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Abstract—The remarkable advancements in artificial intel-
ligence (AI), primarily driven by deep neural networks, are
facing challenges surrounding unsustainable computational tra-
jectories, limited robustness, and a lack of explainability. To
develop next-generation cognitive AI systems, neuro-symbolic AI
emerges as a promising paradigm, fusing neural and symbolic
approaches to enhance interpretability, robustness, and trustwor-
thiness, while facilitating learning from much less data. Recent
neuro-symbolic systems have demonstrated great potential in
collaborative human-AI scenarios with reasoning and cognitive
capabilities. In this paper, we aim to understand the workload
characteristics and potential architectures for neuro-symbolic AI.
We first systematically categorize neuro-symbolic AI algorithms,
and then experimentally evaluate and analyze them in terms of
runtime, memory, computational operators, sparsity, and system
characteristics on CPUs, GPUs, and edge SoCs. Our studies
reveal that neuro-symbolic models suffer from inefficiencies on
off-the-shelf hardware, due to the memory-bound nature of
vector-symbolic and logical operations, complex flow control,
data dependencies, sparsity variations, and limited scalability.
Based on profiling insights, we suggest cross-layer optimization
solutions to improve the performance, efficiency, and scalability
of neuro-symbolic computing. Finally, we discuss the challenges
and potential future directions of neuro-symbolic AI from both
system and architectural perspectives.

I. INTRODUCTION

The remarkable advancements in AI have had a profound
impact on our society. These advancements are primarily
driven by deep neural networks and a virtuous cycle involving
large networks, extensive datasets, and augmented computing
power. As we reap the benefits of this success, there is growing
evidence that continuing our current trajectory may not be
viable for realizing AI’s full potential. First, the escalating
computational requirements and energy consumption associ-
ated with AI are on an unsustainable trajectory [1], threatening
to reach a level that could stifle innovation by restricting it
to fewer organizations. Second, the lack of robustness and
explainability remains a significant challenge, likely due to
inherent limitations in current learning methodologies [2],
[3]. Third, contemporary AI systems often operate in iso-
lation with limited collaboration among humans and other
AI agents. Hence, it is imperative to develop next-generation
AI paradigms that address the growing demand for enhanced
efficiency, explainability, and trust in AI systems.

Neuro-symbolic AI represents an emerging AI paradigm
that integrates the neural and symbolic approaches with prob-
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Fig. 1: Overview of neuro-symbolic AI systems, workload characteri-
zations, optimization solutions, challenges, and research opportunities
in improving the performance of next-generation cognitive AI.

abilistic representations to enhance explainability, robustness
and facilitates learning from much less data in AI (Fig. 1).
Neural methods are highly effective in extracting complex
features from data for vision and language tasks. On the other
hand, symbolic methods enhance explainability and reduce
the dependence on extensive training data by incorporating
established models of the physical world, and probabilistic
representations enable cognitive systems to more effectively
handle uncertainty, resulting in improved robustness under
unstructured conditions. The synergistic fusion of neural and
symbolic methods positions neuro-symbolic AI as a promising
paradigm capable of ushering in the third wave of AI [4]–[7].

Neuro-symbolic AI promises possibilities for systems that
acquire human-like communication and reasoning capabili-
ties, enabling them to recognize, classify, and adapt to new
situations autonomously. For example, neuro-vector-symbolic
architecture [8] is able to reach 98.8% accuracy on spatial-
temporal reasoning tasks, greatly surpassing human perfor-
mance (84.4%), neuro-only ResNet (53.4%) and GPT-4 per-
formance (89.0%). In addition to its superior performance in
vision and language [9]–[11], neuro-symbolic AI holds sig-



nificant potential for enhancing explainability and trustworthi-
ness of collaborative human-AI applications [12]–[14]. These
applications include collaborative robotics, mixed-reality sys-
tems, and human-AI interactions, where robots can seamlessly
interact with humans in environments, agents can reason and
make decisions in an explainable manner, and intelligence is
pervasively embedded and untethered from the cloud.

Despite the promising algorithmic performance, the higher
memory intensity, greater kernel heterogeneity, and access
pattern irregularity of neuro-symbolic computing lead to an
increasing divergence from the current hardware roadmap
that largely optimizes for matrix multiplication and convo-
lution [15]–[21] and lead to severe inefficiencies and un-
derutilization of hardware. Therefore, understanding its com-
putational and memory demands is essential for efficient
processing on both general-purpose and custom hardware.

Our goal in this work is to quantify the workload character-
istics and potential system architecture for neuro-symbolic AI.
To this end, we first systematically review and categorize state-
of-the-art neuro-symbolic AI workloads in a structured manner
(Sec. II). We then characterize seven representative neuro-
symbolic workloads on general-purpose and edge platforms,
analyzing their runtime, memory, compute operators, opera-
tion graph, hardware utilization, and sparsity characteristics
(Secs. III, IV, V). Our workload characterization provides new
observations and insights, including the following:

• Neuro-symbolic AI models typically exhibit high latency
compared to neural models, prohibiting them from real-
time applications.

• The neural components mainly consist of MatMul and
Convs, while the symbolic components are dominated by
vector/element-wise tensor and logical operations which
are computed inefficiently on off-the-shelf CPUs/GPUs
and may result in system bottlenecks.

• The hardware inefficiency of symbolic operations typi-
cally is due to low ALU utilization, low cache hit rates,
and high volume of data movement.

• The neural workloads are compute-bounded while the
symbolic workloads are typically memory-bounded and
face potential scalability issues.

• The symbolic operations may depend on the neural mod-
ule results or need to compile into the neural structure,
thus lying on the critical path of end-to-end neuro-
symbolic systems.

• Some neural and vector-symbolic components demon-
strate a high level of unstructured sparsity with variations
under different task scenarios and attributes.

