transformer architecture is composed of a layered encoder-
decoder structure, shown in Fig. 2(a). Each layer comprises a
multi-head attention (MHA) mechanism followed by a feed-
forward neural network (FFN), with residual connections and

Input
Embedding

Multi-Head
Attention

Add & Norm

+Positional
Encoding

Add & Norm

Inputs

Output
Embedding

Masked Multi-
Head Attention

Feed Forward
Network

Add & Norm

+Positional
Encoding

Add & Norm

Outputs

Masked Multi-
Head Attention

Add & Norm

Linear

Softmax

Output
Probabilities

(a) (b)

Feed Forward
Network

Linear !!

(#×#ℎ)
Linear !"
(#×#ℎ)

Linear !#
(#×#ℎ)

MatMul '×(⊺

)×#ℎ 	×	(#ℎ ×))

Softmax

MatMul +%×,

)×) 	×	()×#ℎ)

Concatenation

Linear !& (#×#)

M
ul

ti-
H

ea
d

At
te

nt
io

n
(M

H
A)

En
co

de
r

D
ec

od
er

!×

!×

ℎ()×#)

$

%!

&

()×#)

!&

Fe
ed

 F
or

w
ar

d
N

et
w

or
k

(F
FN

)

Linear !' (#(()×#)

Linear !* (#×#(())

GELU

Symbol Parameter BERT-
Large GPT-2 GPT-3 Megatron-

Turing NLG
PaLM
540B

! # Layers 24 12 96 105 118
' Model dimension 1024 768 12288 2048 18432
ℎ # Heads 16 12 96 128 48

'""# FFN dimension 4096 3072 49152 8192 73728
(c)

Fig. 2. Transformer Background. (a) The encoder-decoder structure [5]. (b)
The operators of MHA and FFN. (c) Example parameter configurations.

layer normalization applied to each sub-layer. The decoder
has an additional cross-attention mechanism to attend to the
encoder’s output. The input to the Transformer is first embed-
ded into a continuous vector space and then augmented with
positional encodings to preserve the order of the sequence.
LLMs are usually pre-trained with input sequence lengths of
around 500 to 2,000 tokens.

The computational workload of the Transformer is known
to be dominated by the operators in the MHA and FFN blocks.
The operators of these blocks are illustrated in Fig. 2(b).
MHA consists of six linear operators, four of which are
identical weight-to-activation matrix multiplications (labeled
as Linear), and the remaining two of which are activation-
to-activation matrix multiplications (labeled as MatMul). FFN
consists of two Linear matrix operations with a non-linear
layer (e.g., GELU) placed between them. LLMs may adopt
various configurations of these operators, leading to differ-
ences in model capabilities and performance. Fig. 2(c) shows
the configurations of these operators in commonly used LLMs.

B. Benefits of Combining NeSy Models with LLMs

There are several forms of NeSy models, each with unique
approaches, as detailed in state-of-the-art taxonomies [20].
Combining NeSy models with LLMs offers significant ben-
efits. First, hybrid models reduce computational resources and
data (or label) storage needs; for instance, [21] shows that such
hybrid models handle learning and reasoning tasks efficiently
with significantly less data labeling and processing. Second,
they create more effective AI for adversarial conditions, as de-
scribed in [22]. An integrated NeSy-LLM model enables com-
plex task-solving through unambiguous intent specification,

task decomposition into subtasks solvable by individual LLMs,
program synthesis for composing LLMs, and NeSy inference
for scheduling and combining the results of different LLMs.
Third, integrating NeSy models with LLMs enhances planning
and scheduling; [23] demonstrates that NeSy models overcome
LLMs’ limitations by providing structured and context-aware
planning capabilities. These advantages, and several others,
motivate further investigation into the benefits and challenges
of such a hybrid approach.

C. Vector-Symbolic Architecture (VSA)

For brevity, we use VSA as the example NeSy model
throughout this paper. VSA is a computational framework
designed to represent, manipulate, and reason about informa-
tion using high-dimensional vectors [11]. The computations of
VSA, shown in Fig. 3(a), include encoding, where information
is transformed into high-dimensional data using an embedding
matrix. This matrix can consist of either randomly generated
vectors, often referred to as item vectors, or engineered vectors
derived from neural networks [24]. Using generated vectors,
VSA also employs an algebraic program, which builds data
structures and algorithms through operations like binding,
bundling, and permutation [10]. These operations enable the
combination and aggregation of information in meaningful
ways. Finally, associative memory search, shown in Fig. 3(b),
is used to find the nearest vector to a query, facilitating efficient
retrieval of symbolic information [25].

A key example of a VSA program for reasoning is the
resonator network, which aims to factorize a compound vector
representation into its atomic constituents [26]. This process,
shown in Fig. 3(c), involves iteratively adjusting candidate
vectors to minimize the difference between their combined
representation and the target compound vector. By leveraging
unbinding and dot-product operations, the resonator network
efficiently decomposes complex data structures, revealing
the underlying components. This approach demonstrates how
VSA can manage intricate geometric relationships within data,
offering robust solutions for tasks like visual reasoning [27].

While VSA excels at manipulating and reasoning with
symbolic information, it typically assumes that the input
data is intrinsically structured and symbolic in nature. This
limitation prevents VSA from capturing the rich semantics and
contextual nuances of unstructured data, such as sensory data.
Unlike VSA, LLMs are designed to learn and extract meaning
from vast amounts of unstructured text. Therefore, integrating
VSA and LLMs can leverage the strengths of both approaches,
leading to more robust and versatile AI systems.

D. Memory Technologies

Memory-centric platforms are developed using various
memory technologies, including both volatile and nonvolatile
devices. In this paper, we explore three examples of widely
used random-access memory (RAM) technologies, namely
static RAM (SRAM), dynamic RAM (DRAM), and resistive
RAM (RRAM). Readers can refer to the following papers for
a comprehensive treatment of memory technologies [28], [29].

Linear !!"
(#×%)

VSA-Based
Program

argmin !#"
('×%)

Embedding Matrix Reference Vectors

Encoding
Associative

Memory Search(a)

(Un)binding ⊗ Bundling [+] Dot Product

(b)

1 0 … 0 1 1

1 1 … 1 0 0

Y
Z

0 1 … 0 0 1X

Q

Reference Vectors
(Weights)

440

140

254

…

1 0 … 1 1 0

Query Vector

Hamming
Distance

Nearest
Neighbor

Activation

Codebooks
(: [Shapes]
*:	[Colors]
3:	[V-Pos]
7:	[H-Pos]

9 = ;$%&⊗ ='()*
⊗>+,-⊗ℎ(*.+

Dot
ProductUnbinding Activation Dot

Product

(c)

Dot
ProductUnbinding Activation Dot

Product
!

@; ' + 1

=̂ ' + 1

Fig. 3. VSA Background. (a) A flow diagram describing computations in
VSA. (b) Associative search finds the nearest vector to a query. (c) A VSA-
based reasoning program for factoring an object’s vector [26].

