

Neuro-Symbolic Cor Architectures and Cir Embodied Intellig

Arijit Raychowdhury

Steve W. Chaddick School Chiar and School of Electrical and Computer E Georgia Institute of Technold

arijit.raychowdhury@ece.gatech.edu

Embedded Systems Week (ESWEEK)

- Motivation
- Bio-Inspired Neuro-Symbolic Computing for Embodied Intelligence
- CNN-Inspired Neuro-Symbolic Computing for Embodied Intelligence
- Challenges and Conclusions

• **Motivation**

- Bio-Inspired Neuro-Symbolic Computing for Embodied Intelligence
- CNN-Inspired Neuro-Symbolic Computing for Embodied Intelligence
- Challenges and Conclusions

EI and Micro-Robotics

Palm-sized Drones **Intelligent Autonomous Cars**

Jasmine microrobots Berkeley Microrobots Harvard Bee Microrobots Georgia Tech Microrobot

Neuro-Symbolic Computing

Towards Cognitive and Trustworthy Embodied AI Systems

Neural Components:

- Bio-inspired: neuromorphic
- n CNN-inspired: non-neuromorphic

- Motivation
- **Bio-Inspired Neuro-Symbolic Computing for Embodied Intelligence**
	- Reinforcement Learning on the Edge Robotics
	- Swarm Intelligence on the Edge Robotics
	- Neuro-inspired SLAM for Edge Robotics
	- Hybrid Architecture for Target Tracking
- CNN-Inspired Neuro-Symbolic Computing for Embodied Intelligence
- Challenges and Conclusions

- Motivation
- Bio-Inspired Neuro-Symbolic Computing for Embodied Intelligence
	- **Reinforcement Learning on the Edge Robotics**
	- Swarm Intelligence on the Edge Robotics
	- Neuro-inspired SLAM for Edge Robotics
	- Hybrid Architecture for Target Tracking
- CNN-Inspired Neuro-Symbolic Computing for Embodied Intelligence
- Challenges and Conclusions

Providing Autonomy to Edge Devices

- Reinforcement Learning can maximize a set reward through exploration of the state-space and taking actions.
- A neural network maps the state-space to the action space optimally.

Time-Based Design for Online RL

Time-domain mixed-signal multiply-and-accumulate unit.

Bio-mimetic and takes advantages of inherent sparsity in the network.

Processing with Time-Encoded Pulses

Energy Efficiency of Time-Domain Processing

- Number of switching events (and hence, energy/op) in TD neuron is proportional to the value of the operands (and hence, the importance of the computation)
- Bio-mimetic and takes advantage of inherent sparsity in the network
- An average of 42% reduction in energy/op
- 45% lower area, 47% lower interconnect power and 16% lower leakage

Reinforcement Learning Chip in Action

- Motivation
- Bio-Inspired Neuro-Symbolic Computing for Embodied Intelligence
	- Reinforcement Learning on the Edge Robotics
	- **Swarm Intelligence on the Edge Robotics**
	- Neuro-inspired SLAM for Edge Robotics
	- Hybrid Architecture for Target Tracking
- CNN-Inspired Neuro-Symbolic Computing for Embodied Intelligence
- Challenges and Conclusions

Collaborative Intelligence in Swarms

Applications

Multi-robot patrolling

Multi-robot predator-prey

linear operation / nonlinear activation

Physical-Model-Based

Obstacle/collision avoidance Pattern-formation

nonlinear function / linear operation

System Architecture

Energy/MAC (Normalized to Digital)

- Increasing swarm size requires higher bit-precision
- Time-domain mixed-signal MAC design for low bitprecision
- Digital MAC design for high bit-precision

65nm Test-Chip and Measured Results

 \Box 0.22-1.76 pJ/operation at 0.6V \square Maximum arithmetic energy efficiency 9.1 TOPS/W @ 3b, 0.6V, 1.1 TOPS/W @8b, 0.6V

Swarm Intelligence in Action

Exploration 16X real time Collaborative RL in real time

Ningyuan Cao et al., **ISSCC** 2018 Ningyuan Cao et al., **JSSC** 2019

- Motivation
- Bio-Inspired Neuro-Symbolic Computing for Embodied Intelligence
	- Reinforcement Learning on the Edge Robotics
	- Swarm Intelligence on the Edge Robotics
	- **Neuro-Inspired SLAM for Edge Robotics**
	- Hybrid Architecture for Target Tracking
- CNN-Inspired Neuro-Symbolic Computing for Embodied Intelligence
- Challenges and Conclusions

Spatial Cognition in the Rodent Brain

- SLAM in edge-robotics requires powerefficient circuit solutions
- \Box Biological approaches can solve SLAM with extreme energy efficiencies
- \Box Neuromorphic vision-based SLAM algorithm is a promising solution

Measured Results on 65nm Test-chip

- \Box 0.203-0.251 pJ/MAC at 0.95-1.2V
- **O** Arithmetic energy efficiency (8.79 TOPS/W ω 4b, 1.2V), (7.25 TOPS/W ω 4b, 0.95V)

NeuroSLAM Operation in Action

Jong-Hyeok Yoon et al., **ISSCC** 2020
SLAM operation and pose-cell energy distribution over input frames

Jong-Hyeok Yoon et al., **JSSC** 2020

- Motivation
- Bio-Inspired Neuro-Symbolic Computing for Embodied Intelligence
	- Reinforcement Learning on the Edge Robotics
	- Swarm Intelligence on the Edge Robotics
	- Neuro-inspired SLAM for Edge Robotics
	- **Hybrid Architecture for Target Tracking**
- CNN-Inspired Neuro-Symbolic Computing for Embodied Intelligence
- Challenges and Conclusions