Inspired by our workload profiling insights, we recommend
several cross-layer software and hardware optimization so-
lutions to improve the efficiency and scalability of neuro-
symbolic systems (Sec. V). Finally, we explore the research
opportunities in neuro-symbolic computing and share our
outlook on the road ahead (Sec. VI).

To the best of our knowledge, this is one of the first works
to assess neuro-symbolic computing from both system and
architectural perspectives. We aim to inspire the design of

next-generation cognitive computing systems through syner-
gistic advancements in neuro-symbolic algorithms, systems,
architecture, and algorithm-hardware co-design.

II. NEURO-SYMBOLIC AI ALGORITHMS

In this section, we systematically review and categorize the
recent research progress in neuro-symbolic AI algorithms.

Overview. Neuro-symbolic AI represents an interdisci-
plinary approach that synergistically combines symbolic rea-
soning with neural network (NN) learning to create intelligent
systems, leveraging the complementary strengths of both to
enhance the accuracy and interpretability of the resulting
models. Given that neuro-symbolic algorithms incorporate
both symbolic and neural components, various paradigms
can be categorized based on how these components are in-
tegrated into a cohesive system. Inspired by Henry Kautz’s
taxonomy [35], we systematically categorize these algorithms
into five paradigms (Tab. I). We elaborate on each of these
paradigms below. Additionally, Tab. II provides examples of
several underlying operations based on the categorization in
Tab. I.

Symbolic[Neuro] refers to an intelligent system that em-
powers symbolic reasoning with the statistical learning capa-
bilities of NNs. These systems typically consist of a compre-
hensive symbolic problem solver that includes loosely-coupled
neural subroutines for statistical learning. Examples include
DeepMind’s AlphaGo [22] and AlphaZero [36], which use
Monte-Carlo Tree Search (MCTS) as the symbolic solver and
NN state estimators for learning statistical patterns.

Neuro|Symbolic refers to a hybrid system that combines
a neural system and a symbolic system in a pipeline, where
each component typically specializes in complementary tasks
within the pipeline. To the best of our knowledge, the major-
ity of neuro-symbolic algorithms fall into this category. For
example, IBM’s neuro-vector-symbolic architecture (NVSA)
[8] uses an NN as the perception frontend for semantic
parsing and a symbolic reasoner as the backend for prob-
abilistic abductive reasoning on the RAVEN [37] and I-
RAVEN [38] datasets. Probabilistic abduction and execution
(PrAE) learner [26] adopts a similar approach where the dif-
ference lies in features are first projected to high-dimensional
vectors in NVSA, whereas PrAE utilizes the original fea-
tures directly as the NN’s input. Other examples include
vector symbolic architecture-based image-to-image translation
(VSAIT) [11], neuro-probabilistic soft logic (NeuPSL) [23],
neural probabilistic logic programming (DeepProbLog) [39],
neuro-answer set programming (NeurASP) [10], neural sym-
bolic dynamic reasoning [40], neural symbolic concept learner
(NSCL) [9], abductive learning (ABL) [24], and neuro-
symbolic visual question answering (NSVQA) [25] on the
CLEVRER dataset [41].

Neuro:Symbolic→Neuro approach incorporates symbolic
rules into NNs to guide the learning process, where symbolic
knowledge is compiled into the structure of neural models
for enhancing the model interpretability. For instance, logical
NNs (LNNs) [27], [42] encode knowledge or domain expertise
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Category Category Description Neuro-Symbolic Algorithm Underlying Operation If Vector
Symbolic[Neuro] End-to-end symbolic system that uses neural models internally as a subroutine AlphaGo [22] NN, MCTS Vector

Neuro|Symbolic Pipelined system that integrates neural and symbolic components where
each component specializes in complementary tasks within the whole system

NVSA [8] NN, mul, add, circular conv. Vector
NeuPSL [23] NN, fuzzy logic Vector

NSCL [9] NN, add, mul, div, log Vector
NeurASP [10] NN, logic rules Non-Vector

ABL [24] NN, logic rules Non-Vector
NSVQA [25] NN, pre-defined objects Non-Vector
VSAIT [11] NN, binding/unbinding Vector
PrAE [26] NN, logic rules, prob. abduction Vector

Neuro:Symbolic→Neuro End-to-end neural system that compiles symbolic knowledge externally
LNN [27] NN, fuzzy logic Vector

Symbolic Math [28] NN Vector
Differentiable ILP [29] NN, fuzzy logic Vector

NeuroSymbolic
Pipelined system that maps symbolic first-order logic onto embeddings

serving as soft constraints or regularizers for neural model
LTN [30] NN, fuzzy logic Vector
DON [31] NN Vector

Neuro[Symbolic] End-to-end neural system that uses symbolic models internally as a subroutine
GNN+attention [32] NN, SpMM, SDDMM Vector

ZeroC [33] NN (energy-based model, graph) Vector
NLM [34] NN, permutation Vector

TABLE I: Review of recent neuro-symbolic AI algorithms into five categories, with their underlying operations and vector formats.

TABLE II: Enumeration of the underlying operations based on Tab. I.

Underlying Operations Examples
Fuzzy logic

(LTN)
F = ∀x(isCarnivor(s)) → (isMammal(x))

{isCarnivor(s):[0, 1], isMammal(x):[1, 0]} → F = [1, 0]

Mul, Add, and Circular Conv.
Xi ∈ {+1,−1}d → (Xi ·Xj)/(Xi +Xj)(NVSA)

Logic rules
(ABL)

Domain: animal(dog).carnivore(dog).mammal(dog)
Logical formula: mammal(x) ∧ carnivore(x)

ABL: hypos(x) : −animal(x),mammal(x), carnivore(x)

Pre-defined objects
(NSVQA)

equal_color: (entry, entry) → Boolean
equal_integer: (number, number) → Boolean

as symbolic rules (first-order logic or fuzzy logic) that act
as constraints on the NN output. Other examples include the
application of deep learning for symbolic mathematics [28]
and differentiable inductive logic programming (ILP) [29].