SRAM. It refers to a memory technology that employs bistable
latching circuitry to store each bit. An SRAM cell typically
consists of six transistors (6T), arranged as a pair of cross-
coupled inverters to hold a single bit of data. Although the
6T cell configuration occupies a considerable area and is
limited to read and write operations, it offers advantages due
to its relatively low write energy and high endurance [30].
These characteristics make SRAM an excellent choice for
caching and storing intermediate activations that are frequently
updated during operation. Moreover, advancements in SRAM
platforms can further extend their function, aiming to enable
logic computations within the cells or at the periphery [31].
DRAM. The DRAM technology stores information using
capacitors. A typical DRAM cell consists of a capacitor and
an access transistor, arranged in a one-transistor-one-capacitor
(1T1C) configuration. DRAM cells are organized into arrays,
which are further grouped into memory banks. Each bank
operates independently, enabling parallel access and efficient
data management, thereby enhancing overall memory through-
put. This hierarchical structure of cells, arrays, and banks
maximizes both density and performance, making DRAM a
suitable choice for main system memory where large amounts
of data need to be stored. Advancements in DRAM, such as
higher bandwidth interfaces, reduced latency, and integration
with processing elements, can significantly boost its potential
for DRAM-based acceleration in various high-performance
computing applications [32].
RRAM. It is a non-volatile memory technology that stores
data by altering the resistance across a dielectric solid-state
material. A RRAM cell is composed of a metal-insulator-
metal structure, where the insulator is typically a thin film of
a metal oxide or other resistive switching material. The cell
operates by modulating the resistance state of the insulator,
storing binary data as high resistance (binary 0) and low
resistance (binary 1). RRAM cells are organized in a crossbar
architecture, which maps the elements of a weight matrix into
its resistive cells. For in-RRAM vector-matrix multiplication,

TABLE I
COMPARISON OF MEMORY TECHNOLOGIES. DATA OBTAINED

FROM [29], [30]. ENDURANCE UNIT: # VALID WRITE/ERASE CYCLES
BEFORE FAILURE.

Metric Memory Technology
SRAM DRAM RRAM

Cell Structure 6T 1T1C 1T1R
Volatility Yes Yes No

Write Voltage <1 V <1 V <3 V
Write Energy ∼ fJ ∼ 10 fJ ∼ 1 pJ
Write Speed ∼ ns ∼ 10 ns ∼ 10 ns
Read Speed ∼ ns ∼ 3 ns ∼ 10 ns
Endurance 1016 1016 >107

an input vector is encoded as voltages applied to the word lines
(rows) of the crossbar. This configuration generates the output
vector as currents along the bit lines (columns), which can be
processed efficiently for various computational tasks [33].

Overall, different memory technologies, each with its unique
properties, play crucial roles in advancing LLMs and NeSy
systems. A comparison between the above technologies in
terms of volatility, speed, energy, and endurance is provided
in Table I. This table highlights the trade-offs between these
technologies, helping to inform optimal memory choices and
architectural organization for cognitive applications.

III. KEY COMPUTATIONAL CHALLENGES OF
LLM-POWERED HYBRID MODELS

Integrating LLMs with NeSy models like VSA offers
promising advancements in AI by combining the strengths of
both approaches. However, this paradigm introduces several
computational challenges that must be addressed to realize its
full potential. This section describes two key challenges: the
memory-wall problem (Section III-A), which hampers scala-
bility and efficiency, and the diverse computational characteris-
tics inherent in LLMs and VSA (Section III-B). Understanding
and overcoming these challenges is essential for developing
robust and efficient hybrid models.

A. The Memory-Wall Problem

The memory-wall problem, a term coined by Wulf and
McKee in [17], refers to the bottleneck created by the growing
disparity between processor speed and memory-access speed,
depicted in Fig. 4. Over the past 20 years, the peak per-
formance of server hardware has been scaling at a rate of
3.0× every 2 years, while DRAM and interconnect bandwidth
have only scaled at 1.6 and 1.4 times every 2 years, respec-
tively [18]. This disparity has shifted the main performance
bottleneck from compute to memory bandwidth, particularly
in AI applications involving LLMs. This increasing pressure
on memory bandwidth also applies to major vector-symbolic
algorithms, which rely heavily on rapid memory access to
efficiently process and search through a database of high-
dimensional data [34]. Therefore, reducing the impact of this
memory wall—primarily by minimizing memory latency and
reducing data transfer—is crucial for the sustainable advance-
ment of AI technologies.

Itanium 2

Pentium II Xeon

R10000

GTX 580
K40

KNL

TPUv3
A100

H100

TPUv4

GDDR3
GDDR4 GDDR5

HBM HBM2
HBM2E

PCIe 1.0a
PCIe 2.0 PCIe 3.0

NVLink 1.0 PCIe 5.0
NVLink 4.0

1996 1999 2002 2005 2008 2011 2014 2017 2020 2023
10-2

100

102

104

106

Year

N
or

m
al

iz
ed

 S
ca

lin
g

HW FLOPS: 60000x / 20 yrs (3.0x/2 yrs)
DRAM BW: 100x / 20 yrs (1.6x/2 yrs)
Interconnect BW: 30x / 20 yrs (1.4x/2 yrs)

Fig. 4. The Memory-Wall Problem. The scaling of the memory and
interconnect bandwidth, as well as peak processor FLOPS (floating-point
operations per second). As can be seen, there is growing disparity between
processor speed and memory/interconnect bandwith. Data collected from [18].

B. Diverse Computational Demands

Another notable challenge is the diverse computational
characteristics within LLMs and VSA. This diversity is evident
in attributes such as noise tolerance, intermediate caching
needs, and data sparsity. For instance, certain LLM operations,
like MatMul in MHA (Fig. 2(b)), require high precision and
caching to maintain context accuracy [35], [36]. In contrast,
tasks like associative search (Fig. 3(b)) can tolerate lower
precision, allowing for faster processing with reduced memory
overhead [25]. Similarly, VSA involves both sparse and dense
computations: sparse operations manage high-dimensional
data efficiently with minimal active elements, while dense
computations require substantial resources to process fully
populated matrices [37]. These varying demands necessitate
adaptable design and memory systems that optimize perfor-
mance across different computational tasks, balancing preci-
sion, caching requirements, and data sparsity.

IV. MEMORY-CENTRIC ALGORITHMIC OPTIMIZATIONS

This section discusses four algorithmic optimizations for
LLMs and NeSy systems, namely model compression (Sec-
tion IV-A), mixture of experts (Section IV-B), federated
learning (Section IV-C), and computation in superposition
(Section IV-D). Each method addresses critical aspects of
memory and computational efficiency, aiming to alleviate the
challenges posed earlier. By reducing model size, improving
resource allocation, and superposing computations, these op-
timizations contribute to more scalable and efficient systems.

A. Model Compression

Considerable research efforts have been devoted to devel-
oping effective compression techniques, aiming to reduce the
substantial memory footprint and computational demands of
the Transformer model [38]. The primary focus has been on
post-training quantization (PTQ), which involves reducing the
precision of the weights in MHA and FFN from 32-bit or 16-
bit floating-point to lower bit-width representations (e.g., 8-

bit integers), performed post the LLM’s training phase1 [40].
However, weight-only PTQ often leads to large accuracy
degradation and may become ineffective, especially as the
length of the input sequence is significantly increased [41].

