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Abstract
Reinforcement learning algorithms pose a serious
threat from adversaries. The adversaries can ma-
nipulate the learning algorithm resulting in non-
optimal policies. In this paper, we analyze the
Multi-task Federated Reinforcement Learning al-
gorithms, where multiple collaborative agents in
various environments are trying to maximize the
sum of discounted return, in the presence of adver-
sarial agents. We argue that the common attack
methods are not guaranteed to carry out a success-
ful attack on Multi-task Federated Reinforcement
Learning and propose an adaptive attack method
with better attack performance. Furthermore, we
modify the conventional federated reinforcement
learning algorithm to address the issue of adver-
saries that works equally well with and without
adversaries. Experimentation on reinforcement
learning problems of different scales shows that
the proposed attack method outperforms other
general attack methods and the proposed modifi-
cation to federated reinforcement learning algo-
rithm was able to achieve near-optimal policies in
the presence of adversarial agents.

1. Introduction
In the past decade, Reinforcement Learning (RL) has gained
wide popularity in solving complex problems in an online
fashion for various problem sets such as game playing (Mnih
et al., 2015; Krishnan et al., 2022), autonomous navigation
(Anwar & Raychowdhury, 2018; Wang et al., 2019; Wan
et al., 2021), robotics (Kober et al., 2013) and network
security (Xiao et al., 2018). With a boom in Internet of
Things devices, we have a lot of compute power at our
disposal. The problem, however, is that the compute is dis-
tributed. Distributed algorithms have been studied to take
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advantage of these distributed compute agents. Federated
Learning (Bonawitz et al., 2019; 2017) is a distributed ap-
proach to machine learning tasks enabling model training
on large sets of decentralized data by individual agents. The
key idea behind federated learning is to preserve the privacy
of the data to the local node responsible for generating it.
Federated learning has also been considered in the context
of reinforcement learning problem for both multi-agent RL
(Kumar et al., 2017; Zhuo et al., 2019; Palmer et al., 2017)
and multi-task RL (Lim et al., 2020; Liu et al., 2019; Zeng
et al., 2020; Wan et al., 2022) where multiple RL agents
either in a single or multiple environments try to jointly
maximize the collective of individual discounted returns,
respectively.

While machine learning (ML) algorithms have proven to
provide superior accuracy over conventional methods, they
pose a threat from adversarial manipulations. Common at-
tack methods include data-poisoning (Huang et al., 2017;
Kos & Song, 2017) and model poisoning (Blanchard et al.,
2017; Bhagoji et al., 2019) where the adversary tries to ma-
nipulate the input data or directly the learned model. Such
vulnerabilities can significantly degrade the performance.
In this paper, we are interested in mathematically formulat-
ing the vulnerabilities of multi-task federated reinforcement
learning (MT-FedRL) problems under model poisoning at-
tacks. Various works have addressed the adversarial attacks
in RL and Federated ML by adversarial training, feature
de-noising, modifying the federated aggregation operator
(Rodrı́guez-Barroso et al., 2020; Mandlekar et al., 2017;
Pattanaik et al., 2017), etc. However, not much research is
done in addressing the vulnerabilities of MT-FedRL systems
where multiple agents are collectively maximizing the sum
of discounted return. The key motivation for this work is to
rigorously analyze MT-FedRL under an adversarial lens so
that it can be made immune to adversarial attacks.

The contributions of this paper are as follows

• We provide a clean mathematical formulation of the
MT-FedRL problem in the presence of adversaries and
analyze the vulnerabilities of such systems.

• We argue that the general adversarial methods are
not good enough to create an effective attack on MT-
FedRL, and propose a model-poisoning attack method-
ology AdAMInG based on minimizing the information
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gained during training.

• The key motivation is to make MT-FedRL systems
prone to adversarial manipulations, hence we address
the adversarial attack issue by proposing a modification
to the general FedRL algorithm, ComA-FedRL, that
works equally well with and without adversaries.

• We conduct an in-depth adversarial attack study on
the MT-FedRL system from small (grid-based task) to
large (drone autonomous navigation task) computing
scales. Our results demonstrate the effectiveness of our
proposed method AdAMInG and ComA-FedRL under
different parameters and scenarios.

2. Related Work
The effects of adversaries in machine learning algorithms
were first discovered in (Szegedy et al., 2013) where it was
observed that a small lp norm perturbation to the input of
a trained classifier model resulted in confidently misclas-
sifying the input. The adversary here acts in the form of
specifically creating adversarial inputs to produce erroneous
outputs to a learned model (Kurakin et al., 2016; Tramèr
et al., 2017). For supervised learning problems, where the
network model has already been trained, attacking the input
is the most probable choice for an adversary. Our work
focuses on attack methods for the problem of reinforcement
learning where the system is trained on the go.

In RL, the adversary can act either in the form of data-
poisoning attacks, such as creating adversarial examples
(Huang et al., 2017; Kos & Song, 2017), or can directly
attack the underlying learned policy (Huang & Zhu, 2019;
Ma et al., 2019) either in terms of malicious falsification of
reward signals, or estimating the RL dynamics from a batch
data set and poisoning the policy. Authors in (Gleave et al.,
2019), attack an RL agent by selecting an adversarial policy
acting in a multi-agent environment as a result of creating
adversarial observations. Their results on a two-player zero-
sum game show that an adversarial agent can be trained to
interact with the victim winning reliably against it. Such
attacks, however, can not be directly extended to multi-task
RL problem, which is the scope of this paper.