NeuroSymbolic is a type of hybrid approach that combines
symbolic logic rules with NNs. It involves mapping symbolic
logic rules onto embeddings that serve as soft constraints or
regularizers on the NN’s loss function. Logical tensor networks
(LTNs) [30], for instance, use logical formulas to define con-
straints on the tensor representations, which have proven suc-
cessful in knowledge graph completion tasks. These tasks aim
to predict missing facts or relationships between entities. Other
examples of this approach include deep ontology networks
(DONs) [31] and tensorization methods [43]. As inference is
still governed by NNs, it remains a research question whether
this approach will compromise interpretability.

Neuro[Symbolic] refers to a system that empowers NNs
with the explainability and robustness of symbolic reasoning.
Unlike Symbolic[Neuro], where symbolic reasoning is used to
guide the neural model learning process, in Neuro[Symbolic],
the neural model incorporates symbolic reasoning by paying
attention to a specific symbolic at certain conditions. For
instance, graph neural networks (GNNs) are adopted for rep-
resenting symbolic expressions when endowed with attention
mechanisms [32]. In particular, this attention mechanism can
be leveraged to incorporate symbolic rules into GNN models,
enabling selective attention to pertinent symbolic information
in the graph. Other examples include neural logic machines

(NLM) [34] and Zero-shot concept recognition and acquisition
(ZeroC) [33]. ZeroC leverages the graph representation where
the constituent concept models are represented as nodes and
their relations are represented by edges.

Each neuro-symbolic category reflects different kernel op-
erators and data dependencies. Therefore, this paper takes
one of the first steps towards understanding its computing
characteristics and aims to serve as a cornerstone for the
design and deployment of future neuro-symbolic systems.

III. REPRESENTATIVE NEURO-SYMBOLIC MODELS

This section presents selected widely-used neuro-symbolic
AI workloads as representative ones for our analysis. We
consider them representative because they are diverse in terms
of applications, model structures, and computational patterns.

A. Model Overview.

We select seven neuro-symbolic AI models for profiling
analysis (Tab. III): LNN on logic program tasks [27], LTN on
querying and reasoning tasks [30], NVSA [8] on the Raven’s
Progressive Matrices task [37], NLM on relational reasoning
and decision making tasks [34], VSAIT on unpaired image-to-
image translation tasks [11], ZeroC on cross-domain classifi-
cation and detection tasks [33], and PrAE on spatial-temporal
reasoning tasks [26]. These selected workloads represent
Neuro:Symbolic→Neuro, NeuroSymbolic, Neuro|Symbolic,
and Neuro[Symbolic] systems (Sec. II), respectively. Interested
readers could refer to their references for more details.

B. Logical Neural Network (LNN)

LNN is a neuro-symbolic framework to simultaneously
provide key properties of both neural (learning) and symbolic
logic (knowledge and reasoning) – toward direct interpretabil-
ity, utilization of rich domain knowledge realistically, and the
general problem-solving ability of a full theorem prover [27].

Algorithm Description. LNNs create a one-to-one cor-
respondence between neurons and the elements of logical
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Representative Neuro-
Symbolic AI Workloads

Logic Neural
Network [27]

Logic Tensor
Network [30]

Neuro-Vector-Symbolic
Architecture [8]

Neural Logic
Machine [34]

Vector Symbolic Architecture
Image2Image Translation [11]

Zero-shot Concept Recog-
nition and Acquisition [33]

Probabilistic Abduction
and Execution [26]

Abbreviation LNN LTN NVSA NLM VSAIT ZeroC PrAE
Neuro-Symbolic Category Neuro:Symbolic→Neuro NeuroSymbolic Neuro|Symbolic Neuro[Symbolic] Neuro|Symbolic Neuro[Symbolic] Neuro|Symbolic

Learning Approach Supervised Supervised/Unsupervised Supervised/Unsupervised Supervised/Unsupervised Supervised Supervised Supervised/Unsupervised

Deployment
Scenario

Application
Learning and reasoning,

Full theorem prover

Querying, learning, reasoning
(relational and embedding
learning, query answering)

Fluid intelligence,
Abstract reasoning

Relational reasoning,
Decision making

Unpaired image-to-image
translation

Cross-domain classification
and detection, Concept

acquisition

Fluid intelligence,
Spatial-temporal reasoning

Advantage vs.
Neural Model

Higher interoperability,
resilience to incomplete

knowledge, generalization

Higher data efficiency,
comprehensibility, out-of-
distribution generalization

Higher joint representations
efficiency, abstract reasoning

capability, transparency

Higher generalization,
logic reasoning, deduction,

explainability capability

Address semantic flipping and
hallucinations issue in unpaired

image translation tasks

Higher generalization, concept
acquisition and recognition,
compositionality capability

Higher generalization,
transparency, interpre-
tability, and robustness

Dataset
LUBM benchmark [44],
TPTP benchmark [45]

UCI [46], Leptograpsus
crabs [47], DeepProbLog [48]

RAVEN [37],
I-RAVEN [38], PGM [49]

Family graph reasoning,
sorting, path finding [50]

GTA [51], Cityscapes [52],
Google Maps dataset [53]

Abstraction reasoning [54],
Hierarchical-concept corpus [55]

RAVEN [37],
I-RAVEN [38], PGM [49]

Computation
Pattern

Datatype FP32 FP32 FP32 FP32 FP32 INT64 FP32
Neural Graph MLP ConvNet Sequential tensor ConvNet Energy-based network ConvNet

Symbolic FOL/Logical operation FOL/Logical operation VSA/Vector operation FOL/Logical operation VSA/Vector operation Graph, vector operation VSA/Vector operation

TABLE III: Selected neuro-symbolic AI workloads for analysis, representing a diverse of categories, applications, and computational patterns.

formulae, using the observation that weights of neurons can
be constrained to act as, e.g., AND or OR gates. At a high
level, LNNs use parameterized functions to represent logical
connectives (e.g. ∧,∨). This is done by defining constraints
that ensure the functions behave like the corresponding logical
operators. These logical connectives are implemented using
learnable parameters, subject to certain constraints to maintain
their logical properties. LNN then combines facts and logical
rules within a neural network framework by mapping such an
NN to weighted real-valued logics via Łukasiewicz logic [30].