To overcome such limitations, quantizing both weights and
dynamic activations (e.g., MatMuls) has become a promis-
ing approach. The core idea of this approach is to provide
special treatment to salient weights using insights from their
respective activation channels [42]. Evaluations based on
Llama 2-70B show that activation-aware PTQ can reduce the
memory requirements by up to 4-8× and inference latency by
2-4× compared to full-precision models, providing opportu-
nities for efficient implementation of LLMs on the edge [43].

Quantization in NeSy systems serves a distinct purpose
compared to its role in LLMs, especially as symbolic architec-
tures typically work with explicitly defined discrete quantities
such as rules and attributes. Perhaps the most common form
of quantization in these systems is concept quantization [44].
In VSA, this involves discretizing the neural network’s output
by mapping it to the nearest neighbor from a set of pre-defined
values or symbols [24]. In essence, quantization in NeSy
systems can be understood as a function whose performance
is influenced by parameters in the symbolic space, such as the
length and number of vector-symbolic representations.

B. Mixture of Experts (MoE)

MoE is a neural network architecture that aims to increase
computational efficiency by effectively decoupling the parame-
ter count of the learning model and the computation’s floating-
point operations required for training and inference [45].
Unlike traditional dense models where all parameters are
used for every input, MoE models use a gating function to
dynamically select the most relevant “experts” (sub-networks)
based on the input data. Fig. 5(a) shows the embedding of MoE
layers, which typically replace FFN layers in a Transformer
model. During operation, the gating network determines which
experts are activated for a given input, ensuring that only a
fraction of the total parameters are utilized at any time. This
selective activation helps in reducing the computational load
per inference step, despite the drastic increase in the total
number of parameters [46].

Large MoE models have been shown to improve perfor-
mance on various tasks, often surpassing traditional dense
LLMs. For instance, large MoE models like ST-MoE and
Mixtral have demonstrated superior performance while using
significantly fewer operations compared to dense counterparts.
Specifically, ST-MoE, using 20× and 40× fewer operations
in training and inference, surpasses PaLM 540B in perfor-
mance [47]. Mixtral 8x7B, while only actively using 13B pa-
rameters during inference, performs on par with Llama 2-70B
models across various evaluation benchmarks [48].

Besides, MoE models excel in NeSy reasoning problems
by efficiently managing complex symbolic structures such

1Quantization can also be applied during the training phase, i.e.,
quantization-aware training (QAT) [39]. However, QAT becomes impractical
for models with billions of parameters due to excessive training costs.

M
ul

ti-
H

ea
d

At
te

nt
io

n
(M

H
A)

R
ou

te
r

Expert 0

Expert 1

Expert 2

Expert n

Expert 3

M
ix

tu
re

 o
f E

xp
er

ts

(M
oE

)

+

(a) (b)

“The dog”

“The cat”

⊗

⊗

+
Super-
posed
Vector

Tr
an
sf
or
m
er ⊗

⊗ “eats”

“barks”

U
nb

in
d

Fig. 5. Illustration of Algorithmic Optimizations. (a) Mixture of Experts:
During inference, a router aims to choose concise and proficient expert
networks that depending on the input [41]. (b) Computation in Superposition:
Input samples are bound with high-dimensional keys to project the samples
into quasi-orthogonal subspaces. The results of the individual samples are
retrieved at the end of the network by unbinding with corresponding keys [52].

as trees and graphs. For instance, the integration of MoE
with advanced NeSy models like the Differentiable Tree
Machine [49], which learns tree operations using a combina-
tion of Transformers and distributed symbolic representations,
demonstrates its ability to handle intricate tree operations
while employing a reduced number of computations [50].
Overall, advancements offered by MoE not only reduce
computational costs but also enhance the model’s reasoning
capabilities by allowing for more specialized and efficient
processing of complex symbolic information.

Note that reducing the computation load per inference by
using MoE comes at a significant cost. MoE models are
known to have ineffective utilization of on-chip memory, as a
significant portion of the model’s parameters remain dormant
during inference. This problem is exacerbated by the large
memory demands of LLMs, which have far outpaced the
memory capacity of contemporary AI hardware [51]. These
challenges are a motivation to the research community to build
new memory-centric hardware architectures targeting sparse
data-intensive workloads (discussed later in Section V-A).

C. Federated Learning (FL)

FL is a collaborative machine learning technique that en-
ables multiple decentralized devices to train a shared model
without exchanging their local data. Instead of sending raw
data to a central server, each participant (or a client) trains
the model locally using their own data and only shares
the updated model parameters or gradients. These updates
are then aggregated centrally, often using averaging methods
such as FedAvg [53], to improve the global model. FL is
especially advantageous in edge computing environments, as
it ensures data privacy and addresses the challenges of limited
computational resources [54].

With the rise of pre-trained LLMs, the application of FL
has taken a new dimension, aiming to provide decentralized
methods that efficiently fine-tune these models. Fine-tuning,
required to adapt LLMs to perform specific tasks or improve
their performance in real-world scenarios, relies heavily on
massive data generated through user interactions with both the
environment and the large model [55], [56]. Adopting FL in
this context seems intuitive but remains challenging, as clients
have restricted access to LLM parameters and they are often

ill-equipped to support the computational and storage demands
of these large models.

To tackle the above challenges, federated black-box prompt
tuning is increasingly used, allowing clients to treat the LLM
as a black-box and focus on optimizing prompts locally
using proxy data distributions and gradient-free optimization
methods [57], [58]. This approach is highly effective since
clients are not required to store or access the LLM param-
eters, and only inference of the model is conducted during
local optimization. When used to fine-tune Llama 2-7B, this
federated approach reduces the number of trainable parameters
to only 500, and hence the communication cost in one round
is also reduced to only 4KB [57].

As NeSy models have grown sophisticated and capable,
integrating them with FL strategies has emerged as an im-
portant research subject. In this context, the application of FL
aims to handle client heterogeneities symbolically, enabling
data-driven clients to develop personalized symbolic reasoning
capabilities [59]. This approach allows each client to adapt
the shared model while concurrently creating unique symbolic
rules or logical properties that reflect the client’s demands
or characteristics [60], [61]. Communication efficiency in
this federated scheme is notably enhanced by the ability to
compress complex rule patterns into latent variables, sig-
nificantly reducing the amount of data exchanged between
clients and the central server. This is particularly achieved by
adopting compact symbolic representations like VSA, which
is well-suited for robust communication and efficient storage
of symbolic information [62].

D. Computation in Superposition (CIS)

CIS has emerged as a promising paradigm that significantly
enhances the efficiency of LLM systems. This paradigm is in-
spired by the principle of superposition from quantum comput-
ing, allowing multiple computational pathways to be explored
simultaneously [63]. This capability offers substantial speedup
benefits, particularly for LLM frameworks that require con-
current computation over extensive long-form prompts. One
of such frameworks is retrieval-augmented generation (RAG),
which seeks to augment an LLM with access to a dynamic, cu-
rated knowledge base to improve its output [64]. RAG involves
a process that retrieves information from this knowledge base
and combines it with the existing knowledge of the LLM.
Prompting for RAG is often optimized such that tokens can be
processed semi-independently, thereby providing an excellent
opportunity for acceleration by superposition [65]. By enabling
CIS within LLM’s self-attention, it is possible to significantly
reduce the time and resources needed for model inference.

