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Abstract—Neurosymbolic AI is an emerging compositional
paradigm that fuses neural learning with symbolic reasoning to
enhance the transparency, interpretability, and trustworthiness of
AI. It also exhibits higher data efficiency making it promising for
edge deployments. Despite the algorithmic promises and demon-
strations, unfortunately executing neurosymbolic workloads on
current hardware (CPU/GPU/TPU) is challenging due to higher
memory intensity, greater compute heterogeneity and access
pattern irregularity, leading to severe hardware underutilization.

This work proposes CogSys, a characterization and co-design
framework dedicated to neurosymbolic AI system accelera-
tion, aiming to win both reasoning efficiency and scalability.
On the algorithm side, CogSys proposes an efficient factorization
technique to alleviate compute and memory overhead. On the
hardware side, CogSys proposes a scalable neurosymbolic archi-
tecture with reconfigurable neuro/symbolic processing elements
(nsPE) and bubble streaming (BS) dataflow with spatial-temporal
(ST) mapping for highly parallel and efficient neurosymbolic
computation. On the system side, CogSys features an adaptive
workload-aware scheduler (adSCH) to orchestrate heterogeneous
kernels and enhance resource utilization. Evaluated across cogni-
tive workloads, CogSys enables reconfigurable support for neural
and symbolic kernels and exhibits >75× speedup over TPU-like
systolic array with only <5% area overhead, as benchmarked
under the TSMC 28nm technology node. CogSys achieves 4×-
96× speedup compared to desktop and edge GPUs. For the
first time, CogSys enables real-time abduction reasoning towards
human fluid intelligence, requiring only 0.3 s per reasoning task
with 4 mm2 area and 1.48 W power consumption.

I. INTRODUCTION

The massive success of Large Language Models (LLMs)
combined with concerns about interpretability and safety have
led to an emerging paradigm of “compositional AI” systems
- especially for safety-critical domains such as robotics and
healthcare. The goal of such systems is to combine black-box
neural networks with reasoning/rule-based AI methods [38],
[43], [44], [49], [61], [87], [91], [98]. This approach mirrors
human cognitive processes, which can be grouped as lower-
level sensory processing (system 1 “thinking fast”) and higher-
level cognitive functions like reasoning and deduction (system
2 “thinking slow”) [12], [17]. The former can be modeled with
neural networks, and the latter with symbolic frameworks.

One promising example of compositional AI system is neu-
rosymbolic AI that synergistically integrates neural network
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Fig. 1: Neurosymbolic AI is an emerging compositional system that
integrates neural and symbolic modules, enabling superior cognitive
intelligence compared to NNs. However, it suffers from inefficient
TPU/GPU execution. CogSys is a reconfigurable neural/symbolic
engine excelling in both reasoning efficiency and cognitive capability.

learning with symbolic reasoning. The neural networks are
adept at identifying patterns and handling perceptual tasks, but
lack transparency and logical inference capabilities. Symbolic
modules (e.g., coded knowledge, rules), in contrast, excel in
reasoning and interpretability but struggle with adaptability
and learning from raw data. Neurosymbolic AI bridges this
gap by composing strengths of both paradigms (Fig. 1).

Neurosymbolic AI has demonstrated superior capabilities
in human-like reasoning and logical thinking across vari-
ous domains, such as natural language processing, robotics,
healthcare, etc [26], [29], [33], [35], [57], [59], [76], [87],
[93], [96]. For example, IBM’s neuro-vector-symbolic sys-
tem [33] achieves 98.8% accuracy on spatial-temporal rea-
soning tasks [95], greatly surpassing human (84.4%), ResNet
(53.4%) and GPT-4 (89.0%); Google DeepMind’s Alpha-
Geometry [83], another neurosymbolic system, solves geom-
etry problems at a level of human Olympiad gold medalists,
while GPT-4 completely fails. Recently, there also has been a
plethora of workshops focusing on neurosymbolic AI [1]–[8].

Despite impressive cognitive capabilities of neurosymbolic
AI - demonstrated by past work over distributed GPU clus-
ters, recent study [86] identifies that enabling real-time and
efficient neurosymbolic AI over edge devices, which is highly
desirable for numerous reasoning and human-AI applications,
is a challenging open problem. For example, a neuro-vector-
symbolic system takes >3 mins even on TPU and desktop
GPU for a single task [33]. This inefficiency threatens to hurt
neurosymbolic AI deployment in the long run.

To understand this further, we systematically profile and
analyze the runtime and memory behavior of various neu-



Neural System Symbolic System

Neural Network 
Representation Induction Features Symbolic Rule 

Reasoning
Knowledge 
Codebook

Fluid 
IntelligenceComplex Question 

Answering

Cognitive Tasks

Logical 
Reasoning

Ethical Decision 
Making

Abstract 
Deduction

Hierarchical 
Cognition

Framework

1 2

Complex Question Answering Visual/Language representation

Pattern recognition

Pattern recognition

Motion/scene perception

Math theorem

World knowledge

Logical rules

Object relations Scene attributes reasoning

Rule deductive reasoning

Human intention reasoning

Rule Deductive reasoning

Question answer

Generate missing info

Behavior reaction

Geometry solving H
um

an
-li

ke
 

co
gn

iti
on

Ethical Decision Making
Abstract Deduction

Logical Reasoning

Neurosymbolic system flow 
illustration for various 

cognitive reasoning tasks

Concept embeddings

Scene representations 

State representations

Object relations

Task 
Execution

Neurosymbolic Algorithm Flow

Examples

Question: are there an equal number of 
large things and metal spheres?

Perception Reasoning Action

Key Operations GEMM, Convolutions GEMM, Vector operations VSA operations (binding, bundling, etc)

Fig. 2: Neurosymbolic algorithm flow. Neural systems handle perception by processing raw data and extracting features, which are then
utilized by symbolic reasoning systems to apply logical rules and knowledge. This compositionality enables the execution of complex
cognitive tasks such as abstract deduction, ethical decision-making, and fluid intelligence.

rosymbolic workloads on multiple devices and identify the fol-
lowing system-level challenges. 1 Large Memory Footprint.
Neurosymbolic AI systems typically rely on vector-symbolic
architecture (VSA) that utilizes vector operations to represent
symbolic knowledge. The system generates an intermediate
codebook that captures vast object combinations for higher
reasoning capability (typically in the order of tens to hundreds
MB) making it impractical to be cached on-chip in edge
accelerators. 2 Compute Heterogeneity. Rather than general
matrix multiplications (GEMMs) and convolution operations
that current neural hardware largely focuses on accelerating,
neurosymbolic workloads typically consist of numerous holo-
graphic vector operations (e.g., circular convolution) that run
inefficiently on GPU and neural engines like TPUs due to low
data reuse, low compute array utilization and low parallelism.
3 Sequential Processing. Typically, the symbolic-reasoning
computation depends on the output of the neuro-perceptual
modules, increasing the critical path during cognitive inference
and underutilizing parts of the accelerator.