Advantage over Neural Model. Compared with neural
models, LNNs exhibit remarkable per-neuron interoperability
via full logical expressivity, improved tolerance to incomplete
knowledge via truth bounds, and diverse-task generality via
omnidirectional inference. The LNN structure is compositional
and modular, and the representation is disentangled and in
probabilistic semantics, excelling in theorem prover tasks.

C. Logical Tensor Network (LTN)

LTN is a neuro-symbolic framework that supports querying,
learning, and reasoning with both rich data and abstract
knowledge [30]. By representing the degree of real-world
knowledge as continuous and differentiable fuzzy first-order
logic (FOL), LTN provides a uniform language to compute
efficiently AI tasks such as multi-label classification, relational
learning, data clustering, semi-supervised learning, regression,
embedding learning and query answering [56]–[58].

Algorithm Description. LTN introduces a fully differen-
tiable logical language whereby the elements of an FOL signa-
ture are grounded onto data using neural computational graphs
and first-order fuzzy logic semantics. Connectives (∧,∨,¬,→)
are transformed into real values with fuzzy logic. Object fea-
tures are represented with vectors with real values. Quantifiers
(∀,∃) are interpreted with approximate aggregations [30]. With

the fuzzy FOL input being transformed into tensors, a network
is then exploited to compute the degree of truth with a given
embedded tensor representation of constants and symbols.

Advantage over Neural Model. LTN offers the prospect
of expressing knowledge using logical axioms over data and
thus provides better explainability, data efficiency, and out-of-
distribution generalization capability over neural networks.

D. Neuro-Vector-Symbolic Architecture (NVSA)

NVSA is a neuro-symbolic architecture that advances fluid
intelligence and abstract reasoning capability assessed by
Raven’s progressive matrices (RPM) [8]. NVSA synergisti-
cally combines neural network visual perception and vector-
symbolic probabilistic reasoning to facilitate a differentiable
and computationally efficient abduction reasoning process.

Algorithm Description. NVSA enables reasoning general-
ization by exploiting the powerful operators on holographic
distributed representations that synergistically combine neural
and symbolic to co-design visual perception and probabilistic
reasoning. The neural frontend consists of a neural network
and a codebook to construct perceptual representations where
it transduces visual sensory to fixed-width vector-symbolic
representations and maintains perceptual uncertainty. The
symbolic backend consists of probabilistic scene inference,
symbolic rule reasoning, and rule execution where it maps
the inferred probability into vector space to substitute the
exhaustive probability computations into algebraic operations.

Advantage over Neural Model. Neural models suffer from
the binding problem and superposition catastrophe that pre-
vents them from providing an adequate description of objects
or situations that can be represented by hierarchical and nested
compositional structures [8]. NVSA bypasses this problem and
exhibits superior accuracy over all neural methods and even



human performance on RPM tests which has been a widely
used assessment of fluid intelligence and abstract reasoning.

E. Neural Logic Machine (NLM)

NLM is a neuro-symbolic architecture for both inductive
learning and logical reasoning [34]. NLM exploits the power
of neural networks as function approximators and logic pro-
gramming as symbolic processors for objects with properties,
relations, logic connectives, and quantifiers.

Algorithm Description. NLM is a neural realization of
logic machines with the key intuition that logic operations
such as logical ANDs and ORs can be efficiently approximated
by neural networks and the wiring among neural modules
can realize the logic quantifiers. NLM encompasses a multi-
layer multi-group architecture that takes object properties and
relations as input tensors, performs sequential logic deduction
computations, and outputs conclusive properties or relations of
the objects. As the number of layers increases, NLM is able
to form higher levels of abstraction.

Advantage over Neural Model. NLM exhibits perfect
generalization capability in relational reasoning and decision-
making compared to neural approaches. After being trained on
small-scale tasks (e.g., sorting short arrays), NLMs can recover
lifted rules and generalize to large-scale tasks (e.g., sorting
longer arrays). Most of these tasks are hard to accomplish for
neural networks (such as memory networks [59], graph neural
networks [60]) or inductive logic programming [29] alone.

F. Vector Symbolic Architecture-Based Image-to-Image Trans-
lation (VSAIT)

VSAIT is a neuro-symbolic architecture that can effectively
address semantic flipping issues when the distribution gap
(shift in semantic statistics) between source and target domains
is large [11]. VSAIT exploits the vector-symbolic architecture
(VSA) to ensure photorealism in computer graphics applica-
tions and learn downstream tasks using translated images.

Algorithm Description. VSAIT addresses semantic flip-
ping by learning an invertible mapping in a holographic vector
space to ensure consistency between source and translated
images. VSAIT extracts features and uses locality-sensitive
hashing with a neural network to encode source, target, and
translated images into the random vector-symbolic hyperspace.
VSAIT learns to generate images with hypervectors similar to
those in the target domain, unbinds source information (e.g.,
texture and color), and binds target information as well as vice
versa to recover source content.

Advantage over Neural Model. Neural models still suffer
from significant artifacts and hallucinations related to semantic
flipping, while VSAIT ensures robustness to semantic flipping
and significantly reduces image hallucinations observed for
unpaired image translation between domains with large gaps.