Advances in this context essentially focus on developing
and analyzing suitable mathematical representations that facil-
itate superposition, rather than modifying the underlying self-
attention mechanism [66]. It is no surprise that the algebraic
nature of VSA presents an opportunity to realize CIS by
bundling multiple computational channels [52]. Specifically,
VSA offers algebraic methods for the encoding and binding
of multiple attention tokens and activation operations, as

illustrated in Fig. 5(b). VSAs can also represent data structures
like directed graphs, which are typically used to model de-
pendencies among tokens [10], [65]. Using distributed vector
representations is highly effective in reducing distortion caused
by inter-channel interferences, especially as the length of
vectors is significantly increased.

The superposition capability of VSA not only speeds up in-
ference computations by processing multiple inputs in parallel
but also enhances the efficiency and dynamics of search in
NeSy systems. This is particularly evident in rule-based sys-
tems used for factorization, described earlier in Section II-C.
This system relies on superposition to efficiently search
through the combinatoric solution space without directly
enumerating all possible factorizations [26]. This approach
reduces computational overhead, enabling rapid convergence
to accurate solutions. Moreover, the inherent robustness of
this approach allows the system to tolerate noise and partial
information, making it adaptable to real-world scenarios where
data is often incomplete or ambiguous [67].

V. MEMORY-CENTRIC HARDWARE DEVELOPMENTS

The integration of Transformers with NeSy models aligns
closely with the principles of MCC. The central role of
memory in computation can be further enhanced to improve
efficiency and adaptability. This section discusses hardware
developments in this direction, covering methodologies of
MCC (Section V-A), new trends in building hybrid memory
systems (Section V-B), and logic-memory integration through
2.5D/3D stacked architectures (Section V-C).

A. Memory-Centric Computing (MCC)

MCC is a promising paradigm that addresses the memory-
wall problem in AI hardware accelerators. With MCC, key
operations in LLMs and NeSy methods, such as MatMul and
associative memory search, could be performed in the mixed-
signal domain within memory sub-arrays (compute-in-memory
“CIM”), or in the outer digital domain directly connected
to memory banks (compute-near-memory “CNM”), or via
content addressable memories (“CAM”), leading to significant
advances in energy efficiency and throughput [34], [68], [69].
Fig. 6 illustrates the difference between CIM and CNM.
The boundary between CIM and CNM is drawn based on a
combination of factors, including memory technology, compu-
tational characteristics of dataflows, and target performance—
necessary for addressing the diverse computational demands
of AI workloads (refer to Section III-B).

CIM is particularly suitable for accelerating weight-
stationary dataflows, designed to hold pre-computed parame-
ters in memory cells while arbitrary input vectors are brought
into these cells for parallel computation. For instance, the
Linear blocks shown in Fig. 2(b) can be mapped to an
in-memory matrix-vector multiplication, which is commonly
implemented in RRAM [70], [71]. In VSA, RRAM is also
employed to improve the efficiency of memory search, where
RRAM devices are configured to output the closest match to
an input vector, i.e., implement content-addressable memory

High-Density, On-Chip
NVM or DRAM

PEPE PEPE

PEPE PEPE

PEPE PEPE

SR
AM

 B
uf

fe
r

Compute-near-Memory (CNM)

SR
AM

SR
AM

SR
AM

SR
AM

D
riv

er
s

ADCs / Sense Amps

Compute-in-Memory (CIM)

In-RRAM Vector-Matrix Multiplication

Fig. 6. Memory-Centric Computing Approaches.

operations [72]. RRAM is a nonvolatile memory technology
and thereby can memorize and store parameters without ex-
ternal power supply.

Despite its low-power consumption, RRAM suffers from
intrinsic problems, particularly process variations and life-
time [73], [74]. Therefore, RRAM is impractical to use for
high-precision computations and is not ideal for dynamic
dataflows whose inputs and parameters are generated at run-
time, such as MatMul blocks in Fig. 2(b). The low endurance
of RRAM reduces its lifetime, especially when read-write
operations become more frequent (Table I). This challenge has
led to the development of SRAM-based CIM solutions, which
offer higher endurance and better support for dynamic pro-
cessing needs, despite being less favorable in terms of energy
efficiency and memory density [68]. To enable CIM, SRAM
is typically modified from the conventional 6T bit cell, thus
enabling in-place memory updates and logic operations [75].
Furthermore, the mixed-signal nature of these systems allows
to tune precision, as SRAM sub-arrays can be designed to
support both floating-point and integer operations [76]. This
adaptability is especially crucial in LLMs, where precision
impacts both performance and energy consumption.

Emerging data-intensive workloads often involve sparse
computations that face challenges related to latency and mem-
ory capacity. Large MoE models, discussed in Section IV-B,
illustrate these complexities, where expert activation is inher-
ently sparse and executed dynamically at runtime. For such ap-
plications, DRAM-based CNM presents a compelling solution
by offering a hardware architecture capable of efficiently stor-
ing large data volumes and reducing latency through localized
processing [77]. Modern DRAM architectures are structured
hierarchically with enhanced memory banks integrated via
high-bandwidth memory (HBM) interfaces [78]. Research
focused on optimizing DRAM for CNM includes incorpo-
rating advanced row buffer management schemes, integrating
specialized units for bulk-bitwise operations like filtering and
aggregation, and deploying various low-power states for effi-
cient in-memory computations [79]. The growing interest in
implementing diverse DRAM optimizations, capitalizing on its
high density and endurance, enables integrating CNM across
a broader spectrum of applications [80].

B. Hybrid Memory Systems

Research into hybrid memory systems is advancing rapidly,
offering optimized performance, efficiency, and adaptability
by integrating diverse memory technologies on a single chip.

These innovations cater to the specific demands of AI edge
applications, which often face constraints like limited power
and high precision [81]. For example, in event-based tar-
get tracking systems, integrating RRAM and SRAM on the
same chip leverages their complementary strengths [82], [83].
RRAM provides CIM capabilities that enhance speed and
reduce power consumption, making it ideal for high-speed
tracking. Meanwhile, SRAM supports high-precision near-
memory computations, ensuring reliable target identification.
This hybrid integration balances power efficiency with the
occasional need for high-performance computations—an ap-
proach that can also be beneficial in other flows, such as LLM
inference and factorization of NeSy representations [35], [71].

C. 2.5D/3D System Integration

Compute demands and memory footprints for the envi-
sioned NeSy-LLM systems may soon exceed what today’s
2D chips could possibly offer. As two-dimensional scaling
approaches its physical and economic limits, the shift to
three-dimensional integration and heterogeneous system de-
sign becomes essential to meet diverse design targets in a
cost-effective manner [84]. Breaking the single-die limits also
brings new design opportunities with component technologies
(new memories, new logic, new interconnects) specifically
optimized for the algorithmic needs in NeSy and LLM models.
Memory-centric architectures can readily benefit from both
capacity and bandwidth advances brought by 3D integration,
with HBM being a prime example in the recent success of
LLMs. Bringing computations closer to or immersed in HBM
stacks will require new chiplet architectures where specialized
cores, DRAM die stacks, and horizontal/vertical interconnects
are co-designed based on model requirements.