Hybrid SNN/CNN for Target Tracking

- CNNs are constrained by high latency, while SNNs are constrained by low accuracy
- Hybrid CNN/SNN algorithm shows potential to achieve low latency with high accuracy

System Architecture

Heterogenous programmable domain-specific accelerator architecture

RRAM-based compute-in-memory for CNN, SRAM-based compute-near-memory for SNN

Chip Prototype

4.5 mm

Muya Chang et al., **ISSCC** 2023 Ashwin Lele et al., **JSSC** 2023

- Motivation
- Bio-Inspired Neuro-Symbolic Computing for Embodied Intelligence
	- Reinforcement Learning on the Edge Robotics
	- Swarm Intelligence on the Edge Robotics
	- Neuro-inspired SLAM for Edge Robotics
	- Hybrid Architecture for Target Tracking

• **CNN-Inspired Neuro-Symbolic Computing for Embodied Intelligence**

- Neuro-Symbolic Robotic Surveillance SoC
- Neuro-Symbolic Workload Characterization and VSA architecture
- Challenges and Conclusions

- Motivation
- Bio-Inspired Neuro-Symbolic Computing for Embodied Intelligence
	- Reinforcement Learning on the Edge Robotics
	- Swarm Intelligence on the Edge Robotics
	- Neuro-inspired SLAM for Edge Robotics
	- Hybrid Architecture for Target Tracking

• **CNN-Inspired Neuro-Symbolic Computing for Embodied Intelligence**

- **Neuro-Symbolic Robotic Surveillance SoC**
- Neuro-Symbolic Workload Characterization and VSA architecture
- Challenges and Conclusions

Neuro-symbolic for Robot Surveillance

- **□ Perception (CNN):** Autonomous steering with obstacle avoidance:
	- Depth estimation: avoiding obstacles
	- Segmentation: identifying objects of interest for mapping
	- **Localization:** Placing identified object/locations onto 2D map.

40nm VLIW/RRAM Integrated System-on-Chip

Architecture: 10 VLIW-controlled NVM matrix units + localization block

 \Box Technology: 760KB SRAM, 5MB RRAM with 2.07Mb/mm² and 0.256pJ/b

Samual Spetalnick et al., **ISSCC** 2024, **JSSC** 2024

- Motivation
- Bio-Inspired Neuro-Symbolic Computing for Embodied Intelligence
	- Reinforcement Learning on the Edge Robotics
	- Swarm Intelligence on the Edge Robotics
	- Neuro-inspired SLAM for Edge Robotics
	- Hybrid Architecture for Target Tracking
- CNN-Inspired Neuro-Symbolic Computing for Embodied Intelligence
	- Neuro-Symbolic Robotic Surveillance SoC
	- **Neuro-Symbolic Workload Characterization and VSA architecture**
- Challenges and Conclusions

Neuro-Symbolic AI Workload Characterization

- **System 1:** thinking fast (neuro)
- **System 2:** thinking slow (symbolic)

- **Characterize** neuro-symbolic workloads
- **Identify** potential inefficiency reasons
- **Optimize** neuro-symbolic system via SW/HW co-design

Zishen Wan et al., **ISPASS** 2024

Towards Human-like Cognitive AI

Towards Human-like Cognitive AI

Profiling and Arch Support for Neuro-Symbolic

- **Goal:** understand compute/memory characteristics of neuro-symbolic workloads
- Key **Idea**: profile neuro-symbolic workloads on heterog. CPU/GPU systems
- o **Key Takeaways**:
	- **Operator: symbolic is dominated by vector/element tensor and logical ops**
	- Latency: symbolic is inefficient on CPU/GPU
	- System: neuro is compute-bounded, symbolic is memory-bounded; complex control

SW/HW Co-Design for Vector-Symbolic Arch

- Multi-tile hardware and dataflow for vector-symbolic architecture (VSA)
- Applicable to various VSA workloads and applications zishen Wan et al., **TCASAI** 2024

Mohamed Ibrahim et al., **DATE** 2024

Heterogeneous 3D CIM for Neuro-Symbolic

- **Goal**: Efficient & scalable factorization of holographic sensory representation
- o **Key Idea**:
	- Algorithm: High-dimensional holographic vector-based factorization solver
	- Hardware: Heterogeneous 3D-CIM architecture; Improve factorization accuracy and convergence with intrinsic hardware stochasticity

Zishen Wan et al., **DATE** 2024 (SRC TECHCON)

- Motivation
- Bio-Inspired Neuro-Symbolic Computing for Embodied Intelligence
	- Reinforcement Learning on the Edge Robotics
	- Swarm Intelligence on the Edge Robotics
	- Neuro-inspired SLAM for Edge Robotics
	- Hybrid Architecture for Target Tracking
- CNN-Inspired Neuro-Symbolic Computing for Embodied Intelligence
	- Neuro-Symbolic Robotic Surveillance SoC
	- **Neuro-Symbolic Workload Characterization and VSA architecture**
- **Challenges and Conclusions**

Conclusion

- Next generation of autonomy will be all-pervasive and ubiquitous
- Autonomy requires sensing, decision making, learning from actions and actuation.
- TinyML in micro-robotics will enable exciting new features in remote sensing, reconnaissance and disaster relief.
- Analog and mixed-signal compute can be augmented with digital techniques for seamless scalability of bit-precision.
- Smart algorithms need to be married to smart hardware design to enable intelligence at high energy efficiency.
- Golden age for hardware design…!!

Neuro-Symbolic Cor Architectures and Cir Embodied Intellig

Arijit Raychowdhury

Steve W. Chaddick School Chiar and School of Electrical and Computer E Georgia Institute of Technold

arijit.raychowdhury@ece.gatech.edu

Embedded Systems Week (ESWEEK)