G. Zero-Shot Concept Recognition and Acquisition (ZeroC)

ZeroC is a neuro-symbolic architecture that can recognize
and acquire novel visual concepts in a zero-shot manner [33].
ZeroC exploits the symbolic graph structure to acquire model

concepts and relations and apply them to cross-domain clas-
sification and detection tasks at inference time.

Algorithm Description. The key components of ZeroC are
concepts and relations. Each concept consists of a graph and an
energy-based model. The concept graph describes the concept
as a composition of its constituent concepts and relations,
and the concept energy-based model recognizes the concept
in the input data. Each relation is also represented with a
graph and an energy-based model, where the relation graph
is an edge that connects the two related concepts, and the
hierarchical concept is composed of constituent concepts as
nodes and relations as edges according to a graph structure.
During zero-shot concept recognition and acquisition in infer-
ence, the new hierarchical concept models are derived from
the graph of the new hierarchical concept and energy-based
models of their constituent concepts and relations. Concepts
and relations can be viewed as templates for objects and their
connections, which then get grounded during inference with
specific images, where those objects and relations are assigned
actual values.

Advantage over Neural Model. ZeroC exhibits remarkable
zero-shot concept recognition and acquisition capability, which
is still beyond the reach of neural models that require many
examples (as in typical supervised learning) or many tasks
drawn from the same distribution (as in few-shot learning) to
learn a novel concept. ZeroC is able to transfer hierarchical
concepts across different domains at inference, unlocking
potential applications in more diverse tasks, such as AI for
scientific discovery and composable neural systems.

H. Probabilistic Abduction and Execution (PrAE) Learner

PrAE is a neuro-symbolic learner for spatial-temporal cog-
nitive reasoning tasks serving as an indicator of human fluid
intelligence [26]; central to the PrAE learner is the process of
probabilistic abduction and execution on a probabilistic scene
representation, akin to the mental manipulation of objects.

Algorithm Description. PrAE learner consists of neural
visual perception and symbolic logical reasoning. The neural
visual frontend operates on object-based representation and
predicts conditional probability distributions on its attributes.
A scene inference engine then aggregates all object attribute
distributions to produce a probabilistic scene representation.
The symbolic logical backend abduces, from the representa-
tion, hidden rules that govern the time-ordered sequence via
inverse dynamics. An execution engine executes the rules to
generate the representation in a probabilistic planning manner.
PrAE learner system is trained end-to-end in an analysis-by-
synthesis manner without any visual attribute annotations.

Advantage over Neural Model. PrAE learner exhibits
superior capability in spatial-temporal cognitive reasoning and
fluid intelligence than neural models. Additionally, the PrAE
learner offers human-level systematic generalizability, as well
as transparency and interpretability to incorporate knowledge,
which is hard to achieve with classic deep models.



IV. WORKLOAD CHARACTERIZATION METHODOLOGY

This section presents our neuro-symbolic AI workload pro-
filing methodology (Sec. IV-A) and operator characterization
taxonomy (Sec. IV-B) that will be leveraged in Sec. V.

A. Workload Profiling Methodology

We first conduct function-level profiling to capture statistics
such as runtime, memory, invocation counts, tensor sizes, and
sparsity of each model, by leveraging the built-in PyTorch
Profiler [61]. We also perform post-processing to partition the
characterization results into various operation categories. The
experiments are conducted on a system with Intel Xeon Silver
4114 CPU and Nvidia RTX 2080 Ti GPU (250W), as well as
edge SoCs such as Xavier NX (20W) and Jetson TX2 (15W).

B. Workload Characterization Taxonomy

On top of function-level profiling, we further conduct com-
pute operator-level profiling for further analysis. We classify
each neural and symbolic workload of the LNN, LTN, NVSA,
NLM, VSAIT, ZeroC, and PrAE neuro-symbolic models into
six operator categories: convolution, matrix multiplication
(MatMul), vector/element-wise tensor operation, data transfor-
mation, data movement, and others [4].

Convolution: refers to operations involving overlaying a
matrix (kernel) onto another matrix (input) and computing the
sum of element-wise products. This process is slid across the
entire matrix and transforms the data. Convolution is common
in neural networks and leads to high operational intensity.

Matrix Multiplication: refers to general matrix multipli-
cation (GEMM) with two matrices, either dense or sparse.
Fully-connected layers in neural networks use GEMM as their
primary mathematical operation. Multiplication of large, dense
matrices is typically computationally intensive but highly par-
allelizable. There is typically a trade-off between the generality
of the sparsity and the overhead of hardware optimization.
Sparse matrix multiplication requires efficient mechanisms to
perform lookups into the tables of non-zero values.

Vector/Element-wise Tensor Operation: refers to opera-
tions performed element-wise on tensors (generalized matri-
ces, vectors, and higher-dimensional arrays), including addi-
tion, subtraction, multiplication, and division, applied between
two tensors element by element, as well as activation, normal-
ization, and relational operations in neuron models.

Data Transformation: refers to operations that reshape or
subsample data, including matrix transposes, tensor reordering,
masked selection, and coalescing which is a process in which
duplicate entries for the same coordinates in a sparse matrix
are eliminated by summing their associated values.

Data Movement: refers to data transferring from memory-
to-compute, host-to-device, and device-to-host, as well as
operations such as tensor duplication and assignment.

Others: refers to operations such as fuzzy first-of-logic
and logical rules that are leveraged in several symbolic AI
workloads.

V. WORKLOAD CHARACTERIZATION RESULTS

This section analyzes the performance characteristics of
representative neuro-symbolic workloads and discusses their
runtime latency and scalability (Sec. V-A), compute operators
(Sec. V-B), memory usage and system bottleneck (Sec. V-C),
operation graph (Sec. V-D), hardware utilization (Sec. V-E),
and sparsity (Sec. V-F).