With the 2.5D/3D integration becoming a vital platform
technology going forward, designers are having an increas-
ingly vast design space. For example, it becomes feasible
to map the requirements from the diverse compute kernels
seen in LLM and NeSy models to a variety of logic nodes,
memory types, and specialty devices not available in silicon
logic process. The mixture of technologies and designs, which
is then realized by the right combination of manufacturing and
assembly techniques, allows much more fine-grained system-
technology co-optimization. With co-designs, it is possible to
envision a set of NeSy-friendly and LLM-friendly nanokernels
for chip and chiplet integration, leveraging advancements
in new semiconductor device technologies [85]. Examples
include scaled oxide-semiconductor FETs, low-dimensional
semiconductor FETs, as well as various volatile and non-
volatile memories.

The hybrid nature of NeSy, LLM, and NeSy-LLM models
in terms of dataflows and model components will further
define unique requirements and drive optimizations for the
inter-connectivity in the tailored 2.5D/3D systems, which can
be quite different than that in conventional 2D systems. For
substrate interconnects in 2.5D/3D chiplets [86], the progress
in interposers and wafer-level fan-out layers will continue
to define the dataflow contraints and costs at the system

level. In the third dimension, as micro-bumps, through-silicon
vias (TSV), hybrid bonding, and monolithic inter-layer vias
(ILV) are continuously advancing in density and reliability, the
vertical connectivity may become increasingly useful, enabling
new nanokernel designs and chiplet architectures [87].

Recent research literature showcases several examples of
stacked designs optimized for efficient kernel processing
in Transformer and VSA models. One notable example is
H3DAtten, a heterogeneous 3D integrated architecture specif-
ically designed for MHA kernels in Vision Transformer mod-
els [36]. Leveraging fine-pitch hybrid bonding and TSVs,
H3DAtten vertically stacks dies from different process nodes,
combining a 40nm RRAM-based analog CIM dataflow with
a 16nm SRAM-based logic. This heterogeneous integration
is also applied to optimize VSA-based factorization, thus
demonstrating the benefits of 3D stacked designs in symbolic
reasoning [88]. Other examples include a 3D stacked imple-
mentation of RRAM-based one-shot learning [89] and a 3D
integration of various transistor and memory technologies for
efficient VSA-based pattern recognition [90].

VI. FUTURE DIRECTIONS AND RESEARCH
OPPORTUNITIES

Below is a list of research topics that could further advance
the memory-centric approaches presented in this paper.

A. Variability-Aware In-Memory Fine-tuning of LLM

Recent research has explored techniques to make neural
networks more robust when implemented on RRAM devices,
which suffer from inherent non-idealities due to stochastic
process variations. Variability-aware training algorithms and
hardware/software co-design methods have been developed
to compensate for RRAM conductance variations and max-
imize neural network accuracy [91], [92]. While these are
promising approaches, their application in the fine-tuning
of LLMs remains under-explored. In-memory fine-tuning of
LLMs on RRAM devices presents unique challenges due to
the scale and sensitivity of these models to minute variations in
weight values. Addressing these challenges requires advanced
variability-aware techniques that not only mitigate hardware-
induced inaccuracies but also preserve the linguistic and con-
textual nuances captured by the LLM during its initial training.
Innovative solutions, such as adaptive weight scaling, error
correction schemes, and dynamic reconfiguration of memory
arrays, are essential to enable efficient and reliable in-memory
fine-tuning. By leveraging these techniques, it is possible
to achieve high-performance LLM deployments on energy-
efficient RRAM-based systems.

B. Dynamic Reconfiguration for Hybrid CIM-Based Systems

Runtime reconfiguration of CIM fabrics is an emerging and
promising research area, driven by the increasing demand for
hybrid cognitive computing solutions. Existing reconfiguration
techniques have largely focused on adapting single CIM-based
designs to support various neural network models [93]. These
approaches have shown success in enabling reconfigurable

weight mapping and dynamic weight reloading, optimizing
the handling of diverse input data. However, the next frontier
in this field lies in extending reconfiguration capabilities to
CIM-based systems incorporating multiple CIM fabrics and
technologies. Achieving this will require a holistic approach
combining several key strategies: developing modular mem-
ory subsystems that support multi-precision computing [94],
enabling dynamic data transfer between CIM fabrics through
adaptive network-on-chip solutions, and creating technology-
aware reconfiguration algorithms capable of seamlessly coor-
dinating operations across heterogeneous memory technolo-
gies and workloads [95]. By advancing these strategies, we
can better support hybrid cognitive models.

C. Evaluation of Hybrid CIM-Based Systems

Evaluating hybrid CIM-based systems necessitates a hi-
erarchical approach that integrates optimization and evalu-
ation characteristics across both memory fabrics and chip-
level effects. Traditional evaluation frameworks, such as
DNN+NeuroSim [96], have been effective for single CIM
fabrics but are insufficient for chips incorporating heteroge-
neous CIM fabrics. To address this, a comprehensive eval-
uation framework must be developed that accounts for the
complexities introduced by varying CIM technologies within
a single chip. This framework should include detailed assess-
ments of interconnect performance, caching strategies, and
the interaction between different CIM fabrics. Incorporating
state-of-the-art benchmarks like MLPerf [97] will be crucial
for optimizing these systems, as these benchmarks provide
standardized metrics for evaluation and comparison.

VII. CONCLUSION

In this paper, we have explored memory-centric design and
optimization strategies for cognitive systems integrating LLMs
and NeSy models. We addressed key computational chal-
lenges, including the memory wall problem and diverse com-
putational characteristics. We discussed various algorithmic
optimizations, such as model compression, mixture of experts,
federated learning, and computation in superposition. Addi-
tionally, we presented hardware developments for memory-
centric computing, including effective integration methods like
2.5D/3D-stacked design and chiplet-based approaches. Finally,
we outlined potential research directions to further enhance
efficiency and scalability. This paper represents a significant
step towards the efficient realization of advanced cognition.

ACKNOWLEDGEMENTS

We gratefully acknowledge support from CoCoSys, one
of seven centers in JUMP 2.0, a Semiconductor Research
Corporation (SRC) program sponsored by DARPA; and from
the US National Science Foundation (NSF) CCF-2328805.

REFERENCES

[1] T. Brown et al., “Language Models are Few-Shot Learners,” Advances
in Neural Information Processing Systems (NeurIPS), vol. 33, pp.
1877–1901, 2020.

[2] J. Achiam et al., “GPT-4 Technical Report,” arXiv preprint
arXiv:2303.08774, 2023.

[3] J. Devlin et al., “BERT: Pre-training of Deep Bidirectional Transformers
for Language Understanding,” arXiv preprint arXiv:1810.04805, 2018.

[4] J. Yang et al., “Harnessing the Power of LLMs in Practice: A Survey
on ChatGPT and Beyond,” ACM Transactions on Knowledge Discovery
from Data (TKDD), vol. 18, no. 6, pp. 1–32, 2024.