To address the aforementioned challenges, we develop an
algorithm-hardware co-design framework, dubbed CogSys,
which to the best of our knowledge is the first to achieve real-
time efficiency and scalability of cognitive neurosymbolic sys-
tems, making it more deployable and facilitate neurosymbolic
AI development. On the algorithm level, CogSys proposes an
efficient factorization scheme to reduce memory footprint. This
technique completely replaces the large-size symbolic knowl-
edge codebook, by quickly factorizing vectors in an interactive
manner when decomposing symbolic representations. On the
hardware level, CogSys proposes a scalable architecture with
reconfigurable neuro/symbolic processing elements (nsPE) and
bubble streaming (BS) dataflow with spatial-temporal (ST)
mapping for highly parallel and energy-efficient neurosymboic
computation. The design is flexible to support heterogeneous
neural and circular convolution symbolic kernels across vector
dimensions and reduce runtime. On the system level, CogSys
also features an adaptive workload-aware scheduling (adSCH)
scheme with multi-level parallelism to orchestra neural and
symbolic kernels with improved hardware resource utilization
and enables design scalability for evolving neurosymbolic AI.
Notably, with only <5% area overhead over TPU-like systolic

arrays, CogSys enables reconfigurable support for neural and
symbolic kernels and demonstrates >75× system speedup.

This paper, therefore, makes the following contributions:
• We perform comprehensive runtime and memory analysis

of various neurosymbolic workloads across devices, and iden-
tify the primary cause of the inefficiency and optimization op-
portunities, which can also shed light on future neurosymbolic
systems acceleration and innovations (Sec. III).

• We propose an algorithm-hardware co-design framework,
dubbed CogSys, which is the first to enable real-time, efficient,
and scalable VSA-based neurosymbolic systems, making it
more deployable and facilitate neurosymbolic AI development.

• CogSys innovates across the algorithm-level efficient sym-
bolic factorization strategy (Sec. IV), hardware-level recon-
figurable neuro/symbolic architecture and dataflow (Sec. V),
and system-level scheduler (Sec. VI) to reduce the memory
footprint while improving hardware utilization and overall
neurosymbolic processing efficiency.

• Evaluated across cognitive tasks, CogSys enables reconfig-
urable support for neural and symbolic operations, achieving
75.9× speedup with only a 4.8% area overhead compared to
TPU-like systolic arrays, and demonstrates 4×-95× speedup
compared to GPUs. CogSys enables efficient neurosymbolic
AI with 4mm2 area and 1.48W power consumption (Sec. VII).

II. NEUROSYMBOLIC AI BACKGROUND AND WORKLOAD

This section presents the preliminaries of neurosymbolic AI
with its algorithm flow and key operations, then describes four
representative neurosymbolic workloads for our analysis.

A. Challenges with Neural Networks

Neural methods are highly effective in extracting complex
features from vision and language tasks, and excel in flexi-
bility, scalability, and handling inconsistency [68], [88]–[90],
[100]. However, neural methods often suffer from limitations
such as hallucinations and lack of interpretability, and typically
operate as black-box where their decision-making processes
are not easily understandable by humans. This undermines the
model output trustworthiness in cognitive and safety-critical
applications [31], [39], [84].



B. Neurosymbolic AI Algorithm Flow

Neurosymbolic AI synergistically integrates the learning
capability of neural networks with the reasoning capability
of symbolic AI, offering advantages in data-efficient learn-
ing with transparent and logical decision-making compared
to DNNs. Neurosymbolic AI leads to superior performance
in a wide range of applications, such as complex question
answering [57], [59], abstract deduction [33], [96], decision
making [64], [78], logical reasoning [70], [83] tasks, serving as
a promising paradigm to achieve human-like fluid intelligence.

Fig. 2 extracts a unified neurosymbolic pipeline and illus-
trates how they interact to perform complex cognitive tasks:

1 Neural system. The process begins with the neural
module handling perception tasks by interpreting sensory data
and generating meaningful scene and object representations
which are essential for further reasoning processes. The neu-
ral module itself may suffer from superposition catastrophe,
preventing it from extracting object constituent attributes [33].

2 Symbolic system. The extracted features are fed into
the symbolic system for reasoning tasks. This step enhances
explainability and reduces dependence on extensive training
data by incorporating established models of the physical world
(e.g., underlying rules, coded knowledge). Throughout this
process, a knowledge codebook is maintained, which inte-
grates learned knowledge from the neural network with sym-
bolic rules, ensuring that the system can both learn from new
data and apply logical reasoning based on existing knowledge.
The outcomes of symbolic reasoning process are then used to
make decisions, generates responses, or controls actions.

This neurosymbolic flow is one way to model human hier-
archical reasoning procedures. Resembling the sense-reason-
act cognitive cycle can be computationally modeled through
a multi-layer framework [37], [65], where perception layer
fuses sensory inputs and maps them to high-level observations,
reasoning layer conducts deliberate and conscious thinking by
applying symbolic rules and knowledge, action layer facilitates
trustworthy and reliable execution. This compositional ap-
proach allows agents to tackle complex challenges that require
both data-driven learning and logical reasoning.

C. VSA-Based Symbolic Operations

Vector-symbolic architecture (VSA). Within the compo-
sitional neurosymbolic AI flow, exploiting VSA with neu-
ral dynamics has become the powerful approach [24], [32],
[33], [46], [60], [96]. Specifically, VSA provides a means to
represent symbolic information in a low or high-dimensional
vector space. By encoding symbolic structures as vectors with
dimensionality-preserving algebraic operations, VSAs enable
the combination of symbolic reasoning with neural networks,
thereby facilitating cognitive tasks such as learning, memory,
and reasoning in a unified system. Fig. 3 illustrates a simple
example of the binding ambiguity of neural networks and the
functionality of VSA structures.

Circular convolution. A key VSA operation is the block-
wise circular convolution, serving as a universal operation for
vectors representing different symbols. Circular convolution
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Fig. 3: Illustration of VSA functionality. Neural network suffers
from binding ambiguity issues, whereas VSA constructs vector repre-
sentations with circular convolution operations for reasoning process.

combines two vectors in a way that preserves the information
from both, making it suitable for representing composite sym-
bols. Mathematically, the circular convolution of two vectors
A and B (each of dimension N ) generates vector C as
C[n] =

∑N−1
k=0 A[k] ·B[(n−k) mod N ] where each element

of C is obtained by multiplying the elements of A with the
circularly shifted elements of B, and then summing up. This
process is repeated for each element n (0 to N − 1). Circular
convolution has commutativity and associativity properties,
making it particularly effective in hierarchical reasoning tasks
where manipulating structured information is critical.

Symbolic knowledge codebook. Symbolic knowledge is
typically represented as a set of codebooks for the attributes of
interest (Fig. 3). To describe an object with various attributes,
a product vector can be computed by binding knowledge
codebooks via circular convolution. Due to the properties of
multiplicative binding, the co-activated VSA representations
result in minimal interference, allowing each object to be
accurately recovered. The query vector generated from neural
networks will be compared with all codebook vectors to derive
attributes for further reasoning. The codebook is typically in
the order of tens to hundreds of MB, making it impractical to
be cached on-chip in edge accelerators for complex tasks.

D. Representative Neurosymbolic AI Models

Following the flow in Fig.2, we analyze four VSA-based
neurosymbolic workloads in detail: NVSA [33] for spatial-
temporal reasoning, MIMONet for multi-input simultaneous
processing [60], LVRF for probabilistic abduction [32], and
PrAE for abstract reasoning [96]. These workloads achieve
state-of-the-art performance and unlock advanced reasoning
capabilities. Our goal is to understand their system and archi-
tectural challenges to enable scalable neurosymbolic deploy-
ment, where latency and efficiency are critical factors.

