

Neuro-Symbolic Computing Architectures and Circuits for Embodied Intelligence

Arijit Raychowdhury

Steve W. Chaddick School Chiar and Professor School of Electrical and Computer Engineering Georgia Institute of Technology

⊠ arijit.raychowdhury@ece.gatech.edu

Embedded Systems Week (ESWEEK), Oct. 2, 2024

- Motivation
- Bio-Inspired Neuro-Symbolic Computing for Embodied Intelligence
- CNN-Inspired Neuro-Symbolic Computing for Embodied Intelligence
- Challenges and Conclusions

Motivation

- Bio-Inspired Neuro-Symbolic Computing for Embodied Intelligence
- CNN-Inspired Neuro-Symbolic Computing for Embodied Intelligence
- Challenges and Conclusions

El and Micro-Robotics

Palm-sized Drones

Intelligent Autonomous Cars

Jasmine microrobots

Berkeley Microrobots

Harvard Bee Microrobots

Georgia Tech Microrobot

ESWEEK 2024

Neuro-Symbolic Computing

Towards Cognitive and Trustworthy Embodied AI Systems

Neural Components:

- Bio-inspired: neuromorphic
- CNN-inspired: non-neuromorphic

- Motivation
- Bio-Inspired Neuro-Symbolic Computing for Embodied Intelligence
 - Reinforcement Learning on the Edge Robotics
 - Swarm Intelligence on the Edge Robotics
 - Neuro-inspired SLAM for Edge Robotics
 - Hybrid Architecture for Target Tracking
- CNN-Inspired Neuro-Symbolic Computing for Embodied Intelligence
- Challenges and Conclusions

- Motivation
- Bio-Inspired Neuro-Symbolic Computing for Embodied Intelligence
 - Reinforcement Learning on the Edge Robotics
 - Swarm Intelligence on the Edge Robotics
 - Neuro-inspired SLAM for Edge Robotics
 - Hybrid Architecture for Target Tracking
- CNN-Inspired Neuro-Symbolic Computing for Embodied Intelligence
- Challenges and Conclusions

Providing Autonomy to Edge Devices

- Reinforcement Learning can maximize a set reward through exploration of the state-space and taking actions.
- A neural network maps the state-space to the action space optimally.

Time-Based Design for Online RL

Time-domain mixed-signal multiply-and-accumulate unit.

Bio-mimetic and takes advantages of inherent sparsity in the network.

ESWEEK 2024

Processing with Time-Encoded Pulses

Energy Efficiency of Time-Domain Processing

- Number of switching events (and hence, <u>energy/op</u>) in TD neuron <u>is proportional to</u> the value of the operands (and hence, <u>the importance of the computation</u>)
- □ Bio-mimetic and takes advantage of inherent sparsity in the network
- □ An average of 42% reduction in energy/op
- □ 45% lower area, 47% lower interconnect power and 16% lower leakage

Reinforcement Learning Chip in Action

- Motivation
- Bio-Inspired Neuro-Symbolic Computing for Embodied Intelligence
 - Reinforcement Learning on the Edge Robotics
 - Swarm Intelligence on the Edge Robotics
 - Neuro-inspired SLAM for Edge Robotics
 - Hybrid Architecture for Target Tracking
- CNN-Inspired Neuro-Symbolic Computing for Embodied Intelligence
- Challenges and Conclusions

Collaborative Intelligence in Swarms

Applications

Multi-robot patrolling

Multi-robot predator-prey

linear operation / nonlinear activation

Physical-Model-Based

Obstacle/collision avoidance Pattern-formation

nonlinear function / linear operation

	Algorithm	Algorithm Type	Application Support	Mathematical Structure	Nonlinear Functions	Linear Operations
Algorithms	Cooperative reinforcement	Model-Free (Neural Network	1. Multi-robot predator-prey [9] 2. Multi-robot patrolling [10]	$ReLU(\sum x_i w_i)$	ReLU	x, +, ∑
	learning	based)	3. Cooperative exploration [11]	$tanh(\sum x_i w_i)$	tanh	
	Potential field approach	Model-based	4. Path planning [12] 5. Collision avoidance [12]	$\sum x_i \cos(y_{id})$	cosine	
			6. Pattern-formation [13]	$\sum x_i tanh(\frac{\sqrt{y^2 - y_1^2}}{\zeta})$	tanh, reciprocal, square, sqrt	x, +, -, ∑