A. Compute Latency Analysis

End-to-end latency breakdown. We first characterize
the end-to-end latency of representative neuro-symbolic AI
workloads (Fig. 2). We can observe that (1) Compared to
neural workloads, symbolic workloads are not negligible in
computing latency and may become a system bottleneck. For
example, the neural (symbolic) workloads account for 54.6%
(45.4%), 48.0% (52.0%), 7.9% (92.1%), 39.4% (60.6%),
16.3% (83.7%), 73.2% (26.8%), and 19.5% (80.5%) runtime
of LNN, LTN, NVSA, NLM, VSAIT, ZeroC, and PrAE mod-
els, respectively. Notably, the symbolic workload dominates
the NVSA’s runtime, predominately due to the sequential
and computational-intensive rule detection during the involved
reasoning procedure. (2) The real-time performance cannot be
satisfied, e.g., RTX 2080Ti GPU takes 380 s and TX2 takes
7507 s for RPM task in NVSA. Even if more computing
resources are available to reduce neural inference time, the
significant overhead of vector-symbolic-based reasoning still
prohibits real-time execution. (3) The symbolic operations may
not be well accelerated by GPU. For example, symbolic counts
for 92.1% of total NVSA inference time on RTX 2080Ti while
its floating-point operations (FLOPS) count for only 19% of
total FLOPS, indicating inefficient hardware computation.

Takeaway 1: Neuro-symbolic AI models typically exhibit
high latency compared to neural models, prohibiting them
from real-time applications. Symbolic operations are typically
processed inefficiently on off-the-shelf CPU/GPUs and may
result in system bottlenecks.

End-to-end latency scalability. We evaluate the end-to-
end runtime across various task sizes and complexities, as
shown in Fig. 2c of RPM task for NVSA. We can observe
that (1) The neural vs. symbolic runtime proportion remains
relatively stable across various task sizes. For example, when
task size increases from 2×2 to 3×3, the symbolic runtime
slightly changes from 91.59% to 87.35%. (2) The total runtime
increases quadratically with task size evolving. For example,
the total runtime increases 5.02× in the above case, indicating
the potential scalability bottleneck of neuro-symbolic models.

Takeaway 2: The neural and symbolic components run-
time ratio remains relatively stable while total latency explodes
with the cognitive reasoning task complexity evolving. The
potential scalability bottleneck calls for highly scalable and
efficient architecture.

Recommendation 1: Optimization on neuro-symbolic
workloads from algorithm-system-hardware-technology cross-
layer perspectives is highly desirable for achieving real-time,
efficient and scalable cognitive systems.
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B. Compute Operator Analysis

Fig. 3a partitions the neural and symbolic workloads of the
LNN, LTN, NVSA, NLM, VSAIT, ZeroC, and PrAE work-
loads into six operator categories (Sec. IV-B) with runtime
latency breakdown. We make the following observations:

Neural Workload Analysis. The neural workload is dom-
inated by the MatMul and activation operations. LTN (neuro)
is dominated by MatMul due to its heavy MLP components,
while NVSA, VSAIT, and PrAE’s (neuro) majority runtime
is on MatMul and convolution because they adopt the neural
network as the perception backbone for feature extraction. By
contrast, a large portion of LNN and NLM’s (neuro) runtime
is on vector and element-wise tensor operations due to the
sparse syntax tree structure composed of proposition logic
and the sequential logic deduction computations on multi-
group architecture. Notably, data movement also takes up a
significant amount of LNN (neuro) runtime because of its
unique bidirectional dataflow during reasoning inference.

Symbolic Workload Analysis. The symbolic workload is
dominated by vector and scalar operations that exhibit low
operational intensities and complex control flows. Both LNN,
LTN, and NLM’s (symbolic) have a large number of logic
operations, posing parallelism optimization opportunities in
their database queries and arithmetic operations, especially
for larger symbolic models. Meanwhile, LNN (symbolic)
is severally data movement-bounded due to its sparse and
irregular memory accesses and bidirectional inference, where

model-aware dataflow architecture would likely be beneficial
for alleviating this bottleneck. NVSA, VSAIT, and PrAE’s
(symbolic) are composed of vectors for vector-symbolic op-
erations. Notably, these operations usually stem from high-
dimensional distributed vector computations (e.g., binding,
bundling) for symbolic representation, which are difficult
to process efficiently on GPUs. Therefore, the challenges
of accelerating these computations will become increasingly
important as the task and feature complexities further grow.

Takeaway 3: The neural components mainly consist of
MatMul and Convs, while the symbolic components are dom-
inated by vector/element-wise tensor and logical operations
which are computed inefficiently on GPUs. The data transfer
overhead arising from the separate neural and symbolic ex-
ecution on GPUs and CPUs poses efficient hardware design
challenges.

Recommendation 2: From the architecture level, custom
processing units can be built for efficient symbolic operations
(e.g., high-dimensional distributed vectors, logical operation,
graph, etc). For non-overlap neural and symbolic components,
reconfigurable processing units supporting both neural and
symbolic operations are recommended.

C. Memory and System Analysis

Memory Usage Analysis. Fig. 3b characterizes the memory
usage of the LNN, LTN, NVSA, NLM, VSAIT, ZeroC, and
PrAE workloads during computation. We can observe that (1)
PrAE (symbolic) consumes a high ratio of memory due to its
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large number of vector operations depending on intermediate
results and exhaustive symbolic search. NVSA (symbolic)
slightly alleviates the vector-symbolic operation memory by
leveraging probabilistic abduction reasoning. ZeroC (neuro)
contains energy-based models and process images in a large
ensemble thus taking much memory. (2) In terms of storage
footprint, neural weights and symbolic codebooks typically
consume more storage. For example, neural network and holo-
graphic vector-inspired codebook account for >90% memory
footprint in NVSA, because NVSA neural frontend enables
the expression of more object combinations than vector space
dimensions, requiring the codebook to be large enough to con-
tain all object combinations and ensure quasi-orthogonality.