Tab. I lists the details of selected representative workloads:
1) Neuro-Vector-Symbolic Architecture (NVSA): NVSA is

a neurosymbolic system advancing spatial-temporal abduction
reasoning [33]. Its neural module handles visual perception,
while the symbolic module uses VSA-based operations for
probabilistic inference, symbolic rule reasoning, and execu-
tion. NVSA bypasses the superposition catastrophe [67] and
surpasses neural-only methods, achieving human-level perfor-
mance on key fluid intelligence reasoning tests [95].

2) Multiple-Input-Multiple-Output Networks (MIMONet):
MIMONet is a neurosymbolic model designed to handle



TABLE I: Neurosymbolic models. Selected neurosymbolic AI workloads for analysis, representing a diverse of application scenarios.

Representative Neuro-
Symbolic AI Workloads

Neuro-Vector-Symbolic
Architecture [33]

Multiple-Input-Multiple-Output
Neural Networks [60]

Probabilistic Abduction via Learning
Rules in Vector-symbolic Architecture [32]

Probabilistic Abduction
and Execution Learner [96]

Abbreviation NVSA MIMONet LVRF PrAE
Learning Approach Supervised/Unsupervised Supervised Supervised Supervised/Unsupervised

Compute
Pattern

Neuro CNN CNN/Transformer CNN CNN
Symbolic VSA binding/unbinding (Circular Conv) VSA binding (Circular Conv) VSA binding/unbinding (Circular Conv) Probabilistic abduction

Application
Scenario

Use Case
Spatial-temporal reasoning, Fluid
intelligence, Abstract reasoning

Multi-input simultaneously processing
with single CNN/Transformer

Probabilistic reasoning, Analogy reasoning,
Out-of-distribution (OOD) data processing

Spatial-temporal reasoning, Fluid
intelligence, Abstract reasoning

Advantage vs.
Neural Model

Higher joint representation efficiency,
Better reasoning capability, Transparency

Higher throughput, Lower latency,
Compositional compute, Transparency

Stronger OOD handling capability, One-pass
learning, Higher flexibility, Transparency

Higher generalization, Transparency,
Interpretability, Robustness
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Fig. 4: End-to-end neurosymbolic runtime, memory, and roofline characterization. (a) Benchmark neurosymbolic models on CPU+GPU
system, showing symbolic may serve as system bottleneck. (b) Benchmark neurosymbolic models on Coral TPU, TX2, NX, and 2080Ti
GPU, showing that real-time performance cannot be satisfied. (c) Benchmark models on various task sizes, indicating the potential scalability
problem. (d) Benchmark memory footprint of neurosymbolic models, showing large memory overhead of symbolic knowledge codebook.

multiple inputs and reduce computational cost per input [60].
Its neural modules use CNN/Transformer architectures, while
its symbolic modules employ VSA binding/unbinding for
encoding/decoding, enabling computation in superposition.
MIMONet achieves 2-4× speedup with higher accuracy on
LRA benchmarks compared to neural-only methods [82].

3) Probabilistic Abduction via Learning Rules in Vector-
symbolic Architectures (LVRF): LVRF is a neurosymbolic ar-
chitecture for visual reasoning and handling out-of-distribution
data [32]. Its neural modules handle visual perception, while
symbolic modules use VSA for probabilistic abduction reason-
ing. LVRF outperforms neural-only methods in unseen reason-
ing tasks [36], offering greater flexibility and interpretability.

4) Probabilistic Abduction and Execution (PrAE) Learner:
PrAE is a neurosymbolic learner for spatial-temporal cognitive
reasoning [96]. Its neural modules handle visual perception
and produce scene representations, while the symbolic modules
conduct probabilistic reasoning and abduct rules. PrAE offers
human-level generalizability, transparency, and interpretability,
which classic neural networks struggle to achieve.

III. NEUROSYMBOLIC AI SYSTEM PROFILING

Building upon prior profiling study [87], this section char-
acterizes the system behavior of various vector-symbolic-
based neurosymbolic models (Sec. III-A-III-D), and provides
workload insights for computer architects (Sec. III-E, III-F).

A. Profiling Setup

To understand the real-device efficiency of neurosymbolic
AI workload, we profile four representative models as elabo-
rated in Sec. II-D, in terms of runtime, memory, and compute
operators, for solving cognitive reasoning problems on four
devices, including Coral edge TPU (4 W), Jetson TX2 (15 W),
Xavier NX (20 W), and RTX 2080Ti (250 W), respectively.
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Fig. 6: Symbolic operation
analysis. Symbolic operations
are dominated by vector-symbolic
circular convolution and vector-
vector multiplication stemming
from hypervector representations.

B. Compute Latency Analysis

End-to-end latency breakdown. Fig. 4a and Fig. 4b illus-
trate the end-to-end latency breakdown of four neurosymbolic
workloads. We can observe that (1) The real-time perfor-
mance cannot be satisfied on all four devices. Even if more
computing resources are available to reduce NN runtime, the
significant overhead of symbolic reasoning still prohibits real-
time execution. (2) Symbolic operations consistently dominate
runtime. For example, the symbolic modules count for 87% of
total NVSA inference time while its floating-point operations
(FLOPS) count for only 19% of total NVSA FLOPS, indi-
cating that the symbolic operations may not be well executed
by GPU/TPU. (3) Symbolic reasoning computation lies on the
critical path due to its dependence on the neuro workloads.

End-to-end latency scalability. Fig. 4c indicates that the
neuro vs. symbolic runtime proportion remains relatively sta-
ble across various tasks and sizes. For example, when Raven’s
Progressive Matrices (RPM) [95] task size increases from 2×2
to 3×3, the NVSA symbolic modules runtime changes from
91.6% to 87.4%, while the total runtime increases by 5.02×
on average across 14 test scenarios, indicating the scalability



TABLE II: Hardware inefficiency analysis. The compute, mem-
ory, and communication characteristics of representative neural and
symbolic kernels on CPU/GPU platform.

Neural Kernel Symbolic Kernel
sgemm nn relu nn vectorized elem elementwise

Compute Throughput (%) 95.1 92.9 3.0 2.3
ALU Utilization (%) 90.1 48.3 5.9 4.5
L1 Cache Throughput (%) 79.7 82.6 28.4 10.8
L2 Cache Throughput (%) 19.2 17.5 29.8 22.8
L1 Cache Hit Rate (%) 1.6 51.6 29.5 33.3
L2 Cache Hit Rate (%) 86.8 65.5 48.6 34.3
DRAM BW Utilization (%) 14.9 24.2 90.9 78.4

bottleneck of neurosymbolic models.

C. Memory and System Analysis

Memory footprint. Fig. 4d characterizes the memory foot-
print of neurosymbolic workloads. We can observe that (1)
Neural weights and symbolic codebooks typically consume
large storage footprint, because neural perception enables the
expression of more object combinations than vector space
dimensions, requiring the codebook to be large enough to
ensure vector quasi-orthogonality. (2) Symbolic modules con-
sume large memory due to a large number of vector operations
depending on intermediate results and exhaustive search.

System Roofline Analysis. Fig. 5 employs the roofline
model of RTX 2080Ti GPU version to quantify the neu-
rosymbolic workloads. We observe that symbolic modules are
memory-bounded while neuro modules are compute-bounded.
This is mainly due to symbolic operations requiring streaming
vector elements, increasing the memory bandwidth pressure
and resulting in hardware underutilization (Sec. III-D).