In federated RL, alongside the data-poisoning and policy-
poisoning attacks, we also have to worry about the model-
poisoning attacks. Since we have more than one learning
agents, a complete agent can take up the role of an adversary.
In model poisoning attacks the adversary tries to modify the
learned model parameters directly by feeding false infor-
mation purposely poisoning the global model (Blanchard
et al., 2017; Bhagoji et al., 2019). Since federated learning
uses an average operator to merge the local model parame-
ters learned by individual agents, such attacks can severely
affect the performance of the global model. Such model

poisoning attacks have been extensively studied for super-
vised federated learning problems. In this paper, we address
model poisoning attacks for MT-FedRL problems which
have not been studied in much detail.

Adversarial training can be used to mitigate the effects of
such adversaries. (Xie et al., 2019) showed that the classi-
fication model can be made much more robust against the
adversarial examples by feature de-noising. The robustness
of RL policies has also been analyzed by the adversarial
training (Pinto et al., 2017; Tessler et al., 2019). (Tessler
et al., 2019) show that the data-poisoning can be made a
part of RL training to learn more robust policies. They feed
perturbed observations during RL training for the trained
policy to be more robust to dynamic changing conditions
during test time. (Rodrı́guez-Barroso et al., 2020) shows
that the data-poisoning attacks in federated learning can
be resolved by modifying the federated aggregation opera-
tor based on induced ordered weighted averaging operators
(Yager & Filev, 1999) and filtering out possible adversaries.

To the best of our knowledge, this is the first work on MT-
FedRL in the presence of adversaries. We address the effects
of model poisoning attacks on the MT-FedRL problem by
mathematically analyzing the vulnerabilities. In the light of
the observed vulnerabilities, we then propose a modification
to the existing algorithm addressing the issue of adversaries.

3. Multi-task Federated Reinforcement
Learning (MT-FedRL)

We consider a Multi-task Federated Reinforcement Learning
(MT-FedRL) problem with n agents. Each agent operates
in its own environment which can be characterized by a
different Markov Decision Process (MDP). The goal of MT-
FedRL is to learn a unified policy, which is jointly optimal
across n environments. Each agent shares its information
with a centralized server. We consider policy gradient meth-
ods for RL. The MDP at each agent i can be described by
Mi = (Si,Ai,Pi,Ri, γi) where Si is the state space, Ai

is the action space, Pi is the MDP transition probabilities,
Ri : Si×Ai → R is the reward function, and γi ∈ (0, 1) is
the discount factor. Let V π

i be the value function, induced
by policy π, at the state s in the i-th environment, we have

V π
i (s) = E

[ ∞∑

k=0

γk
i Ri(s

k
i , a

k
i ) | s0i = s

]
. (1)

where aki ∼ π(·|ski ). We denote by ρi the initial state
distribution over the action space of i-th environment. The
goal is to find a unified policy π∗ that maximizes the sum
of long-term discounted return for all the environments i.e.

max
π

V (π;ρ) ≜
n−1∑

i=0

Esi∼ρi
V π
i (si), ρ =




ρ0
...

ρn−1


 (2)
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Figure 1. Adversaries can impact the unified policy by providing
adversarial policies to the server. This results in negatively impact-
ing the achieved discounted return on the environments.

We use θ to model the family of policies πθ(a|s), consid-
ering both the tabular method and neural network-based
function approximation. The goal of the MT-FedRL prob-
lem is to find θ∗ satisfying

θ∗ = argmax
θ

V (θ;ρ) ≜
n−1∑

i=0

Esi∼ρiV
πθ
i (si). (3)

In MT-FedRL, the data is not shared with the server due
to privacy concerns. The data remains at the local agent
and instead, the policy parameter θi is shared with the
server. Each agent i utilizes its locally available data Di

to train the policy parameter θi by maximizing its local
value function V π

i through SGD. After the completion of
each episode k, the agents share their policy parameter
θk−i with a centralized server. The server carries out a
smoothing average and generates N new sets of parame-
ters θk+i = αkθk−i + βk

∑
j ̸=i θ

k−
j for each agent, where

αk, βk = 1−α
n−1 ∈ (0, 1) are smoothing average weights.

The goal of this smoothing average is to achieve a consensus
among the agents’ parameters, limk→∞ θk+i → θ∗,∀i ∈
{0, . . . , n − 1}. As the training proceeds, the smoothing
average constants converge to αk, βk → 1

n . The conditions
on αk, βk to guarantee the convergence can be found in
(Zeng et al., 2020).

4. MT-FedRL with adversaries
Let L denote the set of adversarial agents in a n −
agent MTFedRL problem. The smoothing average at
the server can be decomposed based on the adversarial and
non-adversarial agent as follows

θk+i = αkθk−i + βk
∑

j ̸=i,j /∈L

θk−j + βk
∑

l∈L

θk−l (4)

where i /∈ L. θk+i is the updated policy parameter for agent
i calculated by the server at iteration k. In an adversarial
MT-FedRL, the goal of the adversarial agent is to prevent
the MT-FedRL from achieving the unified θ∗ by purposely
providing adversarial policy parameters θk−l (Fig. 1).

