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EI and Micro-Robotics

4

Jasmine microrobots Harvard Bee Microrobots Georgia Tech MicrorobotBerkeley Microrobots

Palm-sized Drones Intelligent Autonomous Cars

Sensing

Decision making

Control

Autonomous navigation

Collaborative decision
making

Simultaneously
Localization and mapping
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Neuro-Symbolic Computing
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Neural SymbolicRecognition
Flexibility
Scalability

Explainability
Knowledge

Data Efficient

o Neural Components:
n Bio-inspired: neuromorphic
n CNN-inspired: non-neuromorphic

Towards Cognitive and Trustworthy Embodied AI Systems
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Providing Autonomy to Edge Devices
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o Reinforcement Learning can maximize a set reward through exploration of the 
state-space and taking actions.

o A neural network maps the state-space to the action space optimally.
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o Time-domain mixed-signal multiply-and-accumulate unit.
o Bio-mimetic and takes advantages of inherent sparsity in the network.

Time-Based Design for Online RL
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Processing with Time-Encoded Pulses
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Energy Efficiency of Time-Domain Processing
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Computation

TD-MS Implementation

q Number of switching events (and hence, energy/op) in TD neuron is proportional to the value of the 
operands (and hence, the importance of the computation)

q Bio-mimetic and takes advantage of inherent sparsity in the network
q An average of 42% reduction in energy/op
q 45% lower area, 47% lower interconnect power and 16% lower leakage

TD-MS:
time-domain
mixed-signal
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Reinforcement Learning Chip in Action
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Collaborative Intelligence in Swarms
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o Increasing swarm size requires higher bit-precision
o Time-domain mixed-signal MAC design for low bit-

precision
o Digital MAC design for high bit-precision

System Architecture
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No.
Bits

TD-MS HDMS

Average Worst Average Worst
3 0.10 0.49 0.16 0.52
4 0.14 0.56 0.19 0.61
5 0.28 0.72 0.29 0.74
6 0.64 1.74 0.69 0.94
7 2.21 3.86 0.70 1.02
8 5.82 9.32 0.69 1.27

Energy/MAC (Normalized to Digital)

Efficient time-
domain energy/MAC
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65nm Test-Chip and Measured Results
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q 0.22-1.76 pJ/operation at 0.6V
q Maximum arithmetic energy efficiency 9.1 

TOPS/W @ 3b, 0.6V, 1.1 TOPS/W @8b, 0.6V
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Swarm Intelligence in Action
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Exploration 16X real time Collaborative RL in real time

Ningyuan Cao et al., ISSCC 2018
Ningyuan Cao et al., JSSC 2019
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Spatial Cognition in the Rodent Brain
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o SLAM in edge-robotics requires power-
efficient circuit solutions

o Biological approaches can solve SLAM 
with extreme energy efficiencies

o Neuromorphic vision-based SLAM
algorithm is a promising solution
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Measured Results on 65nm Test-chip
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NeuroSLAM Operation in Action
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o SLAM operation and pose-cell energy distribution over input frames
Jong-Hyeok Yoon et al., ISSCC 2020

Jong-Hyeok Yoon et al., JSSC 2020
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Hybrid SNN/CNN for Target Tracking
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o CNNs are constrained by high latency, while SNNs are constrained by low accuracy
o Hybrid CNN/SNN algorithm shows potential to achieve low latency with high accuracy



System Architecture
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o Heterogenous programmable domain-specific accelerator architecture
o RRAM-based compute-in-memory for CNN, SRAM-based compute-near-memory for SNN



Chip Prototype
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Muya Chang et al., ISSCC 2023
Ashwin Lele et al., JSSC 2023
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Neuro-symbolic for Robot Surveillance
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o Perception (CNN): Autonomous steering with obstacle avoidance:
n Depth estimation: avoiding obstacles
n Segmentation: identifying objects of interest for mapping

o Localization: Placing identified object/locations onto 2D map.



40nm VLIW/RRAM Integrated System-on-Chip
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o Architecture: 10 VLIW-controlled NVM matrix units + localization block
o Technology: 760KB SRAM, 5MB RRAM with 2.07Mb/mm2 and 0.256pJ/b

Samual Spetalnick et al., 
ISSCC 2024, JSSC 2024
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Neuro-Symbolic AI Workload Characterization
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Neural Network
Scalable, Flexible,

Handle inconsistency

Symbolic Probabilistic 
Interpretable, Explainable,

Data-efficient
Robust to 

uncertainty

Neuro-Symbolic AI Algorithms
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o Characterize neuro-symbolic
workloads

o Identify potential inefficiency
reasons

o Optimize neuro-symbolic system
via SW/HW co-design

Zishen Wan et al., ISPASS 2024

o System 1: thinking fast (neuro)
o System 2: thinking slow (symbolic)



Profiling and Arch Support for Neuro-Symbolic
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o Goal: understand compute/memory characteristics of neuro-symbolic workloads
o Key Idea: profile neuro-symbolic workloads on heterog. CPU/GPU systems
o Key Takeaways:

n Operator: symbolic is dominated by vector/element tensor and logical ops
n Latency: symbolic is inefficient on CPU/GPU
n System: neuro is compute-bounded, symbolic is memory-bounded; complex control



SW/HW Co-Design for Vector-Symbolic Arch
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o Multi-tile hardware and dataflow for vector-symbolic architecture (VSA)
o Applicable to various VSA workloads and applications Zishen Wan et al., TCASAI 2024

Mohamed Ibrahim et al., DATE 2024



Heterogeneous 3D CIM for Neuro-Symbolic
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o Goal: Efficient & scalable factorization of holographic sensory representation
o Key Idea:

n Algorithm: High-dimensional holographic vector-based factorization solver
n Hardware: Heterogeneous 3D-CIM architecture; Improve factorization accuracy and

convergence with intrinsic hardware stochasticity
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Conclusion
• Next generation of autonomy will be all-pervasive and ubiquitous
• Autonomy requires sensing, decision making, learning from actions 

and actuation.
• TinyML in micro-robotics will enable exciting new features in remote 

sensing, reconnaissance and disaster relief.
• Analog and mixed-signal compute can be augmented with digital 

techniques for seamless scalability of bit-precision.
• Smart algorithms need to be married to smart hardware design to 

enable intelligence at high energy efficiency.
• Golden age for hardware design…!!

36ESWEEK 2024 Arijit Raychowdhury | School of ECE | Georgia Institute of Technology



Neuro-Symbolic Computing
Architectures and Circuits for

Embodied Intelligence
Arijit Raychowdhury

Steve W. Chaddick School Chiar and Professor
School of Electrical and Computer Engineering

Georgia Institute of Technology

arijit.raychowdhury@ece.gatech.edu

Embedded Systems Week (ESWEEK), Oct. 2, 2024

mailto:arijit.raychowdhury@ece.gatech.edu