D. Symbolic Operation and Inefficiency Analysis

Symbolic operation analysis. Inspired by the dominated
symbolic bottleneck, we analyze their detailed operations in
Fig. 6. We observe that vector-symbolic circular convolution
and vector-vector multiplication dominate symbolic modules,
accounting for 80% of runtime. In contrast to the shared neu-
ral modules, these symbolic operations run sequentially and
separately for each downstream cognition task and underlying
rule. These operations typically stem from high-dimensional
distributed vectors and are difficult to process efficiently on

GPU/TPU. Thus, the challenges of accelerating these vector-
symbolic computations will become increasingly important as
the cognitive task and feature complexities further grow.

Symbolic hardware inefficiency analysis. To further quan-
tify the reason for hardware inefficiency, we analyze the com-
pute and memory units behavior of representative neuro and
symbolic kernels, as listed in Tab. II. The system inefficiencies
mainly come from ALU underutilization, low cache hit rate,
and massive data movement of symbolic operations. Symbolic
data transfer accounts for half of total latency, where >80% is
from host to GPU, while neural kernels exhibit high utilization.

E. Unique Characteristics of Neurosymbolic vs ML Workloads

To summarize, based on above characterization, neurosym-
bolic AI differs from ML workloads mainly in three aspects:

Compute kernels. Neurosymbolic workloads consist of het-
erogeneous neural and symbolic kernels. Symbolic operations
execute inefficiently on CPU/GPU/TPU with low hardware
utilization and cache hit rate, resulting in latency bottleneck.

Memory. Symbolic operations are memory-bounded due to
large element streaming for vector-symbolic operations. Sym-
bolic codebooks typically account for large memory footprints
and require large intermediate caching during computation.

Dataflow and scalability. Neurosymbolic workloads exhibit
more complex control than CNNs. Symbolic modules typically
have irregular dataflow, data dependency, and sequential pro-
cessing, bringing low parallelism scalability and inefficiency.

F. Identified Opportunities for Neurosymbolic Optimization

While neurosymbolic AI holds great promise, addressing
its inefficiencies is critical for achieving real-time, scalable
deployment and ensuring long-term development. To this end,
we propose CogSys, an algorithm-hardware co-design frame-
work designed to enhance both reasoning energy efficiency
and accuracy in neurosymbolic AI (Fig. 7). At the algorithm
level, hardware-friendly codebook optimization reduces mem-
ory footprint and latency (Sec. IV). At the hardware level, the
architecture and dataflow must be efficient for VSA operations
and reconfigurable for neuro/symbolic kernels (Sec. V). At the
system level, the architecture must efficiently and adaptively
schedule diverse neurosymbolic workloads (Sec. VI). CogSys
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Fig. 8: Proposed symbolic codebook factorization strategy. The
efficient factorization technique quickly factorizes a product vector in
an interactive manner and significantly reduces the memory footprint
demand of the symbolic codebook when decomposing query vectors.

consistently demonstrates improvements in performance, effi-
ciency, and accuracy across reasoning applications (Sec. VII).

IV. COGSYS: ALGORITHM OPTIMIZATION

This section presents our proposed CogSys algorithm op-
timizations for efficient and scalable neurosymbolic systems.
We propose an efficient vector-symbolic factorization strategy
to reduce the large memory footprint (Sec. IV-A), and explore
the stochasticity injection and low-precision operation to ac-
celerate neurosymbolic systems (Sec. IV-B).

A. Symbolic Factorization Strategy

Overall pipeline. To address the large memory footprint
of symbolic codebooks (Sec. III-C), we propose an efficient
factorization strategy. The key idea is to disentangle the large
volume of object combination vectors in symbolic knowledge
codebook into the small volume of basis attribute vectors, thus
lowering computational time and space complexity (Fig. 8).

Specifically, given an entangled query vector q (e.g., scene
representation) generated from neural module and the set of
symbolic codebooks {Xi}Fi=1 (each with M possible solutions
and F codebooks in total), this creates a combinatorial search
and storage involving MF vectors. Instead of searching along
all possible combinations, our factorization method iteratively
searches in superposition to find the valid x̂i ∈ Xi such that
the estimated vector q̂ = x̂1 ⊙ x̂2 ⊙ · · · ⊙ x̂f resembles with
the highest similarity to the input query q. By exploiting the
quasi-orthogonality of the vectors, our factorization module
is able to rapidly search through the various combinations in
superposition by iteratively unbinding all but one of the factors
from the product vector, and then projecting it into the space
of possible solutions of the considered factor that is used for
the following reasoning procedure. In this way, we can replace
the original symbolic codebook and greatly reduce its storage.

Detailed steps. Fig. 8 illustrates our symbolic knowledge
codebook factorization strategy, consisting of three steps:

Step 1 : Factor unbinding via element-wise multiplication
(⊘). For a given factor, the unbinding is performed by taking
the product vector q and unbinding the contribution of the
other factors’ latest estimate: x̃i(t) = q⊘ΠF

f=1x̂
f (t) (f ̸= i).

TABLE III: Algorithm optimization impact. Factorization, stochas-
ticity, and quantization impact accuracy, latency, and memory.

Accuracy (higher is better) Latency (lower is better) Memory (lower is better)
Factorization Increase Reduce Reduce
Stochasticity Increase / Reduce Reduce No Impact

Low-Precision Reduce Reduce Reduce

Step 2 : Similarity search via matrix–vector multiplication.
The similarity vector αf (t) is calculated for each unbound
estimate: αf (t) = x̃f (t) ·Xf , ∀f ∈ [1, F ].

Step 3 : Factor projection via matrix–vector multiplication.
The estimates for the factors for the subsequent time step are
given by the linear combination of all the codevectors with the
similarity vectors acting as weights: x̂f (t+1) = sign(αf (t) ·
(Xf )T ), ∀f ∈ [1, F ]. Repeat Steps 1 - 3 until convergence.

Applicable across neurosymbolic workloads. Our pro-
posed efficient factorization module can apply to various levels
of conceptual hierarchy, such as factoring time-varying pixel
data of dynamic scenes [9], factoring sentence structure into
roles and fillers [53], and cognitive analogical reasoning [33].
Essentially, given its ubiquitous applicability in perception and
cognitive reasoning, we envision it being a core component in
future large-scale neurosymbolic cognitive systems.

B. Stochasticity and Low-Precision Operation

Factorization optimization via stochasticity. To reduce
the required number of iterations of factorization, we propose
to apply additive Gaussian noise. We observe that injecting
stochasticity in both Step 2 similarity and Step 3 projection
operations helps the factorization process escape limit cycles,
allowing it to explore a much larger solution space and achieve
faster convergence (Tab. VIII).

Operator precision optimization. To further reduce the
memory footprint, we apply quantization techniques to the
workloads. Specifically, we apply 8-bit floating-point and
integer arithmetic for both neuro and symbolic computations
with fine-tuning to maintain reasoning accuracy (Tab. IX).

C. Algorithm Optimizations Discussion

Impact on accuracy, latency, and memory. The factoriza-
tion, stochasticity, and quantization optimizations impact accu-
racy, latency, and memory requirements to varying extents. As
shown in Tab. III, accuracy improves with factorization (due to
precise attribute extraction, aiding downstream symbolic rea-
soning) and with stochasticity optimizations (due to improved
convergence). However, quantization results in accuracy de-
creases due to data imprecision. Designers can balance speed
and accuracy by tuning factorization convergence threshold.