[5] A. Vaswani et al., “Attention is All You Need,” Advances in Neural
Information Processing Systems (NeurIPS), vol. 30, 2017.

[6] H. Fan et al., “Embodied Intelligence in Manufacturing: Leveraging
Large Language Models for Autonomous Industrial Robotics,” Journal
of Intelligent Manufacturing, pp. 1–17, 2024.

[7] A. J. Thirunavukarasu et al., “Large Language Models in Medicine,”
Nature Medicine, vol. 29, no. 8, pp. 1930–1940, 2023.

[8] E. Kasneci et al., “ChatGPT for Good? On Opportunities and Challenges
of Large Language Models for Education,” Learning and Individual
Differences, vol. 103, p. 102274, 2023.

[9] A. d. Garcez and L. C. Lamb, “Neurosymbolic AI: The 3rd Wave,”
Artificial Intelligence Review, vol. 56, no. 11, pp. 12 387–12 406, 2023.

[10] D. Kleyko et al., “Vector Symbolic Architectures as a Computing
Framework for Emerging Hardware,” Proceedings of the IEEE, vol. 110,
no. 10, pp. 1538–1571, 2022.

[11] P. Kanerva, “Hyperdimensional Computing: An Introduction to
Computing in Distributed Representation with High-Dimensional
Random Vectors,” Cognitive Computation, pp. 139–159, 2009.

[12] F. Shi et al., “Large Language Models Can Be Easily Distracted by
Irrelevant Context,” in Proceedings of International Conference on
Machine Learning (ICML), 2023, pp. 31 210–31 227.

[13] L. Sun et al., “TrustLLM: Trustworthiness in Large Language Models,”
arXiv preprint arXiv:2401.05561, 2024.

[14] K. Valmeekam et al., “On the Planning Abilities of Large Language
Models : A Critical Investigation,” Advances in Neural Information
Processing Systems (NeurIPS), vol. 36, pp. 75 993–76 005, 2023.

[15] D. Patterson et al., “Carbon Emissions and Large Neural Network
Training,” arXiv preprint arXiv:2104.10350, 2021.

[16] H. Xiong et al., “Converging Paradigms: The Synergy of Symbolic
and Connectionist AI in LLM-Empowered Autonomous Agents,” arXiv
preprint arXiv:2407.08516, 2024.

[17] W. A. Wulf and S. A. McKee, “Hitting the Memory Wall: Implications
of the Obvious,” ACM SIGARCH Computer Architecture News, vol. 23,
no. 1, pp. 20–24, 1995.

[18] A. Gholami et al., “AI and Memory Wall,” IEEE Micro, 2024.
[19] Z. Wan et al., “Towards Cognitive AI Systems: Workload and

Characterization of Neuro-Symbolic AI,” in Proceedings of IEEE
International Symposium on Performance Analysis of Systems and
Software (ISPASS), 2024.

[20] Z. Wan, C.-K. Liu, H. Yang, C. Li, H. You, Y. Fu, C. Wan,
T. Krishna, Y. Lin, and A. Raychowdhury, “Towards Cognitive AI
Systems: a Survey and Prospective on Neuro-Symbolic AI,” arXiv
preprint arXiv:2401.01040, 2024.

[21] D. Cunnington et al., “The Role of Foundation Models in
Neuro-Symbolic Learning and Reasoning,” arXiv preprint
arXiv:2402.01889, 2024.

[22] S. Jha et al., “Challenges and Opportunities in Neuro-Symbolic
Composition of Foundation Models,” in Proceedings of IEEE Military
Communications Conference (MILCOM), 2023, pp. 156–161.

[23] V. Pallagani et al., “On the Prospects of Incorporating Large Language
Models (LLMs) in Automated Planning and Scheduling (APS),” in
Proceedings of the International Conference on Automated Planning
and Scheduling (ICAPS), vol. 34, 2024, pp. 432–444.

[24] M. Hersche et al., “A Neuro-Vector-Symbolic Architecture for Solving
Raven’s Progressive Matrices,” Nature Machine Intelligence, vol. 5,
no. 4, pp. 363–375, 2023.

[25] M. Imani et al., “Exploring Hyperdimensional Associative Memory,”
in Proceedings of IEEE International Symposium on High Performance
Computer Architecture (HPCA), 2017, pp. 445–456.

[26] E. P. Frady et al., “Resonator Networks, 1: An Efficient Solution
for Factoring High-Dimensional, Distributed Representations of Data
Structures,” Neural Computation, vol. 32, no. 12, pp. 2311–2331, 2020.

[27] A. Renner et al., “Neuromorphic Visual Scene Understanding with
Resonator Networks,” Nature Machine Intelligence, pp. 1–12, 2024.

[28] A. Sebastian, M. Le Gallo, R. Khaddam-Aljameh, and E. Eleftheriou,
“Memory Devices and Applications for In-Memory Computing,” Nature
Nanotechnology, vol. 15, no. 7, pp. 529–544, 2020.

[29] A. Gebregiorgis et al., “A Survey on Memory-Centric Computer
Architectures,” ACM Journal on Emerging Technologies in Computing
Systems (JETC), vol. 18, no. 4, pp. 1–50, 2022.

[30] S. Salahuddin, K. Ni, and S. Datta, “The Era of Hyper-Scaling in
Electronics,” Nature Electronics, vol. 1, no. 8, pp. 442–450, 2018.

[31] Q. Dong et al., “A 351TOPS/W and 372.4 GOPS Compute-in-Memory
SRAM Macro in 7nm FinFET CMOS for Machine-Learning
Applications,” in Proceedings of IEEE International Solid-State Circuits
Conference (ISSCC), 2020, pp. 242–244.

[32] M. Zhou et al., “TransPIM: A Memory-based Acceleration via
Software-Hardware Co-Design for Transformer,” in Proceedings of IEEE
International Symposium on High-Performance Computer Architecture
(HPCA), 2022, pp. 1071–1085.

[33] X. Yang et al., “Research Progress on Memristor: From Synapses to
Computing Systems,” IEEE Transactions on Circuits and Systems I:
Regular Papers (TCAS-I), vol. 69, no. 5, pp. 1845–1857, 2022.

[34] S. Shou et al., “See-mcam: Scalable multi-bit fefet content addressable
memories for energy efficient associative search,” in 2023 IEEE/ACM
International Conference on Computer Aided Design (ICCAD). IEEE,
2023, pp. 1–9.

[35] S. Liu et al., “HARDSEA: Hybrid Analog-ReRAM Clustering and
Digital-SRAM In-Memory Computing Accelerator for Dynamic Sparse
Self-Attention in Transformer,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, 2023.

[36] W. Li et al., “H3DAtten: Heterogeneous 3-D Integrated Hybrid Analog
and Digital Compute-in-Memory Accelerator for Vision Transformer
Self-Attention,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, 2023.

[37] D. Kleyko et al., “Classification and Recall With Binary
Hyperdimensional Computing: Tradeoffs in Choice of Density
and Mapping Characteristics,” IEEE Transactions on Neural Networks
and Learning Systems (TNNLS), vol. 29, no. 12, pp. 5880–5898, 2018.