Parameters that effect learning: Using gradient ascent,
each agent updates its own set of policy parameter locally
according to the following equation,

θk−i = θ
(k−1)+
i + δi∇θiV

πθi
i (ρi) (5)

where δi is the learning rate for agent i. Using Eq. 5 in the
smoothing average Eq. 3 yields

θk+i =


αkθ

(k−1)+
i + βk

∑

j ̸=i,j /∈L

θ
(k−1)+
j


+


αkδi∇θiV

πθi
i (ρi) + βk

∑

j ̸=i,j /∈L

δj∇θjV
πθj

j (ρj)


+

(
βk
∑

l∈L

θk−l

)

(6)

The server update of the policy parameter can be decom-
posed into three parts.

• The weighted sum of the previous set of policy param-
eters θ(k−1)+

i shared by server with agents.

• The agent’s local update, which tries to shift the policy
parameter distribution towards the goal direction.

• The adversarial policy parameter which aims at shifting
the policy parameter away from achieving the goal.

If the update carried out by the adversarial agent is larger
than the sum of each agent’s policy gradient update, the
policy parameter will start diverging from the desired con-
sensus θ∗. The success of the adversarial attack hence de-
pends on the nature of adversarial policy parameter θk−l ,
non-adversarial agent’s local learning rate δi, and the num-
ber of non-adversarial agents n− |L|.
Threat Model: In MTFed-RL, the adversarial agent can
control the convergence through the policy parameter θk−l
that it shares with the server. The adversarial agent needs to
share the policy parameter that moves the distribution of the
average of non-adversarial agents either to a uniform distri-
bution or in the direction that purposely yields bad actions.
Generally shifting the distribution to uniform distribution
will require less energy than to shift it to a non-optimal
action distribution. This requires that the adversary cancel
out the information gained by all the other non-adversarial
agents hence not being able to differentiate between good
and bad actions, leaving all the actions equally likely.

We will assume the following threat model. At iteration
k, each adversarial agent l shares the following policy pa-
rameter with the server θk−l = λkθkadv. Hence the threat
model is defined by the choice of the attack model θadv and
λk ∈ R which is a non-negative iteration-dependant scaling
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factor that will be used to control the norm of the adversarial
attack. To make the scaling factor more meaningful, we will
assume that

∥θadv∥2 ≈
1

(n− |L|)
∑

i/∈L

∥θi∥2 (7)

5. Attack Models - AdAMIn
Making the MT-FedRL systems secure against adversarial
attacks requires us to analyze the vulnerabilities of such
systems. Hence, in this section, we propose an attack model
mathematically for MT-FedRL systems.

Two common attack models are Random Policy Attack
(Rand) and Opposite Goal Policy Attack (OppositeGoal),
which details can be found in Appendix A. Even though
the adversarial choice of opposite goal makes an intuitive
sense as the best attack method, Section 7 shows that it’s
not. We propose an attack method, AdAMInG, that takes
into account the nature of MT-FedRL smoothing averaging
and devises the best attack given the information available
locally. The goal of AdAMInG is to devise an attack that
uses a single adversarial agent with a small scaling factor
by forcing the server to gradually forget what it learns from
the non-adversarial agents.

For smoothing average at the server to lose all the informa-
tion gained by other non-adversarial agents we should have

θk−l = − 1

βk|L|


αkθk−i + βk

∑

j ̸=i,l

θk−j


 (8)

Using the above equation in Eq. 4 will result θk+i = 0,
hence losing the information gained by θk−i . The prob-
lem in Eq. 8 is that the adversarial agents do not have
access to the policy parameter shared by non-adversarial
agents θk−i ,∀i ̸= l and hence the smoothing average of non-
adversarial agents is unknown. The attack model then is to
estimate the smoothing average of non-adversarial agents.

The adversarial agent has two available information: (1) The
previous set of policy parameter shared by the adversarial
agent to the server θ(k−1)−

l . (2) The federated policy param-
eter shared by the server to the adversarial agent θ(k−1)+

l .

The adversarial agent can estimate the smoothing average
of the non-adversarial agents from these quantities. The
AdAMInG attack shares the following policy parameter

θk−l = λk

(
αkθ

(k−1)+
l − θ

(k−1)−
l

βk

)
(9)

The smoothing average at the server for i ∈ {0, . . . , n −

1}, i ̸= l becomes

θk+i =

(
αkθk−i − λk

n− 1
βkθ

(k−1)−
i

)

+
∑

j ̸=i,l

(
βkθk−j − βkλk

n− 1
θ
(k−1)−
j

)
(10)

We want θk+i → 0, ∀i ∈ {0, n − 1}, i ̸= l. This means
forcing the two terms inside the parenthesis to 0. If the ini-
tialization of all the agents are same, i.e. θ0−i = θ0 = 0,∀i
and the learning rate is small, we have ∥θk−i −θ

(k−1)−
i ∥ < ϵ.

Hence θk+i → 0 can be achieved by the scaling factor
λk∗ = argminλk g(λk, n), where

g(λk, n) =

∣∣∣∣αk − βk λk

n− 1

∣∣∣∣+
∣∣∣∣βk

(
1− λk

n− 1

)
(n− 2)

∣∣∣∣

For simplicity we have not shown the dependence of αk, βk

in g(λk, n) as they directly depend on k. Solving this opti-
mization problem yields λ∗ = n− 1, (n ≥ 3).

This means that the scaling factor should be equal to the
number of non-adversarial agents and is independent of the
iteration k. For λk < λ∗ we still can achieve a successful
attack if the learning rate δ is not too high.