V. COGSYS: HARDWARE ARCHITECTURE

This section presents CogSys architecture, the first hardware
to enable efficient and scalable neurosymbolic processing.
CogSys architecture features reconfigurable neuro/symbolic
processing elements (nsPE) (Sec. V-B), bubble streaming (BS)
dataflow (Sec. V-C), adaptive spatial-temporal (ST) mapping
(Sec. V-D) with scalable array architecture (Sec. V-E) and cus-
tomized SIMD units (Sec. V-F) for neurosymbolic processing.
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TABLE IV: Comparison between CogSys with other accelerators.
CogSys is the first to enable efficient and scalable vector-symbolic
circular convolution (CircConv) and neurosymbolic models.

Accelerators
Reconfi-
gurable

Scale-up/
Scale-out

Memory Footprint for
Single CircConv

(Vector Dimension = d)

CWP∗

Support for
CircConv

ScWP∗∗

Support for
CircConv

Neuro-
symbolic AI

Support
Eyeriss [15] No Scale-up No Support No No No

Neuro Cube [45] No Scale-out O(d2), GEMV No Yes No
Brainwave [16] No Scale-out O(d2), GEMV No Yes No

SARA [72] No Both O(d2), GEMV No Yes No
TPU [42] No Scale-out O(d2), GEMV No Yes No

SIMBA [77] No Scale-out O(d2), GEMV No Yes No
MTIA [19] No Scale-out O(d2), GEMV No Yes No

CogSys (Ours) Yes Both O(d), BS Dataflow Yes Yes Yes

*Column-Wise Parallelism (within a systolic cell); **Systolic cell-Wise Parallelism

A. Overview of Proposed CogSys Architecture

Neurosymbolic workloads feature much greater heterogene-
ity in compute kernels than DNNs, leading to an increasing
divergence with the current hardware that focuses on GEMMs
and convolutions. As illustrated in Tab. IV, CogSys is pro-
posed, for the first time, to support neurosymbolic workloads
and achieve efficient and scalable implementation of symbolic
operations.

Aiming to design a complete neurosymbolic acceleration
system, our design includes DRAM, a host SoC, and CogSys
accelerator consisting of five major components: reconfig-
urable neuro/symbolic compute array, SIMD unit, double-
buffered SRAM, adaptive scheduler and memory controller
(Fig. 9). During the reasoning procedure, the host SoC streams
task in, and then the reconfigurable arrays perform neuro
(e.g., GEMMs/convolutions) and vector-symbolic operations
(e.g., circular convolution), while the SIMD units accelerate
element- and vector-wise operations with multi-level paral-
lelism and adaptive workload scheduling. It is worth not-
ing that monolithic systolic array (TPU-like) is extremely
inefficient for symbolic workloads (Sec. V-C), while CogSys
provides reconfigurable support for neural and symbolic ker-
nels and demonstrates >75× speedup with only <5% area
overhead over systolic array architecture.

B. Reconfigurable Neuro/Symbolic Processing Element

Reconfigurable neuro/symbolic PE (nsPE). Instead of
having separate PEs for neuro and symbolic operations that
incur large area overhead, we propose nsPE micro-architecture
that provides reconfigurable support to both neuro and sym-
bolic operations (Fig. 10). Each nsPE consists of four registers
(stationary, passing, streaming, and partial sum registers) and
supports three operation modes (load, GEMM, and circular
convolution). During load mode, the input vectors A (weights
of GEMM) are passed into the stationary register using
‘top in A’ links. Reconfigurability is achieved by selecting
input B either from ‘left in’ link (GEMM mode) or the
passing register (circular convolution mode). During GEMM
mode, the nsPE operates as TPU-like architecture for efficient
GEMM and convolution. Inputs are streamed from left to right
using ‘left in’ links. During circular convolution mode, input
vector B is streamed from top to bottom using ‘top in B’
links with a bubble via passing register (Sec. V-C), facilitating
the temporal reuse of the streaming input for efficient vector-
symbolic circular convolution operation. The reconfigurable
nsPE can also support efficient circular correlation by revers-
ing stationary vector A. During both GEMM and circular
convolution modes, partial products are reduced from top to
bottom with ‘top in A’ links.

C. Efficient Bubble Streaming Dataflow

Inefficiency of TPU-like systolic array. TPU-like systolic
array (SA) exhibits high memory footprint and low parallelism
for symbolic circular convolution operations. Fig. 11a shows a
scenario of three circular convolutions. TPU-like systolic cell
implements them as general matrix-vector (GEMV) multipli-
cation where matrices contain circularly shifted stationary vec-
tors with the matrix memory footprint of O(d2). Additionally,
TPU-like SA is incapable of parallelizing multiple GEMV on
a systolic cell and need to process them sequentially.
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Fig. 11: Efficient bubble streaming (BS) dataflow, roofline analysis, CogSys/TPU/GPU comparison. (a) Compute cycle and mapping
comparison of TPU-like systolic array dataflow and CogSys BS dataflow under multiple circular convolutions. (b) BS dataflow showing circular
convolution of two vectors A and B (d=3) in a 3×1 CogSys nsPE array. (c) Roofline comparison of circular convolution implemented as BS
dataflow (compute-bound) on CogSys (214 PEs) against implemented as GEMV in TPU systolic cell (214 PEs) and GPU (memory-bound).

Bubble streaming (BS) dataflow. To efficiently support
symbolic operations in nsPE array, we propose BS dataflow
for circular convolution (Sec. II-C) and circular correlation
(opposite direction circular shift) which is the vector-symbolic
bottleneck. Fig. 11b presents an example of BS dataflow
performing circular convolution of two vectors A and B (d=3)
on a 3×1 nsPE array. In BS dataflow, vector B is streamed
from one nsPE to another through bubbles (passing registers)
while vector A is held in stationary registers. The BS dataflow
enables a passing register to temporarily store the streaming
input for a cycle before it moves to the streaming register.
This value is transferred to the passing register of the next
nsPE in the following cycle. The MAC unit processes the
data from stationary and streaming registers, adding it to the
partial product. The procedure is repeated until final outputs.

Improved arithmetic intensity of BS dataflow. The BS
dataflow achieves higher arithmetic intensity than GEMV in
GPU/TPU-like systolic cells, as illustrated in roofline analysis
(Fig. 11c). This efficiency mainly comes from reduced mem-
ory footprint and increased parallelism (Tab. IV). (1) Linear
memory footprint: The bubble enables circularly shift in vector
B (O(d)) and alleviates the overhead of creating and fetching
matrix (O(d2)) of circularly shifted B as TPU-like systolic
cell, reducing footprint by d×. (2) Column-wise parallelism
(CWP): The BS dataflow enables each column of a systolic
cell to execute a circular convolution, thus multiple circular
convolutions can be parallelized over multiple columns, which
is not possible for GEMV in a TPU-like systolic cell. The
low arithmetic intensity and memory-bound operations make
GPUs inefficient for vector-symbolic circular convolution. For
circular convolution of two d-dimensional vectors, the GPU
arithmetic intensity is d× (d+d− 1)/(d×d+d× 1+d× 1),
while CogSys arithmetic intensity is d×(d+d−1)/(d×1+d×
1+d×1). As in Fig. 11c, CogSys achieves peak performance
when fully utilized, while GPU suffers from memory-bound.
Additionally, GPUs require extra computations to handle the
index calculations for the circularly shifted vector.

