
MAVFI: An End-to-End Fault Analysis Framework with
Anomaly Detection and Recovery for Micro Aerial Vehicles

Yu-Shun Hsiao∗1, Zishen Wan∗1,2, Tianyu Jia1, Radhika Ghosal1, Abdulrahman Mahmoud1,

Arijit Raychowdhury2, David Brooks1, Gu-Yeon Wei1, and Vijay Janapa Reddi1

1Harvard University 2Georgia Institute of Technology

yushun_hsiao@g.harvard.edu, zishenwan@gatech.edu

ABSTRACT
Reliability and safety are critical in autonomous machine ser-
vices, such as autonomous vehicles and aerial drones. In this
paper, we first present an open-source Micro Aerial Vehicles
(MAVs) reliability analysis framework, MAVFI, to character-
ize transient fault’s impacts on the end-to-end flight metrics,
e.g., flight time, success rate. Based on our framework, it
is observed that the end-to-end fault tolerance analysis is
essential for characterizing system reliability. We demon-
strate the planning and control stages are more vulnerable to
transient faults than the visual perception stage in the com-
mon “Perception-Planning-Control (PPC)” compute pipeline.
Furthermore, to improve the reliability of the MAV system,
we propose two low overhead anomaly-based transient fault
detection and recovery schemes based on Gaussian statistical
models and autoencoder neural networks. We validate our
anomaly fault protection schemes with a variety of simulated
photo-realistic environments on both Intel i9 CPU and ARM
Cortex-A57 on Nvidia TX2 platform. It is demonstrated
that the autoencoder-based scheme can improve the system
reliability by 100% recovering failure cases with less than
0.0062% computational overhead in best-case scenarios. In
addition, MAVFI framework can be used for other ROS-based
cyber-physical applications and is open-sourced at https:
//github.com/harvard-edge/MAVBench/tree/mavfi.

1. INTRODUCTION
Autonomous Unmanned Aerial Vehicles (UAVs) are pre-

dicted to have a significant market share for a variety of appli-
cations, such as package delivery [1], search and rescue [2],
surveillance [3], sports photography [4], and more [5]. Micro
Aerial Vehicles (MAVs) correspond to a sub-class of UAVs
weighing less than 2kg and a limited flight range (shorter
than 5km). MAVs’ small form factor lends them greater
maneuverability than larger UAVs, making them promising
candidates for certain UAV applications. However, practical
reliability considerations (i.e., completing unmanned tasks
safely without collision) make MAVs and other autonomous
vehicles challenging to deploy in a wide range of real-life
scenarios. Due to autonomous machines’ high-reliability re-
quirements, there is a strong demand to understand sources
of vulnerability and develop protection schemes.

*These two authors contributed equally to this work and are listed
in alphabetical order.

Sensor

Environment

Compute

Actuators

Perception Planning Control

MAV System

Soft errors
Voltage noise
Hard faults
 …

Sensor

Body
Frame

Actuator

Compute
Platform

2

3

4

5

1 Environment 1

2

3

4

Figure 1: MAV system with Perception-Planning-Control
compute paradigm and the common fault sources.

It is challenging to perform a comprehensive fault analy-
sis for the MAV system as they are complex cyber-physical
systems that include sensors, computing software (for per-
ception, planning, and control) and hardware, and rotors or
actuators [6, 7], as shown in Fig. 1. Within the system, there
are multiple fault sources that could impact MAV’s reliability.
For example, environmental noises [8], adversarial attacks [9],
and the inherent noises of each sensor can all create pertur-
bation of sensor data. In the compute subsystem, there are
soft errors, i.e. bit flip, may happen due to radiation [10],
voltage noise [11]. During actuation, pitch, roll, and yaw dis-
placements [12], or dynamic system errors [13] can happen
by various types of faults that can impact MAV flight time
and energy efficiency. In the past, most prior arts only fo-
cused on the mitigation of sensor data perturbation by using
sensor fusion [8], anomaly detection [14], and neural net-
work [15]. However, according to the California Department
of Motor Vehicles (DMV), 64% of disengagements resulted
from faulty or untimely decisions made by the computing
system [16], which have not been fully analyzed. In [17], it is
reported that soft errors can significantly impact the reliability
of autonomous vehicles in multiple safety-critical scenes.