As the training proceeds, the values of the smoothing con-
stants αk, βk approach their steady-state value of 1

n . At
that point, the steady-state value of g(λk, n) defined as
gss(λ

k, n) is given by gss(λ
k, n) = n−1−λ

n . The steady-
state value gss(λ

k, n) signifies how effective/successful the
AdAMInG attack will be for the selected parameters (λk, n).
A steady-state value of 0 signifies a perfect attack, where
the policy parameter shared by the server loses all the infor-
mation gained by the non-adversarial agents. A steady-state
value of 1 indicates a completely unsuccessful attack. The
smaller the gss(λ

k, n), the better the AdAMInG attack. A
detailed explanation on how g(λk, n) affects the MT-FedRL
can be found in Appendix B.

Unlike the OppositeGoal attack, we can guarantee that the
AdAMInG attack will yield a successful attack if the scaling
factor is equal to the number of non-adversarial agents. We
will see in the results section that the scaling factor does not
need this high if the learning rate δ is not high. We will be
able to achieve a good enough attack even if λk < n − 1.
The only down-side with the AdAMInG attack method is that
it requires twice the amount of memory as compared to that
of OppositeGoal or Rand attack method. AdAMInG attack
method needs to store the both the adversary shared policy
parameter θ(k−1)−

l and the server shared policy parameter
θ
(k−1)+
l from the previous iteration to compute the new set

of policy parameters to be shared θk−l as shown in Eq. 9.
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6. Detecting Attacks - ComA-FedRL
Adversary can severely affect the performance of the uni-
fied policy in MT-FedRL systems. Based on the analysed
vulnerabilities in the AdAMInG attack method, we propose
Communication Adaptive Federated RL (ComA-FedRL)
to address the adversarial attacks on a Federated RL al-
gorithm. Instead of communicating the policy parameter
from all agents at a fixed communication interval, we as-
sign different communication intervals to agents based on
the confidence of them being an adversary. An agent, with
higher confidence of being an adversary, is assigned a large
communication interval and vice-versa.

ComA-FedRL begins with a pre-train phase, where each
agent tries to learn a locally optimistic policy independent
of others. After every certain number of episodes, the server
randomly assigns a policy to all the environments with-
out replacement for evaluation, and the cumulative reward
achieved by this policy is recorded. Based on the nature of
the policy and the environment it is cross-evaluated in, we
have four cases as shown in Table 2. When the policy locally
learned by a non-adversarial agent is evaluated in the envi-
ronment of a non-adversarial agent, it generally performs
better than a random policy because of the correlation of the
underlying tasks. Hence we get a slightly higher cumulative
reward compared to other cases. If an adversarial policy is
cross-evaluated on a non-adversarial agent’s environment,
it generally performs worse because of the inherent nature
of the adversary, giving a low cumulative reward. When
the policies are evaluated on the adversarial agent’s envi-
ronment, the adversary can present a secondary attack in
faking the cumulative reward. It intentionally reports a low
return with the hopes of confusing the server to mistake a
non-adversarial agent with an adversarial one. Since the
adversarial agent has no way of knowing if the policy shared
by the server belongs to an adversarial or a non-adversarial
agent, it always shares a low cumulative return.

At the end of the pre-train phase, the cumulative re-
wards are averaged out for a given policy and are com-
pared to a threshold. If the averaged reward of the pol-
icy is below (above) this threshold, the policy is marked
as possibly-adversarial (possibly-non-adversarial). The
possibly-adversarial agents are assigned a higher communi-
cation interval, while possibly-non-adversarial agents are
assigned a smaller communication interval. The agents are
constantly re-evaluated after a certain number of iterations.
After re-evaluation, if an already marked possible-adversary
agent is re-marked as possibly-adversary, the agent’s com-
munication interval is doubled, signifying a higher probabil-
ity of it being an adversary and making it contribute even
lesser towards the server smoothing average. Hence, as the
training proceeds, the adversarial agent’s contribution to the
server smoothing average becomes smaller and smaller.

λ = n− 1 λ = 1

Scaling factor λ
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Figure 2. [GridWorld] Probability of successful attack psa(%) un-
der different attack models. The greater the psa the better the
performance of the adversary.
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Figure 3. [GridWorld] Effect of learning rate (δ) on the perfor-
mance of attack methods with λ = 1 and n = 12.

Further details on ComA-FedRL can be found in the Ap-
pendix C.

7. Experimental Results
We evaluate the proposed attack and detection schemes on
both simpler tabular-based MT-FedRL problem (GridWorld)
and complex neural network-based MT-FedRL problem
(AutoNav). We use policy gradient methods for both cases.

7.1. GridWorld - Tabular RL

We begin our experimentation with a tabular-based problem
of GridWorld (Fig. 8). We characterize the performance
of the adversarial attack by the probability of successful
attack psa. The detailed GridWorld problem description and
metric definition can be found in Appendix D.1.

Effect of Adversaries We first evaluate the effect of the
attack models. Fig. 2 reports the psa for the three attack
methods with the scaling factor of n−1 and 1 (and a learning
rate σ = 0.2). With the optimal scaling factor of n− 1, it
can be seen that all the three attack methods were able to
achieve a good enough attack (psa > 96%). For a scaling
factor of 1, however, only AdAMInG attack method was able
to achieve a successful attack (psa = 98%).