Cycle analysis of BS dataflow. Assuming the case of nsPE
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Fig. 12: Adaptive spatial-temporal (ST) mapping. The ST mapping
under BS dataflow. CogSys adaptively chooses the mapping scheme
based on (N,M, k, d) workload and hardware configurations.

array size M = input vector size d for vector-symbolic circular
convolution, streaming the stationary input would take d cycles
followed by input vectors taking 2d cycles to reach the final
nsPE. Meanwhile, partial sums are aggregated along the array
for the first output, followed by the remaining (d− 1) outputs
where each is generated per cycle. Thus, the end-to-end latency
for vector-symbolic circular convolution of two d-dimensional
vectors in a 1-D nsPE compute array is (4d−1) cycles. In the
case where d ̸= M, latency T will be (3M+d−1) cycles where
M for loading stationary vector, 2M for streaming vector
reach final nsPE, and (d− 1) cycles for remaining outputs.

D. Adaptive Spatial and Temporal Mapping Strategy

Spatial-temporal (ST) mapping flexibility. To efficiently
support the various dimensions of vector-symbolic operations,
we propose ST mapping featuring spatial mapping mode and
temporal mapping mode (Fig. 12). The nsPE array is easily
expanded to N arrays. Spatial mapping, by parallelizing a
single circular convolution into folds, reduces memory reads
compared to temporal mapping, especially with many folds.
Taking N arrays (M PEs each) as an example, spatial map-
ping requires BS=2d memory reads per T cycles for d-
dimensional vectors. while temporal mapping requires loading
BT =(d+M )×N elements per T cycles. Given neurosymbolic
workloads typically have d>1000, the bandwidth requirement
(memory reads per T cycles) is reduced by (N/2)× via spatial



mapping. Temporal mapping, on the other hand, outperforms
spatial mapping when d<M by enabling the parallelization of
multiple convolutions. For k vector-symbolic circular convolu-
tions, temporal folding takes CT =⌈k/N⌉×⌈d/M⌉×T cycles,
while spatial folding takes CS=k×⌈d/(N ×M)⌉×T cycles.

To efficiently process symbolic operations and balance
between bandwidth and latency, we conduct an adaptive search
between spatial and temporal mapping based on workloads and
CogSys configurations. For example, For N=32 and d=1024 in
NVSA (k=210) and LVRF (k=2575) workloads, CogSys opts
for temporal mapping with 32 parallel circular convolutions.

E. Adaptive Scale-Up and Scale-Out Strategy

Scale-up and scale-out flexibility. To enhance design
utilization and scalability, CogSys proposes to operate as a
combination of scale-up and scaled-out reconfigurable arrays,
with the support of systolic cell-wise parallelism (ScWP) and
column-wise parallelism (CWP) for circular convolutions. The
(N=32, M=512) configuration is constructed from 16 32×32
cells by configuring the muxes to choose among five schemes,
i.e., scale-up GEMM, scale-out GEMM, scale-up Conv, scale-
out Conv, and scale-out GEMM+Conv, enabled by the systolic
cell-wise heterogeneous partitioning scheme in Sec. VI-B.
For GEMM, the scale-out scheme enables higher utilization
and ScWP. For symbolic circular convolution, the scaled-out
scheme enables ScWP and CWP for low-dimensional vectors.

Design space exploration. We search scale-out/scale-up
schemes based on workloads and CogSys configurations to in-
crease utilization and parallelism. For instance, the 16 32×32
scaled-out cells achieve 91.26% utilization, with 10.71× and
7.83× speedup over one 128×128 scaled-up and four 64×64
scaled-out cells, respectively, for NVSA and LVRF neural
modules. For vector-symbolic operations, CogSys chooses a
scale-up scheme for NVSA and LVRF (high-dimensional vec-
tor processing, d=1024) and a scale-out scheme for MIMONet
(low-dimensional vector processing, d=64).

F. Double-buffered Memory and Custom SIMD Unit

Double-buffered memory. CogSys array is backed by
three double-buffered SRAMs (Fig. 9b). The double-buffered
memory is effective in reducing off-chip accesses and stalls
due to loads and stores to reduce latency. SRAM A is common
for all cells to utilize weights temporal reuse while SRAM B
is distributed across cells. Through design space exploration,
CogSys opts for 256kB for SRAM A and 4MB for SRAM B.

Custom SIMD units. CogSys employs a custom SIMD
unit to execute vector reductions and element-wise operations
(Fig. 9a). The SIMD unit efficiently handles data transfer be-
tween the CogSys array output and input SRAM, enabling the
array to seamlessly access data for subsequent operations. The
SIMD unit is comprised of multiple PEs, each designed with
compact logic circuits (i.e., sum, mult/div, exp/log/tanh, norm,
softmax, etc) to perform vector operations on quantized data.
The adaptive workload-aware scheduling (Sec. VI) scheme
schedules workloads across CogSys array and SIMD units to
balance the runtime of neural and symbolic operations.

TABLE V: Design choice discussion. Area, latency, energy, and
utilization comparison with reconfigurable and heterogeneous PEs.

Configuration Area Latency Energy Utilization

Reconfigurable PE (CogSys)
16×32×32 reconfigurable

neuro/symbolic PE
1× 1× 1× 90%

Heterogeneous PE
16×32×32 neuro PE

16×32×32 symbolic PE
1.96× 1× 1.3× 45%

Heterogeneous PE
8×32×32 neuro PE

8×32×32 symbolic PE
0.98× 2× 1.3× 45%

G. Design Choices Discussion

Reconfigurable or heterogeneous PE. While specialized
PEs for neural and symbolic kernels may appear more efficient
for simultaneous processing, our early-phase design space
exploration reveals that using separate PEs for GEMM and
circular convolution leads to hardware underutilization and
increased area overhead due to the sequential execution of
neural and symbolic kernels, as well as the varying proportions
of these operations across different workloads. When compar-
ing designs with the same chip size, specialized PEs result in
longer latency, as they provide fewer effective compute units
for either neural or symbolic tasks, as summarized in Tab. V.
We thus opt for the reconfigurable PE approach, which offers
lower area overhead and higher hardware utilization, making it
suitable for both neuro-heavy and symbolic-heavy workloads.

VI. COGSYS: SCHEDULING STRATEGY

This section presents CogSys adaptive workload-aware
scheduling strategy. We first identify the system-level chal-
lenges of neurosymbolic workloads (Sec. VI-A), and then
introduce CogSys scheduling scheme (Sec. VI-B) and further
discuss its scalability to other workloads and tasks (Sec. VI-C).

A. Neurosymbolic System-Level Challenges

We identify two main neurosymbolic system-level chal-
lenges (Fig. 13a): First, the sequential execution and frequent
interactions of neural and symbolic components results in long
latency and low system throughput. Second, the heterogeneous
neural and symbolic kernels result in low compute array
utilization and efficiency of ML accelerator.

B. Adaptive Workload-Aware Scheduling (adSCH) Strategy

Adaptive scheduling (adSCH) strategy. To solve the
system-level challenges, CogSys features an adSCH scheme
and greatly improves hardware utilization and performance.
(1) Interleaved neural/symbolic processing. Despite the de-
pendencies in neural and symbolic tasks, symbolic operations
of other tasks can be interleaved within neural layer of current
task via reconfigurable neuro/symbolic PE arrays (Fig. 13b).
(2) Adaptive neuro/symbolic array partition strategy. We pro-
pose to adaptively allocate CogSys cells to various neural
and symbolic kernels (cell-wise partition), and allocate sym-
bolic cell columns to parallel circular convolution operations
(column-wise partition) (Fig. 13c). This partition strategy
is effective in handling both neural- and symbolic-intensive
workloads and promotes parallelism and hardware utilization.