[38] A. Gholami et al., “A Survey of Quantization Methods for Efficient
Neural Network Inference,” in Low-Power Computer Vision. Chapman
and Hall/CRC, 2022, pp. 291–326.

[39] Z. Liu et al., “LLM-QAT: Data-Free Quantization Aware Training for
Large Language Models,” arXiv preprint arXiv:2305.17888, 2023.

[40] ——, “Post-Training Quantization for Vision Transformer,” Advances
in Neural Information Processing Systems (NeurIPS), vol. 34, pp.
28 092–28 103, 2021.

[41] Z. Yuan et al., “LLM Inference Unveiled: Survey and Roofline Model
Insights,” arXiv preprint arXiv:2402.16363, 2024.

[42] X. Wu et al., “Block-Wise Mixed-Precision Quantization: Enabling
High Efficiency for Practical ReRAM-based DNN Accelerators,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems (TCAD), 2024.

[43] X. Shen et al., “Agile-Quant: Activation-Guided Quantization for Faster
Inference of LLMs on the Edge,” in Proceedings of the AAAI Conference
on Artificial Intelligence, vol. 38, no. 17, 2024, pp. 18 944–18 951.

[44] J. Mao et al., “The Neuro-Symbolic Concept Learner: Interpreting
Scenes, Words, and Sentences From Natural Supervision,” in
Proceedings of International Conference on Learning Representations
(ICLR), 2019.

[45] S. E. Yuksel, J. N. Wilson, and P. D. Gader, “Twenty Years of Mixture of
Experts,” IEEE Transactions on Neural Networks and Learning Systems
(TNNLS), vol. 23, no. 8, pp. 1177–1193, 2012.

[46] W. Fedus, B. Zoph, and N. Shazeer, “Switch Transformers: Scaling to
Trillion Parameter Models with Simple and Efficient Sparsity,” Journal
of Machine Learning Research, vol. 23, no. 120, pp. 1–39, 2022.

[47] B. Zoph et al., “ST-MoE: Designing Stable and Transferable Sparse
Expert Models,” arXiv preprint arXiv:2202.08906, 2022.

[48] A. Q. Jiang et al., “Mixtral of Experts,” arXiv preprint
arXiv:2401.04088, 2024.

[49] P. Soulos et al., “Differentiable Tree Operations Promote Compositional
Generalization,” in Proceedings of International Conference on Machine
Learning (ICML), 2023, pp. 32 499–32 520.

[50] J. Thomm et al., “Terminating Differentiable Tree Experts,” arXiv
preprint arXiv:2407.02060, 2024.

[51] H. Huang et al., “Towards MoE Deployment: Mitigating Inefficiencies in
Mixture-of-Expert (MoE) Inference,” arXiv preprint arXiv:2303.06182,
2023.

[52] N. Menet et al., “MIMONets: Multiple-Input-Multiple-Output Neural
Networks Exploiting Computation in Superposition,” Advances in
Neural Information Processing Systems (NeurIPS), vol. 36, 2024.

[53] L. Collins et al., “FedAvg with Fine Tuning: Local Updates Lead to
Representation Learning,” Advances in Neural Information Processing
Systems (NeurIPS), vol. 35, pp. 10 572–10 586, 2022.

[54] X. Wang et al., “In-Edge AI: Intelligentizing Mobile Edge Computing,
Caching and Communication by Federated Learning,” IEEE Network,
vol. 33, no. 5, pp. 156–165, 2019.

[55] Z. Tan et al., “Democratizing Large Language Models via Personalized
Parameter-Efficient Fine-tuning,” arXiv preprint arXiv:2402.04401,
2024.

[56] Y. Cao et al., “Aligning Large Language Models with Recommendation
Knowledge,” arXiv preprint arXiv:2404.00245, 2024.

[57] J. Sun et al., “FedBPT: Efficient Federated Black-box Prompt Tuning for
Large Language Models,” in Proceedings of International Conference
on Machine Learning (ICML), 2024.

[58] J. Zhang et al., “Towards Building The Federated GPT: Federated
Instruction Tuning,” in Proceedings of IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), 2024, pp.
6915–6919.

[59] P. Xing, S. Lu, and H. Yu, “Federated Neuro-Symbolic Learning,” in
Proceedings of International Conference on Machine Learning (ICML),
2024.

[60] Z. An, T. T. Johnson, and M. Ma, “Formal Logic Enabled Personalized
Federated Learning through Property Inference,” in Proceedings of the
AAAI Conference on Artificial Intelligence, vol. 38, no. 10, 2024, pp.
10 882–10 890.

[61] Y. Zhang and H. Yu, “LR-XFL: Logical Reasoning-based Explainable
Federated Learning,” in Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 38, no. 19, 2024, pp. 21 788–21 796.

[62] S. Zhang et al., “On Hyperdimensional Computing-based Federated
Learning: A Case Study,” in Proceedings of International Joint
Conference on Neural Networks (IJCNN), 2023, pp. 1–8.

[63] A. Manju and M. J. Nigam, “Applications of Quantum-Inspired
Computational Intelligence: A Survey,” Artificial Intelligence Review,
vol. 42, pp. 79–156, 2014.

[64] P. Lewis et al., “Retrieval-Augmented Generation for
Knowledge-Intensive NLP Tasks,” Advances in Neural Information
Processing Systems (NeurIPS), vol. 33, pp. 9459–9474, 2020.

[65] T. Merth et al., “Superposition Prompting: Improving and Accelerating
Retrieval-Augmented Generation,” in Proceedings of International
Conference on Machine Learning (ICML), 2024.

[66] A. Zou et al., “Representation Engineering: A Top-Down Approach to
AI Transparency,” arXiv preprint arXiv:2310.01405, 2023.

[67] S. J. Kent et al., “Resonator networks, 2: Factorization Performance
and Capacity Compared to Optimization-Based Methods,” Neural
computation, vol. 32, no. 12, pp. 2332–2388, 2020.

[68] S. Yu et al., “Compute-in-Memory Chips for Deep Learning: Recent
Trends and Prospects,” IEEE Circuits and Systems Magazine, vol. 21,
no. 3, pp. 31–56, 2021.

[69] B. Kim et al., “The Breakthrough Memory Solutions for Improved
Performance on LLM Inference,” IEEE Micro, 2024.

[70] Z. Lu et al., “An RRAM-Based Computing-in-Memory Architecture
and Its Application in Accelerating Transformer Inference,” IEEE
Transactions on Very Large Scale Integration Systems, 2023.

[71] J. Langenegger et al., “In-Memory Factorization of Holographic
Perceptual Representations,” Nature Nanotechnology, vol. 18, no. 5, pp.
479–485, 2023.

[72] R. Mao et al., “Experimentally Validated Memristive Memory
Augmented Neural Network with Efficient Hashing and Similarity
Search,” Nature Communications, vol. 13, no. 1, p. 6284, 2022.

[73] B. Crafton et al., “Improving Compute In-Memory ECC Reliability
with Successive Correction,” in Proceedings of ACM/IEEE Design
Automation Conference (DAC), 2022, pp. 745–750.