As mentioned in Section 4, for a scaling factor of 1, the
performance of the attack method depends on the learning
rate (δ) and the number of non-adversarial agents (n −
|L|). Fig. 3 reports psa of the attack methods with varying
learning rates. It can be seen that the greater the learning
rate, the poorer the performance of the attack method. For
a higher learning rate, the local update for each agent’s
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Figure 4. [GridWorld] Comparing attack performance for n = 12
between AdAMInG with λ = 1 and OppositeGoal with λ = 2.

policy parameter has more effect than the update of the
server carried out with the adversary, and hence poorer
the performance of the attack. A detailed analysis of the
learning rate on AdAMInG is provided in Appendix E.

Another thing to observe is that as the learning rate increases
the relative performance of the OppositeGoal attack com-
pared to the Random policy attack becomes poorer even
becoming worse than the Random policy attack. The reason
behind this is that the observable states across environments
are not completely overlapping. The environment avail-
able to the adversary for devising OppositeGoal attack from
might not have access to the states observable in other en-
vironments. Hence the OppositeGoal policy attack can not
modify the policy parameter related to those states. Oppo-
siteGoal attack method either require a large scaling factor
or more than one adversary to attack the MT-FedRL with
performance similar to AdAMInG with single-adversary and
unity scaling factor λ, as shown in Fig. 4.

A similar trend can be observed with varying the number
of non-adversarial agents. It can be seen in Fig. 9 that for
a smaller number of non-adversarial agents (equivalently
smaller number of total agents if the number of the adversar-
ial agents is fixed), it is easier for the adversary to attack with
a high psa. The reason behind this is that the local update
in Eq. 6 is proportional to the number of non-adversarial
agents. With a smaller number of non-adversarial agents,
the local update is smaller compared to the update by the ad-
versary. Among the three attack methods, AdAMInG is the
most resilient to these two parameters (λ, n), hence making
it a better choice for an adversarial attack in MT-FedRL.

Resolving Adversaries: We implement the N-agent single-
adversary MT-FedRL problem using ComA-FedRL to
address the high psa of the conventional FedRL algo-
rithm. Fig. 10 compares the performance of FedRL and
ComA-FedRL for different attack methods. By assigning
a higher communication interval to the probable adversary,
ComA-FedRL was able to decrease the probability of suc-
cessful attack psa in the presence of adversary to as low as
< 10%. The mean communication interval for adversarial
and non-adversarial agents is shown in Fig. 11. It can be
seen that Random policy attack has a slightly higher com-
munication interval. The reason behind this is one of the

FedRL ComA-FedRL
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80

100

p s
a
(%

)

Adaming OppositeGoal Random

Figure 5. [AutoNav] Comparison of successful attack psa(%) un-
der different attack models for FedRL and ComA-FedRL.

Table 1. [AutoNav] MSF (m) for different attack methods

AdAMInG Opposite Goal Random No Adv

FedRL 6 1076 1098 1137
ComA-FedRL 1042 1028 1134 1156

non-adversarial agents was incorrectly marked as a probable
adversarial agent at the beginning of training, but later that
was self-corrected to a possibly-non-adversarial agent.

7.2. AutoNav - NN based RL

We also experiment on a more complex problem of drone au-
tonomous navigation in 3D realistic environments (Fig. 16).
The effectiveness of MT-FedRL-achieved unified policy
is quantified by drone Mean Safe Flight (MSF). Similar as
GridWorld, the performance of the adversarial attack is char-
acterized by the probability of successful attack psa. The
detailed AutoNav problem description and metric definition
can be found in Appendix D.2.

Effect of Adversaries: For each experiment, the MT-FedRL
problem is trained for 4000 episodes using the REINFORCE
algorithm with a learning rate of 1e-4 and γ = 0.99. Train-
ing hyper-parameters are listed in the Appendix D.2 in detail.
Table 1 reports the MSF achieved by the AutoNav problem
for various attack methods. It can be seen that except for
the AdAMInG attack, the rest of the attack methods achieve
MSF comparable to the one achieved in the absence of an
adversary. Fig. 5 shows the psa for different attack methods.
It can be seen that AdAMInG achieves a psa of ∼ 99.5%
while all the other attack methods achieve a psa of < 6%.
The trend is similar to the GridWorld task.

Resolving Adversaries: We implement the N-agent single-
adversary MT-FedRL problem using ComA-FedRL to ad-
dress the low MSF of FedRL. The results are reported in
Table 1. It can be seen that the decrease in MSF due to
adversary was recovered using ComA-FedRL. Fig. 5 plots
the psa for various attack methods with ComA-FedRL and
compares it with FedRL, showing that with ComA-FedRL
we have psa < 10%. Hence ComA-FedRL was able to
address the issue of adversaries in a MT-FedRL problem.

8. Conclusion
In this paper, we analyze the Multi-task Federated Rein-
forcement Learning algorithm with an adversarial perspec-
tive. We analyze the attacking performance of some gen-
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eral attack methods and propose an adaptive attack method
AdAMInG that devises an attack taking into account the
aggregation operator of federated RL. The AdAMinG at-
tack method is formulated and its effectiveness is stud-
ied. Furthermore, to address the issue of adversaries in
the MT-FedRL problem, we propose a communication adap-
tive modification to conventional federated RL algorithm,
ComA-FedRL, that varies the communication frequency
for the agents based on their probability of being an adver-
sary. Results on the problems of various scales show that the
AdAMInG attack outperforms other attack methods almost
every time. Moreover, ComA-FedRL can recover from the
adversarial attack resulting in near-optimal policies.
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Tramèr, F., Kurakin, A., Papernot, N., Goodfellow, I.,
Boneh, D., and McDaniel, P. Ensemble adversar-
ial training: Attacks and defenses. arXiv preprint
arXiv:1705.07204, 2017.