Scheduling Implementation. CogSys workload-aware
scheduling is performed offline by software. Since the model
architecture, size, and data are known prior to execution,
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TABLE VI: Baseline. The specifications of hardware baseline.

HW
General Purpose Processor/SoC CogSys

(Ours)
HW

ML Accelerator CogSys

(Ours)CPU Xeon RTX GPU TX2 NX TPU-like MTIA-like Gemmini-like

Power 145W 250W 15W 20W 1.48W
SRAM 4.5MB 4.5MB 4.5MB 4.5MB

#PE 1 128×128 16 32×32 64 16×16 16 32×32

the host CPU precomputes the mapping of operations and
array configurations, which are then offloaded to CogSys.
This ensures optimal or near-optimal scheduling with zero
runtime latency. The scheduling process uses a greedy search
algorithm: (1) Generate an operation graph based on operation
type, size, dependencies, and number of iterations; (2) Assign
ready operations (not blocked by dependencies) to newly avail-
able cells, with runtime estimated analytically; (3) Maximize
utilization by prioritizing neural tasks for larger cell blocks
and symbolic tasks for smaller ones. Since the search only
considers available blocks within the 16 array cells and ready
tasks, the search space is limited to <O(103) per time step,
resulting in minimal offline overhead and no runtime overhead.

Adaptive scheduling example. Fig. 13d presents a detailed
example of adSCH scheme with operations and cycle numbers
in a NVSA segment [33]. CogSys reconfigurable array sched-
ules neural (convolutions, GEMMs) and symbolic (circular
convolutions), while element-wise operations are offloaded to
SIMD units. To mitigate underutilization, CogSys executes
VSA-based codebook and symbolic kernels of the previous
batch on idle hardware pieces during neural layers of the cur-
rent batch, thus eliminating symbolic bottleneck. Particularly,
multi-level parallelism is adopted to process different symbolic
rules and attributes to further improve efficiency.

C. Scalability and Variability Support

Scalable across neurosymbolic workloads and cogni-
tion tasks. The adSCH technique enables CogSys to be
easily reconfigured across (1) neurosymbolic workloads (e.g.,
NVSA, MIMONets, LVRF, etc) and (2) cognitive tasks such
as procedurally generated matrices (PGM) [11], compositional
visual reasoning (CVR) [94], synthetic visual reasoning test
(SVRT) [20] with different attributes and rules (Fig. 2, Tab. I).
Coupled with nsPE reconfigurable arrays, BS dataflow, and
ST mapping, adSCH scheme ensures symbolic operations
interleaved with neural operations with high throughput, en-
abling various kinds of VSA-based neurosymbolic workloads
to be executed on CogSys with high efficiency and utilization,

and adapt to different neuro-symbolic workload ratios and
unpredictably changing workloads.

VII. EVALUATION RESULTS

This section first introduces the detailed settings for eval-
uating our proposed CogSys framework (Sec. VII-A), and
then benchmarks our proposed CogSys algorithm optimization
(Sec. VII-B) and accelerator (Sec. VII-C), demonstrating the
practical of efficient and scalable neurosymbolic systems.

A. Experimental Setup

Datasets. To evaluate the achieved cognitive reasoning ca-
pability of CogSys, we conduct experiments on the commonly-
used spatial-temporal reasoning RAVEN [95], I-RAVEN [36],
PGM [11], CVR [94], and SVRT [20]. The task performance
is measured by the probabilistic abduction accuracy.

Algorithm setup. We evaluate CogSys on three state-of-
the-art VSA-based neurosymbolic workloads, i.e., NVSA [33],
MIMONet [60], and LVRF [32]. Following [32], [33], [60],
we determine the training hyperparameters based on the end-
to-end reasoning performance on the validation set.

Baselines. We consider several hardware baselines, includ-
ing TX2, Xavier NX, RTX GPU, Xeon CPU, and ML accelera-
tors (TPU, MTIA, Gemmini). Tab. VI lists their configurations.

Hardware setup. To evaluate energy and area of CogSys
accelerator, we implement CogSys in RTL, synthesize using
Synopsys Design Compiler [79] with 0.8 GHz, and place and
route using Cadence Innovus [13] based on TSMC 28nm node.
Fig. 14 illustrates the layout and specifications of CogSys
accelerator. In addition, we develop a cycle-accurate simulator
to estimate CogSys accelerator performance on different rea-
soning tasks. The proposed CogSys accelerator consumes an
area of 4.0 mm2 and an average power consumption of 1.48 W.
Compared with conventional systolic arrays that only support
neural operations, CogSys provides reconfigurable support for
neural and symbolic operations with only 4.8% area overhead.

B. CogSys Algorithm Optimization Performance

Factorization accuracy. To assess the effectiveness of our
factorization and stochasticity methods, we compare CogSys
with the state-of-the-art factorizer [50] across 14 test cases
(Tab. VII). The results show a slight improvement in factor-
ization accuracy for object constituent attribute extraction.
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TABLE VII: Factorization accuracy comparison. Factorization ac-
curacy for object constituent attribute estimation across 14 scenarios.

Test 2×2 Grid 3×3 Grid Left-Right Up-Down Center O-IC DistFour Average
[50] 95.8% 94.7% 96.1% 95.6% 94.9% 95.3% 94.5% 95.3%

CogSys 95.7% 95.2% 96.1% 95.7% 95.3% 95.5% 94.4% 95.4%

Test Constant Progression XOR AND OR Arithmetic Distribution Average
[50] 93.3% 93.5% 93.9% 93.7% 93.5% 93.1% 92.7% 93.4%

CogSys 93.3% 93.6% 93.9% 93.6% 93.7% 93.4% 92.7% 93.5%

TABLE VIII: CogSys algorithm optimization performance. Com-
pared with NVSA, CogSys exhibits comparable reasoning capability
with smaller memory footprint requirement, achieved through the
proposed factorization, stochasticity, and quantization techniques.

Datasets NVSA [33] CogSys (+Factorization & Stoch.) CogSys (+Quant.)
RAVEN [95] 98.5% 98.7±0.3% 98.6±0.4%

I-RAVEN [36] 99.0% 99.0±0.3% 98.8±0.4%
PGM [11] 68.3% 68.6±0.8% 68.4±1.0%

#Parameters 38 MB 32 MB 8 MB

TABLE IX: Efficiency improvement from optimized precision.
CogSys optimizes NVSA algorithm to INT8 to enable hardware area
and power savings while maintaining the reasoning capability.

Arithmetic Precision FP32 FP8 INT8
CogSys Accuracy (NVSA=98.5%) 98.9% 98.9% 98.7%

Reconfigurable Array
16 32×32 PEs

Area (mm2) 28.9 9.9 3.8
Power (mW) 4468.5 1237.8 1104.6

Custom SIMD Unit
512 PEs

Area (mm2) 2.01 0.28 0.21
Power (mW) 297.0 64.8 80.4

Reconfig. Array Area Overhead vs. SA <1% 4.8% 12.1%

Reasoning accuracy. To evaluate CogSys algorithm opti-
mization (Sec. IV), we benchmark it on five reasoning tasks
in terms of the achieved accuracy (Sec. VII-A). Tab. VIII
uses NVSA as an example and benchmarks on RAVEN, I-
RAVEN, and PGM datasets, we observe that CogSys achieves
comparable reasoning accuracy through factorization and in-
jected stochasticity. Through quantization, CogSys enables
4.75× memory footprint savings as well as 7.71× area and
4.02× power savings (Tab. IX) under TSMC 28nm technology
node. We get consistent observations in MIMONet and LVRF
workloads under CVR and SVRT datasets as well.