System Roofline Analysis. Fig. 3c employs the roofline
model to quantify the memory boundedness of RTX 2080Ti
GPU versions of the selected workloads. We observe that
the symbolic components are in the memory-bound area
while neural components are in the compute-bound area.
For example, NVSA and PrAE symbolic operations require
streaming vector elements to circular convolution computing
units, increasing the memory bandwidth pressure. Optimizing
the compute dataflow and leveraging the scalable and recon-
figurable processing element can help provide this bandwidth.

Takeaway 4: The symbolic operations are memory-
bounded due to large element streaming for vector-symbolic
operations. The neural operations are compute-bounded due
to computational-intensive MatMul and Convs. Neural weights
and vector-inspired codebooks typically account for most
memory storage while the symbolic components require large
intermediate caching during computation.

Recommendation 3: From the algorithm level, model
compression (e.g., quantization and pruning) and efficient
factorization of neural and symbolic components can be
used to reduce memory and data movement overhead without
sacrificing cognitive reasoning accuracy.

Recommendation 4: From the technology level, emerging
memory technology and compute-in-memory technique can al-
leviate the memory-bounded symbolic operations and improve
scalability, performance, area, and energy efficiency of neuro-
symbolic systems.

D. Operation and Dataflow

Fig. 4 analyzes the operation dependency in representative
neuro-symbolic workloads. We can observe that the reasoning
computation of NVSA, VSAIT, and PrAE depends on the re-
sult of the frontend neural workload and thus lies on the critical

TABLE IV: Hardware inefficiency analysis. The compute, memory,
and communication characteristics of representative neural and sym-
bolic kernels in NVSA workload executed on CPU/GPU platform.

Neural Kernel Symbolic Kernel
sgemm nn relu nn vectorized elem elementwise

Compute Throughput (%) 95.1 92.9 3.0 2.3
ALU Utilization (%) 90.1 48.3 5.9 4.5
L1 Cache Throughput (%) 79.7 82.6 28.4 10.8
L2 Cache Throughput (%) 19.2 17.5 29.8 22.8
L1 Cache Hit Rate (%) 1.6 51.6 29.5 33.3
L2 Cache Hit Rate (%) 86.8 65.5 48.6 34.3
DRAM BW Utilization (%) 14.9 24.2 90.9 78.4

path during inference. LNN, LTN, NLM, and ZeroC need to
compile the symbolic knowledge in neural representation or
input embeddings. The complex control results in inefficiency
in CPU and GPU, and the vector-symbolic computation period
results in low hardware utilization. There are opportunities for
data pre-processing, parallel rule query, and heterogeneous and
reconfigurable hardware design to reduce this bottleneck.

Takeaway 5: The symbolic operations depend on the neu-
ral module results or need to compile into the neural structure,
thus lying on the critical path of end-to-end neuro-symbolic
systems. The vector-symbolic computation phase and complex
control of neuro-symbolic components bring low hardware
resource utilization and inefficiency in CPU/GPU.

Recommendation 5: From the system level, adaptive
workload scheduling with parallelism processing of neural and
symbolic components can be leveraged to alleviate resource
underutilization and improve runtime efficiency.

E. Hardware Inefficiency Analysis

The hardware inefficiencies of executing neuro-symbolic
workloads mainly come from ALU underutilization, low cache
hit rate, and massive data transfer. We leverage Nsight Systems
and Nsight Compute tools [62], [63] to further characterize
the GPU behavior of executing selected neuro-symbolic work-
loads. Tab. IV lists the compute, memory, and data movement
characteristics of representative neural and symbolic kernels in
NVSA as an example. We observe that typically in symbolic
operations, the GPU ALU unit utilization is <10%, the L1
cache hit rate is around 20%, the L2 cache hit rate is around
40%, and DRAM bandwidth utilization is around 90% with
several memory-bounded. The data transfer memory opera-
tions account for around 50% of total latency, where >80%
is from host CPU to GPU. Additionally, the synchronization
overhead and waiting for GPU operations to complete results
in CPU underutilization.

Takeaway 6: While the neural kernels exhibit high com-
pute utilization and memory efficiency in GPUs, the symbolic
operations typically suffer from low ALU utilization, low L1
cache hit rates, and high memory transactions, which results
in low system efficiency.

Recommendation 6: From the architecture level, hetero-
geneous or reconfigurable neural/symbolic architecture with
efficient vector-symbolic units and high-bandwidth NoC can
be optimized to improve ALU utilization and reduce data
movement, thus improving system performance.
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F. Sparsity Analysis

Neuro-symbolic workloads also exhibit sparsity features.
For example, Fig. 5 characterizes the sparsity of NVSA sym-
bolic modules, including probabilistic mass function (PMF)-
to-VSA transform, probability computation, and VSA-to-PMF
transform, under different reasoning rule attributes. We can
observe that NVSA has a high sparsity ratio (>95%) with
variations for specific attributes and unstructured patterns.
Similarly, ZeroC and LNN also demonstrate >90% sparsity
ratio, while LTN features a dense computation pattern.

Takeaway 7: Some neural and vector-symbolic compo-
nents demonstrate a high level of unstructured sparsity with
variations under different task scenarios and attributes.

Recommendation 7: From the algorithm and architecture
level, sparsity-aware neural and symbolic algorithm and ar-
chitecture design can benefit memory footprint, communication
overhead, and computation FLOPS reduction.