Wan, Z., Anwar, A., Hsiao, Y.-S., Jia, T., Reddi, V. J.,
and Raychowdhury, A. Analyzing and improving fault
tolerance of learning-based navigation systems. In 2021
58th ACM/IEEE Design Automation Conference (DAC),
pp. 841–846. IEEE, 2021.

Wan, Z., Anwar, A., Mahmoud, A., Jia, T., Hsiao, Y.-S.,
Reddi, V. J., and Raychowdhury, A. Frl-fi: Transient
fault analysis for federated reinforcement learning-based
navigation systems. In 2022 Design, Automation & Test
in Europe Conference & Exhibition (DATE), pp. 430–435.
IEEE, 2022.

Wang, C., Wang, J., Shen, Y., and Zhang, X. Autonomous
navigation of uavs in large-scale complex environments:
A deep reinforcement learning approach. IEEE Transac-
tions on Vehicular Technology, 68(3):2124–2136, 2019.

Xiao, L., Wan, X., Dai, C., Du, X., Chen, X., and Guizani,
M. Security in mobile edge caching with reinforcement
learning. IEEE Wireless Communications, 25(3):116–
122, 2018.

Xie, C., Wu, Y., Maaten, L. v. d., Yuille, A. L., and He, K.
Feature denoising for improving adversarial robustness.
In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 501–509, 2019.

Yager, R. R. and Filev, D. P. Induced ordered weighted
averaging operators. IEEE Transactions on Systems, Man,
and Cybernetics, Part B (Cybernetics), 29(2):141–150,
1999.

Zeng, S., Anwar, A., Doan, T., Romberg, J., and Ray-
chowdhury, A. A decentralized policy gradient approach
to multi-task reinforcement learning. arXiv preprint
arXiv:2006.04338, 2020.

Zhuo, H. H., Feng, W., Xu, Q., Yang, Q., and Lin,
Y. Federated reinforcement learning. arXiv preprint
arXiv:1901.08277, 2019.



Multi-Task Federated Reinforcement Learning with Adversaries

Appendix

A. Common Attack Models
A.1. Random Policy Attack (Rand)

This attack will be used as a baseline for the other attack
methods. In a Random policy attack, the adversarial agent
maintains a set of random policy parameter sampled from a
Gaussian distribution with mean 0 and standard deviation
σ ∈ R i.e. for each element θadv,j of θadv

θadv,j ∼ N (0, σ) (11)

A.2. Opposite Goal Policy Attack (OppositeGoal)

This attack method assumes that a sample environment is
available for the agent to devise the attack. In this attack
method, the adversary l learns a policy πOG

θadv
utilizing its

local environment with the goal of minimizing (instead
of maximizing) the long term discounted return i.e. the
objective function to maximize is

J(θadv) = −V
πθadv

l (ρl) (12)

B. Mathematical Analysis of the AdAMInG
Attack

Fig. 6 plots g(λk, n) as a function of the number of agents
n for a scaling factor of 1 (λk = 1). It can be seen that
as the number of agents increases, the steady-state value
gss becomes closer to 1 making it difficult for AdAMInG
to have a successful attack with a scaling factor of 1. As
the number of agents increases, the update carried out by
the non-adversarial agent has a more significant impact on
the smoothing average than the adversarial agent making
it harder for the adversarial agent to attack. Fig. 7 plots
g(λk, n) as a function of the scaling factor λk for n = 100.
It can be seen that the scaling factor has a linear impact on
the success of the AdAMInG attack. The performance of
the AdAMInG attack increases linearly with the increase in
the scaling factor. The best AdAMInG attack is achieved
when λk = n− 1. Section 7 demonstrates that a non-zero
steady-state value can still result in a successful attack for a
small learning rate δ.

It is safe to assume that if we do not change the learning
rate (and it is small enough), we can find the scaling fac-
tor required to achieve the same attacking performance by
increasing the number of agents n. The steady-state rela-
tionship between n and λ in Section 5 lets us analyze the
relative attacking performances by varying the number of
agents n. Let’s say that for n1 number of agents and a given
learning rate that is small, we were able to achieve a suc-
cessful attack with λ1. Now to achieve the same successful

Table 2. Cross-evaluation of policies in ComA-FedRL in terms of
cumulative return

Evaluated Policy Environment Cumulative reward
Non-adv Non-adv High
Non-adv Adv Low (secondary attack)

Adv Non-adv Low
Adv Adv Low (secondary attack)

attack for n2 number of agents we need

λ2 =
n2(1 + λ1)

n1
− 1 (13)

C. Training Details
Policy gradient methods for RL is used to train both the
GridWorld and AutoNav RL problems. The ComA-FedRL
algorithm can be seen in Alg. 1. For ComA-FedRL, we use
a base communication base comm. In the pre-train phase,
the communication interval for each agent is assigned this
base communication i.e.

comm[i] = base comm ∀i ∈ {0, . . . , n− 1}

This means that in the pre-train phase, the agents learn
only on local data, and after every base comm number of
episodes, the locally learned policies are shared with the
server for cross-evaluation. This cross-evaluation runs n
policies, each on a randomly selected environment and the
cumulative reward is recorded. We also take into account the
fact that the adversarial agent can present a secondary attack
in terms of faking the cumulative reward that it return when
evaluating a policy. In the ComA-FedRL implementation,
we assume that the adversarial agent returns a cumulative re-
ward of−1, meaning that it fakes the policy being evaluated
as adversarial.