System Architecture

_				1
No.	TD-MS		HDMS	
Bits	Average	Worst	Average	Worst
3	0.10	0.49	0.16	0.52
4	0.14	0.56	0.19	0.61
5	0.28	0.72	0.29	0.74
6	0.64	1.74	0.69	0.94
_ 7	<u>2.21</u>	3.86	0.70	1.02
8	5.82	9.32	0.69	1.27

Energy/MAC (Normalized to Digital)

- Increasing swarm size requires higher bit-precision
- Time-domain mixed-signal MAC design for low bitprecision
- Digital MAC design for high bit-precision

65nm Test-Chip and Measured Results

Maximum arithmetic energy efficiency 9.1 TOPS/W @ 3b, 0.6V, 1.1 TOPS/W @8b, 0.6V

Swarm Intelligence in Action

Exploration 16X real time

Collaborative RL in real time

Ningyuan Cao et al., **ISSCC** 2018 Ningyuan Cao et al., **JSSC** 2019

ESWEEK 2024

- Motivation
- Bio-Inspired Neuro-Symbolic Computing for Embodied Intelligence
 - Reinforcement Learning on the Edge Robotics
 - Swarm Intelligence on the Edge Robotics
 - Neuro-Inspired SLAM for Edge Robotics
 - Hybrid Architecture for Target Tracking
- CNN-Inspired Neuro-Symbolic Computing for Embodied Intelligence
- Challenges and Conclusions

Spatial Cognition in the Rodent Brain

- SLAM in edge-robotics requires powerefficient circuit solutions
- Biological approaches can solve SLAM with extreme energy efficiencies
- Neuromorphic vision-based SLAM algorithm is a promising solution

Measured Results on 65nm Test-chip

- 0.203-0.251 pJ/MAC at 0.95-1.2V
- Arithmetic energy efficiency (8.79 TOPS/W @ 4b, 1.2V), (7.25 TOPS/W @ 4b, 0.95V)

ESWEEK 2024

NeuroSLAM Operation in Action

SLAM operation and pose-cell energy distribution over input frames

Jong-Hyeok Yoon et al., **ISSCC** 2020 Jong-Hyeok Yoon et al., **JSSC** 2020

ESWEEK 2024

- Motivation
- Bio-Inspired Neuro-Symbolic Computing for Embodied Intelligence
 - Reinforcement Learning on the Edge Robotics
 - Swarm Intelligence on the Edge Robotics
 - Neuro-inspired SLAM for Edge Robotics
 - Hybrid Architecture for Target Tracking
- CNN-Inspired Neuro-Symbolic Computing for Embodied Intelligence
- Challenges and Conclusions

Hybrid SNN/CNN for Target Tracking

- CNNs are constrained by high latency, while SNNs are constrained by low accuracy
- Hybrid CNN/SNN algorithm shows potential to achieve low latency with high accuracy

ESWEEK 2024

System Architecture

Heterogenous programmable domain-specific accelerator architecture

RRAM-based compute-in-memory for CNN, SRAM-based compute-near-memory for SNN

Chip Prototype

Technology	40 nm ULP TSMC	Microprocessor	Cortex M3	
Chip Size	4.5 mm x 4.5 mm Number of IO		62	
Package	QFN 64	Communication	UART	
On-chip RRAM	1.25 MB	Voltages Levels	7	
On chip SRAM	1.25 MB	IO Supply	3.3 V	
Max Clock (Hz)	100 MHz	Core Supply	0.9 V	

Peak TOPS	14.74
Peak TOPS/W	73.53
SNN Throughput	11.1 Mevents/ sec
SNN + CIM _{off}	4.6 mW
BER w/o ECC	7x10 ⁻³
BER with ECC	4.1x10 ⁻⁸

Muya Chang et al., **ISSCC** 2023 Ashwin Lele et al., **JSSC** 2023

- Motivation
- Bio-Inspired Neuro-Symbolic Computing for Embodied Intelligence
 - Reinforcement Learning on the Edge Robotics
 - Swarm Intelligence on the Edge Robotics
 - Neuro-inspired SLAM for Edge Robotics
 - Hybrid Architecture for Target Tracking

• CNN-Inspired Neuro-Symbolic Computing for Embodied Intelligence

- Neuro-Symbolic Robotic Surveillance SoC
- Neuro-Symbolic Workload Characterization and VSA architecture
- Challenges and Conclusions

- Motivation
- Bio-Inspired Neuro-Symbolic Computing for Embodied Intelligence
 - Reinforcement Learning on the Edge Robotics
 - Swarm Intelligence on the Edge Robotics
 - Neuro-inspired SLAM for Edge Robotics
 - Hybrid Architecture for Target Tracking

• CNN-Inspired Neuro-Symbolic Computing for Embodied Intelligence

- Neuro-Symbolic Robotic Surveillance SoC
- Neuro-Symbolic Workload Characterization and VSA architecture
- Challenges and Conclusions

Neuro-symbolic for Robot Surveillance

- **Perception (CNN):** Autonomous steering with obstacle avoidance:
 - Depth estimation: avoiding obstacles
 - Segmentation: identifying objects of interest for mapping
 - **Localization:** Placing identified object/locations onto 2D map.