C. CogSys Accelerator Performance

Performance improvement. We benchmark CogSys accel-
erator with RTX GPU, Xeon CPU, and edge SoCs (Jetson
TX2, Xavier NX) for accelerating neurosymbolic algorithms
on five reasoning tasks (Fig. 15) with different difficulty levels.
For GPU baseline, for neuro kernels, we use Pytorch pack-
age that leverages CUDA and cuBLAS/cuDNN libraries; for
symbolic kernels, we implement custom kernels optimized for
vector-symbolic operations. The workload is tiled by CuDNN
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in Pytorch based on block sizes that fit well in GPU memory.
We observe that CogSys exhibits consistent speedup across
datasets, e.g., 90.82×/56.76× speedup over TX2 and NX,
indicating its high efficiency and scalability capability. Further-
more, CogSys achieves real-time performance (<0.3 s) [33]
for solving logical reasoning tasks, indicating that CogSys
is the first to enable real-time neurosymbolic system with
superior reasoning and generalization capability, offering a
promising solution for future cognitive applications.

Energy efficiency improvement. We benchmark CogSys
accelerator on energy consumption and efficiency on five rea-
soning tasks (Fig. 16). We can observe that CogSys accelerator
achieves two orders of energy efficiency than RTX GPU, Xeon
CPU, TX2, and NX, indicating its efficiency and applicability
to resource-constrained neurosymbolic systems. To further
assess CogSys energy efficiency in long-term deployment, we
conduct consecutive tests on CogSys using mixed workloads,
incorporating both high-demand and low-activity periods,
with 10-second idle intervals between scenarios. On average,
CogSys achieves 730× energy efficiency compared to RTX
GPU. Additionally, when compared to V100 and A100 GPUs,
CogSys shows 4.43× and 1.43× speedup, with 748× and
241× energy efficiency, respectively.

Comparison with TPU/GPU. We benchmark symbolic cir-
cular convolution over TPU-like SA (with the same number of
PEs) and GPU under different vector dimensions and number
of operations (Fig. 17). We observe CogSys reconfigurable
array achieves up to 75.96× and 18.90× speedup over TPU-
like SA and GPU, and is effective in both low-dimension and
high-dimension vector-symbolic operations.

Comparison with ML accelerators. We benchmark the
runtime of neural and symbolic operations on TPU [41], Gem-
mini [28], and MTIA [19]-like architecture over different neu-
rosymbolic models and tasks (Fig. 18). For a fair comparison,
we keep all hardware configurations with the same number
of PEs. Compared with current ML accelerators, we observe
that CogSys achieves similar performance in neural operations,
while exhibiting superior symbolic operation efficiency thus
end-to-end speedup in neurosymbolic systems. Additionally,
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we compare CogSys with hyperdimensional computing accel-
erator [37] across models and tasks and observe a 7.2× aver-
age speedup. This improvement is mainly due to the lack of
efficient neuro and symbolic support and circular convolution
handling in hyperdimensional computing architectures.

Ablation study on the proposed hardware techniques.
As illustrated in Sec. V and Sec. VI, CogSys features recon-
figurable neuro/symbolic PE with bubble streaming dataflow
and spatial-temporal mapping, scalable array architecture, and
adaptive scheduling strategy to reduce compute latency and
memory footprint for neural and symbolic kernels. To verify
the effectiveness of our proposed methods, we summarize the
runtime of CogSys w/o the scheduling, scalable architecture,
and reconfigurable PE in Fig 19. In particular, the proposed
scheduling strategy can trim down the runtime by 28% on
average. Additionally, with the proposed scalable array and
reconfigurable PE, the runtime reduction ratio can be further
enlarged to 61% and 71%, indicating that both proposed
techniques are necessary for our CogSys accelerator to achieve
the desired efficient and scalable reasoning capability.

Ablation study of necessity of co-design. To the best of our
knowledge, our proposed CogSys, as an algorithm-hardware
co-design framework, is the first that has achieved efficient
and scalable on-device neurosymbolic-based system. To verify
the necessity of such co-design strategy, we summarize the
runtime of our CogSys w/o the proposed algorithm optimiza-

TABLE X: Ablation study of necessity of co-design. The nor-
malized runtime achieved by CogSys framework w/o the proposed
algorithm optimization or hardware techniques on different tasks.

Neurosymbolic Cognitive Solution Normalized Runtime (%) on
Algorithm @ Hardware RAVEN [95] I-RAVEN [36] PGM [11] CVR [94] SVRT [20]

NVSA [33] @ Xavier NX 100 100 100 100 100
CogSys Algorithm @ Xavier NX 89.5% 88.9% 90.7% 87.6% 88.4%

CogSys Algorithm @ CogSys Accelerator 1.76% 1.74% 1.78% 1.72% 1.69%

tion or hardware techniques in Tab. X. Specifically, with our
proposed CogSys algorithm optimization, we can trim down
the runtime to 89.5% as compared to NVSA [33] on the same
Xavier NX hardware and RAVEN task. Moreover, with both
proposed CogSys algorithm optimization and accelerator, the
runtime can be reduced to 1.76%, indicating the necessity of
the co-design strategy of CogSys framework.

VIII. RELATED WORK

Neurosymbolic AI. Neurosymbolic AI holds significant
potential for enhancing trustworthiness, reasoning, and robust-
ness of next-generation cognitive applications where agents
can make decisions in an explainable manner, and intelligence
is pervasively embedded in human-AI interactions [10], [18],
[33], [34], [56], [66], [92], [93], [97]. Current neurosymbolic
research mostly focuses on algorithms; however, the lack of
attention to its inefficiency on off-the-shelf hardware may
hinder neurosymbolic AI development in the long run. CogSys
thus takes the first step to understand neurosymbolic archi-
tectural and system characteristics and proposes a co-design
framework to make it more efficient and deployable at scale.

Accelerators for emerging applications. With the slow-
down of technology scaling, custom architecture is a pragmatic
approach to ensure simultaneous improvements in perfor-
mance and efficiency. Beyond DNNs [21], [40], [69], [71],
[77], [80], [81], [99], hardware acceleration has been found
effective in emerging applications such as genome sequencing
[22], [23], graph [25], [75], mobile vision [54], [55], [85],
drone [14], [47], [48], robotics [30], [51], [52], [58], [63],
privacy and security [27], [62], [73], [74], etc. Despite the
presence of these accelerators, CogSys is the first proposal to
offer reconfigurable support for both neural and symbolic ker-
nels, facilitating efficient and scalable neurosymbolic systems.

IX. CONCLUSION

To enable efficient and scalable neurosymbolic AI towards
real-time cognitive applications, we propose CogSys, the
first algorithm-hardware co-design framework dedicated to
accelerating neurosymbolic AI. CogSys identifies the unique
opportunities for neurosymbolic acceleration, including effi-
cient factorization, reconfigurable neural/symbolic PE, bubble
streaming dataflow, and adaptive scheduler, leveraging which
we develop algorithm optimizations and dedicated accelerator.
We believe CogSys can open up an exciting perspective toward
efficient and scalable cognitive reasoning systems at scale.
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