At the end of the pre-train phase, the cross evaluated rewards
are used to assign communication intervals to all the agents.
There are various choices for the selection of this mapping.
The underlying goal is to assign a higher communication
interval for agents whose policy performs poorly when cross-
evaluated and vice versa. We use the mapping shown in
Alg. 2. A reward threshold rth is used to assign agents dif-
ferent communication intervals. If the cumulative reward of
a policy in an environment is below rth, it is assigned a high
communication interval of high comm episodes (marked
as a possible adversary), otherwise it is assigned a low com-
munication interval of low comm episodes (marked as a
possible non-adversary). The assigned communication inter-
val also depends on the one-step history of communication
intervals. If an agent was previously assigned a higher
communication interval and is again marked as a possible
adversary, the communication interval assigned to such an
agent is doubled. The complete list of hyperparameters used
for GridWorld and AutoNav can be seen in Table 4.
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D. Problem Description of MT-FedRL
GridWorld and AutoNav

D.1. MT-FedRL GridWorld Problem Description

The environments of GridWorld are mazes of size 10× 10
as seen in Fig. 8. Each cell in the maze is characterized into
one of the following 4 categories: hell-cell (red), goal-cell
(yellow), source-cell (green), and free-cell (white). The
agent is initialized at the source-cell and is required to reach
the goal-cell avoiding getting into the hell-cell. The free-
cells in the maze can be occupied without any consequences.
The agent can take one of the following 4 actions A =
{move-up, move-down, move-right, move-left}
which corresponds to the agent moving one cell in the
respective direction. At each iteration, the agent observes
a one-step SONAR-based state s ∈ R4 corresponding to
the four cells (up, down, right, left) around the agent. At
each iteration, the agent samples an action from the action
space and based on the next state, observes a reward. The
reward is -1, 1, 0.1, or -0.1 if the agent crashed into hell-cell,
reached the goal, moved closer to or away from the goal,
respectively. The effectiveness of the MT-FedRL unified
policy is quantified by the win ratio (WR) defined by

WR =
1

n− 1

∑

i̸=l

# of times agent i reached goal state
total # of attempts in environment i

In this 12-agent MT-FedRL system, agent 0 is assigned the
adversarial role (l = 0). The goal for agent 0 is to decrease
WR. We characterize the performance of the adversarial
attack by the probability of successful attack psa given by

psa = 1− WRadv

WRno−adv

where WRadv is the win ratio with an adversary, while
WRno−adv is the win ratio without any adversary.

D.2. MT-FedRL AutoNav Problem Description

We use PEDRA (Anwar & Raychowdhury, 2020) as the
drone navigation platform. The drone is initialized at a
starting point and is required to navigate across the hallways
of the environments. There is no goal position, and the
drone is required to fly avoiding the obstacles as long as
it can. At each iteration t, the drone captures an RGB
monocular image from the front-facing camera which is
taken as the state st ∈ R(320×180×3) of the RL problem.
Based on the state st, the drone takes an action at ∈ A. We
consider a perception based probabilistic action space with
25 actions (|A| = 25). A depth-based reward function is
used to encourage the drone to stay away from the obstacles.
We use neural network-based function approximation to
estimate the action probabilities based on states. The used
network is shown in Appendix Fig. 17. We consider 4
indoor environments (indoor-twist, indoor-frogeyes, indoor-
pyramid, and indoor-complex) hence we have n = 4. These
environments can be seen in Fig. 16.

The effectiveness of MT-FedRL-achieved unified policy is
quantified by Mean Safe Flight (MSF) defined as

MSF =
1

n− 1
E


∑

i ̸=l

di




where di is the distance traveled by the agent in the environ-
ment i before crashing. In this 4-agent MT-FedRL system,
the agent in the environment indoor-complex is assigned the
adversarial role (l = 3). The goal for the adversarial agent is
to decrease this MSF. We will characterize the performance
of the adversarial attack by the probability of successful
attack psa given by

psa = 1− MSFadv

MSFno−adv

where MSFadv is the mean safe flight of the MT-FedRL
system in the presence of the adversary, while MSFno−adv

is the mean safe flight of the MT-FedRL system in the
absence of the adversary. The greater the psa the better the
attack method in achieving its goal.

The C3F2 neural network architecture used in AutoNav is
shown in Fig. 17.
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Figure 8. [GridWorld] The 12 environments used
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Figure 9. [GridWorld] Effect of number of agents (n) on the per-
formance of attack methods with λ = 1 and δ = 0.2.