40nm VLIW/RRAM Integrated System-on-Chip

Architecture: 10 VLIW-controlled NVM matrix units + localization block

Technology: 760KB SRAM, 5MB RRAM with 2.07Mb/mm² and 0.256pJ/b

Samual Spetalnick et al., ISSCC 2024, JSSC 2024

- Motivation
- Bio-Inspired Neuro-Symbolic Computing for Embodied Intelligence
 - Reinforcement Learning on the Edge Robotics
 - Swarm Intelligence on the Edge Robotics
 - Neuro-inspired SLAM for Edge Robotics
 - Hybrid Architecture for Target Tracking
- CNN-Inspired Neuro-Symbolic Computing for Embodied Intelligence
 - Neuro-Symbolic Robotic Surveillance SoC
 - Neuro-Symbolic Workload Characterization and VSA architecture
- Challenges and Conclusions

Neuro-Symbolic AI Workload Characterization

- **System 1:** thinking fast (neuro)
- **System 2:** thinking slow (symbolic)

- Characterize neuro-symbolic workloads
- Identify potential inefficiency reasons
- Optimize neuro-symbolic system via SW/HW co-design

Zishen Wan et al., ISPASS 2024

Towards Human-like Cognitive AI

Profiling and Arch Support for Neuro-Symbolic

- **Goal**: understand compute/memory characteristics of neuro-symbolic workloads
- **Key Idea**: profile neuro-symbolic workloads on heterog. CPU/GPU systems
- Key Takeaways:
 - Operator: symbolic is dominated by vector/element tensor and logical ops
 - Latency: symbolic is inefficient on CPU/GPU
 - System: neuro is compute-bounded, symbolic is memory-bounded; complex control

SW/HW Co-Design for Vector-Symbolic Arch

Workload	Layer	Application
мінт	Demonstion	Multi-modal learning and
WIULI	reiception	Inference [61]
TREE		Tree encoding and search [53]
FACT	Reasoning	Factorization of data sets [54]
REACT	Control	Motor learning and recall [62]

- Multi-tile hardware and dataflow for vector-symbolic architecture (VSA)
- Applicable to various VSA workloads and applications

Zishen Wan et al., **TCASAI** 2024 Mohamed Ibrahim et al., **DATE** 2024

Heterogeneous 3D CIM for Neuro-Symbolic

- **Goal**: Efficient & scalable factorization of holographic sensory representation
- Key Idea:
 - Algorithm: High-dimensional holographic vector-based factorization solver
 - Hardware: Heterogeneous 3D-CIM architecture; Improve factorization accuracy and convergence with intrinsic hardware stochasticity

Zishen Wan et al., DATE 2024 (SRC TECHCON)

- Motivation
- Bio-Inspired Neuro-Symbolic Computing for Embodied Intelligence
 - Reinforcement Learning on the Edge Robotics
 - Swarm Intelligence on the Edge Robotics
 - Neuro-inspired SLAM for Edge Robotics
 - Hybrid Architecture for Target Tracking
- CNN-Inspired Neuro-Symbolic Computing for Embodied Intelligence
 - Neuro-Symbolic Robotic Surveillance SoC
 - Neuro-Symbolic Workload Characterization and VSA architecture
- Challenges and Conclusions

Conclusion

- Next generation of autonomy will be all-pervasive and ubiquitous
- Autonomy requires sensing, decision making, learning from actions and actuation.
- TinyML in micro-robotics will enable exciting new features in remote sensing, reconnaissance and disaster relief.
- Analog and mixed-signal compute can be augmented with digital techniques for seamless scalability of bit-precision.
- Smart algorithms need to be married to smart hardware design to enable intelligence at high energy efficiency.
- Golden age for hardware design...!!

Neuro-Symbolic Computing Architectures and Circuits for Embodied Intelligence

Arijit Raychowdhury

Steve W. Chaddick School Chiar and Professor School of Electrical and Computer Engineering Georgia Institute of Technology

⊠ arijit.raychowdhury@ece.gatech.edu

Embedded Systems Week (ESWEEK), Oct. 2, 2024