G. Uniqueness of Neuro-Symbolic vs. Neural Networks

To summarize, based on the above workload characteriza-
tion, neuro-symbolic AI workloads differ from neural networks
mainly in three aspects:

Compute kernels. Neuro-symbolic workloads consist of
heterogeneous neural and symbolic kernels. The symbolic
operators (e.g., vector, graph, logic) are processed inefficiently
on off-the-shelf CPUs/GPUs with low hardware utilization and
cache hit and may result in runtime latency bottleneck.

Memory. Symbolic operations are memory-bounded due to
large element streaming for vector-symbolic operations. Sym-
bolic codebooks typically account for large memory footprints
and require large intermediate caching during computation.

Dataflow and scalability. Neuro-symbolic workloads ex-
hibit more complex control than NNs. Symbolic operations
either critically depend on the neural stage or need to compile
in neural structure. Their irregular dataflow, data dependency,
and sequential processing bring low parallelism scalability and
inefficiency in CPU/GPU.

VI. OUTLOOK AND RESEARCH OPPORTUNITIES

In this section, we discuss the challenges and opportunities
for neuro-symbolic systems, and outline our vision for the
future, focusing on the system and architecture perspectives.

Building ImageNet-like neuro-symbolic datasets. Neuro-
symbolic systems hold great potential in achieving human-like

performance [64]. However, their current applications are still
limited to basic decision-making and reasoning problems [65],
falling short of the broader vision of human cognitive abilities,
such as deductive reasoning, compositionality, and counterfac-
tual thinking. It is still an open question of how perception
learned from other domains can be transferred to abstract rea-
soning tasks [26]. To significantly advance the metacognitive
capabilities of neuro-symbolic systems, more challenging and
suitable datasets are highly desirable to unleash its potential.

Unifying neuro-symbolic models. Integrating neural, sym-
bolic, and probabilistic approaches offers promise to improve
AI models’ explainability and robustness. However, the current
attempts to combine these complementary approaches are
still in a nascent manner [66] - how to integrate them in a
principled manner remains a fundamental and open challenge.
We envision a unified framework to design algorithms that
opportunistically combine neural and symbolic with proba-
bilistic representations, and for quantifying scaling laws for
neuro-symbolic inference versus large neural models.

Developing efficient software frameworks. Neuro-
symbolic AI systems typically utilize underlying logic, such
as fuzzy logic, parameterization, and differentiable structures,
to support learning and reasoning capabilities. However, most
system implementations create custom software for deduction
for the particular logic, which limits modularity and extensi-
bility [67]. Thus, new software frameworks are needed that
can encompass a broad set of reasoning logical capabilities
and provide practical syntactic and semantic extensions while
being fast and memory-efficient. Moreover, new programming
models and compilers that can facilitate the ease and efficient
realization of the neuro-symbolic models are of significance
to realize the full promise of neuro-symbolic AI paradigms.

Benchmarking diverse neuro-symbolic workloads. Given
the proliferation of neuro-symbolic algorithms and the rapid
hardware advancements, it is crucial to benchmark neuro-
symbolic AI systems in a comparable and validated manner.
To achieve this, from the system aspect, we need representative
benchmarks that capture the essential workload characteristics
(e.g., compute kernels, access patterns, and sparsity) of neural
and symbolic models, and that can be quantitatively tested
in human-AI applications. From an architectural and hard-
ware perspective, we need modeling-simulation frameworks
to enable the development of novel architectures for these
workloads and build optimized modular blocks as libraries
by leveraging workload characteristics. Benchmarking neuro-
symbolic computing will guide ML researchers and system
architects in investigating the trade-offs in accuracy, perfor-
mance, and efficiency of various neuro-symbolic algorithms,
and in implementing systems in a performance-portable way.

Designing cognitive hardware architectures. Neuro-
symbolic workloads that combine neural, symbolic, and proba-
bilistic methods feature much greater heterogeneity in compute
kernels, sparsity, irregularity in access patterns, and higher
memory intensity than DNNs. This leads to an increasing
divergence with the current hardware roadmap that largely
focuses on matrix multiplication and regular dataflow. There-



fore, we need novel architectures with dedicated processing
units, memory hierarchies, and NoCs that can handle the
additional complexities in computations and communications.
Additionally, the architecture needs to provide flexibility with
both configurable interconnects and full addressable memories
to keep pace with neuro-symbolic AI algorithmic innovations.

VII. RELATED WORK

Neural Network Characterization. Over the past years,
computer and system architects have proposed a vast array
of benchmarks, simulators, and custom architectures, most
notably for characterizing and accelerating machine learning,
specifically DNN training and inference across a variety of use
cases ranging from mobile and edge [68]–[74] to large-scale
cloud systems [75]–[78]. However, neuro-symbolic systems
exhibit divergent compute and memory features than DNNs
and make current deep learning architecture inefficient, this
paper thus takes the first step to characterize neuro-symbolic
workloads to enable their efficient and scalable execution.

Emerging Workload Characterization. Beyond DNNs,
benchmarks and hardware accelerators have been explored in
other applications like mixed-reality [79], [80], neuromorphic
AI [81]–[83], robotics [84]–[90], genome sequencing [91],
[92], graph [93], mobile vision [94], [95], fully homomorphic
execution [96], [97], hyperdimensional computing [98]–[100],
etc. Neuro-symbolic AI shows the promising potential to be
integrated into these systems and enable trustworthy applica-
tions. It is thus highly desirable to understand and optimize
its system characteristics and performance.

VIII. CONCLUSION

Neuro-symbolic AI is an emerging paradigm for next-
generation efficient, robust, explainable, and cognitive AI sys-
tems. This paper systematically characterizes neuro-symbolic
system performance, analyzes their workload operators, pro-
poses optimization techniques for their performance and effi-
ciency, and identifies the challenges and opportunities towards
fulfilling next-generation neuro-symbolic AI systems.
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