E. Experimental Analysis of the AdAMInG
Attack

We carry out a detailed analysis of the AdAMInG attack
method. The smoothing average (Eq. 6) in the presence
of an adversary carries out two updates - the local update
which moves the policy parameter in a direction to maxi-
mize the collective goal, and the adversarial update which
tries to move the policy parameter away from the consensus.
When the training begins, the initial set of policy parameters
θi is farther away from the consensus θ∗. Gradient descent
finds a direction from the current set of policy parameters
to the consensus. This direction has a higher magnitude
when the distance between the current policy parameter and
the consensus is high. As the system learns, the current
policy parameter gets closer to the consensus, and hence
the magnitude of the direction of update decreases. So even
if we have a static learning rate δ, the magnitude of local
update δj∇θjV

πθj

j (ρj) in Eq. 6 will, in general, decrease
as the system successfully learns. There will be a point
in training where the local update will become equal but
opposite to the update being carried out by the AdAMInG
adversary. From that point onwards, the current policy pa-
rameter won’t change much. This can be seen in Fig. 12.
The greater the learning rate δ, the earlier in training we will
get to the equilibrium point, and hence poorer the attack
performance which can be seen in terms of the achieved
discounted return in Fig. 13. A greater standard deviation
of the consensus policy parameter indicates a better differ-
entiation between good and bad actions for a given state.
Fig. 14 plots the standard deviation of the consensus policy
parameter for different learning rates δ. It can be seen that
for higher learning rates, the consensus has a higher stan-
dard deviation hence being able to perform better than the
consensus achieved under lower learning rates.

We also compare the performance of the AdAMInG attack in
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Figure 10. [GridWorld] Comparison of probability of success-
ful attack psa(%) under different attack models for FedRL and
ComA-FedRL.
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Figure 11. [GridWorld] Average communication intervals for ad-
versarial and non adversarial agents in ComA-FedRL

relation to the scaling factor λ and the number of agents n.
According to Eq. 13 an increase in the number of agents can
be compensated by increasing the scaling factor λ to achieve
the same attacking performance. We analyse the AdAMInG
attack for the following two configurations: (λ = 1, n = 8)
and (λ = 2, n = 12). Table 3 reports the psa and the stan-
dard deviation of the consensus policy parameter θ∗. It can
be seen that both the configurations generate similar num-
bers. The same trend can be observed temporally, in Fig. 15,
for the achieved discounted return during each episode in
training.
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Figure 12. [GridWorld] Based on the learning rate, the consensus
gets converged to an intermediate value
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Algorithm 1 Communication Aware Federated RL
Initialization: Number ofagents n, θ0i ∈ Rd, step size
δk, base comm ∈ R, comm[i] = base comm ∀i ∈
{0, n− 1}, wait comm ∈ R

for k = 1, 2, 3, . . . do
% Pre-train phase
if k ≤ wait comm then

if k%base comm = 0 then
for each agent i in parallel do
θ
(k+1)−
i ← ClientUpdate

(
i, θk+i

)

r ← CrossEvalPolicies
(
r, θ(k+1)−)

else
Calculate smoothing average parameters αk, βk

comm← UpdateCommInt(r, comm)

for each agent i in parallel do
if k%comm[i] = 0 then

θ
(k+1)−
i ← ClientUpdate

(
i, θk+i

)

num active agents = 0

for each agent i do
if k%comm[i] = 0 then

num active agents+=1

θ
(k+1)+
i = αkθ

(k+1)−
i + βk

∑

i̸=j

θ
(k+1)−
j

Send θ
(k+1)+
i back to client i

if num active agents = n then
r ← CrossEvalPolicies

(
r, θ(k+1)−)

function CrossEvalPolicies(r, θ)
for each agent i in parallel do

Randomly assign each agent i another agent j with-
out replacement
rj .append(ClientEvaluate(i, θj))

return r

function ClientUpdate(i, θ)
Compute the gradient of the local value function
∂V

πθ
i (ρi)

∂θsi,ai
based on the local data;

Update the policy parameter

θ− = θ + δk
∂V πθ

i (ρi)

∂θsi,ai

return θ−

function ClientEvaluate(i, θj)
Evaluate the policy θj on agent i and return the cumu-
lative reward ret
return ret
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Figure 13. [GridWorld] Cumulative return (moving average of 60)
for different learning rate (δ) and n = 12
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Table 3. [GridWorld] Relationship between λ and n for same at-
tack performance with AdAMInG

Configuration Learning rate δ psa% std

λ = 1, n = 8 0.2 99.75% 0.036
λ = 2, n = 12 0.2 99.49% 0.031
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Figure 15. [GridWorld] Relationship between λ and n for
same AdAMInG attack performance. (λ = 1, n = 8) and
(λ = 2, n = 12) follows the same discounted return across
episodes which is in accordance with Eq. 13
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Table 4. Training hyper-parameters for GridWorld and AutoNav

HyperParameter GridWorld AutoNav
Functional Mapping Tabular Neural Network
Number of agents 4, 8, 12 4
Algorithm REINFORCE REINFORCE
Max Episodes 1000 4000
Gamma 0.95 0.99
Learning rate Variable 1e-4
base comm 8 8
wait train 600 1000
Gradient clip norm None 0.1
Optimizer type ADAM ADAM
Entropy Regularizer None 0.5
Training station GTX1080 GTX1080
Training Time 9 hours 35 hours

Figure 16. [AutoNav] Floor plan and screenshot of the four 3-
D environments used (from left to right: Indoor-twist, Indoor-
pyramid, Indoor-frogeyes, Indoor-complex).
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Figure 17. [AutoNav] C3F2 neural network used to map states to
action probabilities

Algorithm 2 Update Communication Intervals
function UpdateCommInt(rm×n, comm)

Initialize low comm, high comm, rth
for each agent i do

Average the rewards across episodes

ravg ←
1

m

m−1∑

j=0

r[:, i]

if ravg ≥ rth then
comm[i] = low comm

else if ravg < rth then
if comm[i] ̸= low comm then
comm[i] = 2 ∗ comm[i]

else
comm[i] = high comm