[74] Z. Wan et al., “Rram-ecc: Improving reliability of rram-based compute
in-memory,” in 13th Annual Non-Volatile Memories Workshop (NVMW),
2022.

[75] F. Tu et al., “TranCIM: Full-Digital Bitline-Transpose CIM-based Sparse
Transformer Accelerator With Pipeline/Parallel Reconfigurable Modes,”
IEEE Journal of Solid-State Circuits, vol. 58, no. 6, pp. 1798–1809,
2023.

[76] H. Mori et al., “A 4nm 6163-TOPS/W/b 4790-TOPS/mm2/b SRAM
Based Digital-Computing-in-Memory Macro Supporting Bit-Width
Flexibility and Simultaneous MAC and Weight Update,” in Proceedings
of IEEE International Solid-State Circuits Conference (ISSCC), 2023,
pp. 132–134.

[77] Z. Du et al., “SiDA: Sparsity-Inspired Data-Aware Serving for
Efficient and Scalable Large Mixture-of-Experts Models,” Proceedings
of Machine Learning and Systems, vol. 6, pp. 224–238, 2024.

[78] J. Kim and Y. Kim, “HBM: Memory Solution for Bandwidth-Hungry
Processors,” in IEEE Hot Chips Symposium (HCS), 2014, pp. 1–24.

[79] J. D. Ferreira et al., “pLUTo: Enabling Massively Parallel Computation
in DRAM via Lookup Tables,” in Proceedings of IEEE/ACM
International Symposium on Microarchitecture (MICRO), 2022.

[80] O. Mutlu, S. Ghose, J. Gómez-Luna, and R. Ausavarungnirun, “A
Modern Primer on Processing in Memory,” in Emerging Computing:
From Devices to Systems: Looking Beyond Moore and Von Neumann.
Springer, 2022, pp. 171–243.

[81] M. Chang et al., “A 40nm 60.64TOPS/W ECC-Capable
Compute-in-Memory/Digital 2.25MB/768KB RRAM/SRAM System
with Embedded Cortex M3 Microprocessor for Edge Recommendation
Systems,” in Proceedings of IEEE International Solid-State Circuits
Conference (ISSCC), vol. 65, 2022, pp. 1–3.

[82] ——, “A 73.53TOPS/W 14.74TOPS Heterogeneous RRAM In-Memory
and SRAM Near-Memory SoC for Hybrid Frame and Event-Based
Target Tracking,” in Proceedings of IEEE International Solid-State
Circuits Conference (ISSCC), 2023, pp. 426–428.

[83] A. S. Lele et al., “A Heterogeneous RRAM In-Memory and
SRAM Near-Memory SoC for Fused Frame and Event-Based Target
Identification and Tracking,” IEEE Journal of Solid-State Circuits, 2023.

[84] K. Akarvardar and H.-S. P. Wong, “Technology Prospects for
Data-Intensive Computing,” Proceedings of the IEEE, vol. 111, no. 1,
pp. 92–112, 2023.

[85] L. Zheng and H. Li, “CMOS+X Technologies for
Neuro-Vector-Symbolic Computing,” in Proceedings of Device
Research Conference (DRC), 2024, pp. 1–2.

[86] C. Douglas et al., “Foundry Perspectives on 2.5 D/3D Integration
and Roadmap,” in Proceedings of IEEE International Electron Devices
Meeting (IEDM), 2021, pp. 3–7.

[87] S. Yu et al., “Compute-in-Memory: From Device Innovation to 3D
System Integration,” in Proceedings of IEEE European Solid-State
Device Research Conference (ESSDERC), 2021, pp. 21–28.

[88] Z. Wan et al., “H3DFact: Heterogeneous 3D Integrated CIM
for Factorization with Holographic Perceptual Representations,” in
Proceedings of IEEE/ACM Design, Automation & Test in Europe
Conference (DATE), 2024, pp. 1–6.

[89] Y. Li et al., “Monolithic Three-Dimensional Integration of RRAM-Based
Hybrid Memory Architecture for One-Shot Learning,” Nature
Communications, vol. 14, no. 1, p. 7140, 2023.

[90] T. F. Wu et al., “Hyperdimensional Computing Exploiting Carbon
Nanotube FETs, Resistive RAM, and their Monolithic 3D Integration,”
IEEE Journal of Solid-State Circuits (JSSC), vol. 53, no. 11, pp.
3183–3196, 2018.

[91] A. Glukhov et al., “End-to-End Modeling of Variability-Aware
Neural Networks Based on Resistive-Switching Memory Arrays,” in
Proceedings of IFIP/IEEE International Conference on Very Large Scale
Integration (VLSI-SoC), 2022, pp. 1–5.

[92] T. Shahroodi et al., “Swordfish: A Framework for Evaluating Deep
Neural Network-based Basecalling using Computation-In-Memory with
Non-Ideal Memristors,” in Proceedings of IEEE/ACM International
Symposium on Microarchitecture, 2023, pp. 1437–1452.

[93] A. Lu et al., “A Runtime Reconfigurable Design of
Compute-in-Memory–Based Hardware Accelerator for Deep Learning
Inference,” ACM Transactions on Design Automation of Electronic
Systems (TODAES), vol. 26, no. 6, pp. 1–18, 2021.

[94] F. Tu et al., “A 28nm 29.2TFLOPS/W BF16 and 36.5TOPS/W INT8
Reconfigurable Digital CIM Processor with Unified FP/INT Pipeline
and Bitwise In-Memory Booth Multiplication for Cloud Deep Learning
Acceleration,” in Proceedings of IEEE International Solid-State Circuits
Conference (ISSCC), vol. 65, 2022, pp. 1–3.

[95] S. Huang et al., “Hardware-aware Quantization/Mapping Strategies
for Compute-in-Memory Accelerators,” ACM Transactions on Design
Automation of Electronic Systems, vol. 28, no. 3, pp. 1–23, 2023.

[96] X. Peng et al., “DNN+NeuroSim: An End-to-End Benchmarking
Framework for Compute-in-Memory Accelerators with Versatile Device
Technologies,” in Proceedings of IEEE international electron devices
meeting (IEDM), 2019, pp. 32–5.

[97] V. J. Reddi et al., “MLPerf Inference Benchmark,” in Proceedings of
ACM/IEEE International Symposium on Computer Architecture (ISCA),
2020, pp. 446–459.

	Introduction
	Background
	Transformer Architecture
	Benefits of Combining NeSy Models with LLMs
	Vector-Symbolic Architecture (VSA)
	Memory Technologies

	Key Computational Challenges of LLM-Powered Hybrid Models
	The Memory-Wall Problem
	Diverse Computational Demands

	Memory-Centric Algorithmic Optimizations
	Model Compression
	Mixture of Experts (MoE)
	Federated Learning (FL)
	Computation in Superposition (CIS)

	Memory-Centric Hardware Developments
	Memory-Centric Computing (MCC)
	Hybrid Memory Systems
	2.5D/3D System Integration

	Future Directions and Research Opportunities
	Variability-Aware In-Memory Fine-tuning of LLM
	Dynamic Reconfiguration for Hybrid CIM-Based Systems
	Evaluation of Hybrid CIM-Based Systems

	Conclusion
	References