Transient fault injection and resiliency analysis have been
extensively studied for isolated kernels on CPU and GPU,
as shown in Tab. 1. However, prior methods [18, 19, 20,
22, 23] focusing on single algorithm fault analysis, which
cannot be applied to analyze the end-to-end system behavior
of MAV under transient faults. More recently, SASSIFI [21]
and DriveFI [17] explored the reliability impact of transient
fault for autonomous driving systems on power-hungry GPU
platforms while without clear explanations of the portability.
Therefore, there is no suitable fault injection framework for
the end-to-end reliability analysis of MAV applications that

1

https://github.com/harvard-edge/MAVBench/tree/mavfi
https://github.com/harvard-edge/MAVBench/tree/mavfi

Table 1: Comparison between MAVFI and prior fault injection methods.
LLFI [18] PINFI [19] CLEAR [20] SASSIFI [21] DriveFI [17] MAVFI (This work)

OS Linux Linux N/A N/A N/A ROS + Linux
Analysis Isolated Isolated Isolated Isolated End-to-end End-to-end
Bit-flips Single, double Single Single Single, double Single, double Single, multiple
Benchmark Parboil SPEC, SPLASH SPEC, DARPA Rodinia, DOE DriveAV, Apollo MAVBench
Platform Intel Xeon E5 Intel Core i7 Leon 3, IVM Tesla K20, K40 Pegasus Intel Xeon i9 / ARM Cortex-A57
Injection level IR-level Assembly-level RLT-level Assembly-level Variable-level Assembly-level, variable-level

typically run on CPU with Robot Operating System (ROS).
In this work, we developed an open-source fault injection

and end-to-end reliability analysis framework for MAV appli-
cation, MAVFI. The proposed MAVFI framework supports
the capability of end-to-end reliability analysis by consider-
ing the transient error propagation between kernels, which
breaks the analysis bounds of previous isolated fault analysis.
During the kernel execution, multiple compute kernels are co-
operatively running to stream the real-time sensor data across
Perception-Planning-Control (PPC) compute pipeline. The
lightweight and widely used robotic operating system ROS is
leveraged to support inter-kernel communications. With the
MAVFI framework, extensive end-to-end fault characteriza-
tions have been performed, which indicates that end-to-end
fault tolerance analysis (i.e., including inter-kernel interac-
tions) is essential. Analysis focusing on the individual com-
pute stage, such as the perception stage only in most prior
works, leading to suboptimal insights and results.

To improve the reliability of the MAV system, we further
explore the error detection and recovery technique for MAV.
Even though the redundancy-based hardware solutions (e.g.,
DMR, TMR) is widely used for reliability on autonomous
vehicles, our experiments show the hardware redundancy
leads to significant performance overhead for MAV (i.e.,
1.9× flight energy increase), which is not tolerable for an
energy-constrained MAV system. In addition, the DMR or
TMR redundancy will increase the weight and form factor of
MAV. Therefore, in this work, we propose two software-level
low overhead anomaly error detection and recovery schemes,
including Gaussian-based and autoencoder-based anomaly
detection and corresponding recovery scheme. During the
flight, a variety of inter-kernel “critical variables” from each
PPC stage are monitored by the anomaly detector. Once
the anomaly data is detected, the corrupted kernels will be
recomputed to cease the error propagation.

We evaluate the Gaussian-based and autoencoder-based
anomaly detection and recovery schemes’ effectiveness across
four types of environments on both Intel Xeon i9 CPU and
ARM Cortex-A57 on the Nvidia TX2 platform. Our experi-
mental results demonstrate that the Gaussian-based technique
recovers up to 89.6% of failure cases, and autoencoder-based
can recover all failures in the best-case scenario. In terms of
quality-of-flight, the Gaussian-based technique can recover
flight time by up to 63.5% and 73.0% for the autoencoder-
based technique. Overall the autoencoder-based technique
outperforms Gaussian-based in terms of both success rate
and the quality-of-flight with less than 0.0062% overhead.

In summary, the contributions of this work are:

• A end-to-end reliability analysis framework (i.e., MAVFI
tool) is proposed to analyze MAV applications’ fault
tolerance characteristics from the end-to-end compute
viewpoint. MAVFI is portable to other ROS-based

cyber-physical applications.

• Extensive fault tolerance characterizations of the MAV
PPC pipeline have been performed. The results show
that end-to-end fault analysis is essential to understand
kernel vulnerability and fault’s impact compared to the
conventional isolated analysis approach.

• To improve the reliability of the MAV compute subsys-
tem, two low-cost anomaly fault detection and recovery
schemes are proposed and evaluated on different CPUs.
The transient faults can be detected with high accu-
racy and recovered in real-time MAV applications with
negligible overhead.

2. MAV BACKGROUND
We provide background on MAVs, including the software-

hardware stack and safety requirements of MAVs. To explain
the building blocks, we traverse down Fig. 2 which shows
the abstraction layers of the MAV’s computing stack. MAV’s
computing system can be generally divided into a system
layer and a hardware layer.

Node 1

RRT*

Node 2

Service

TopicPublish Subscribe

Request
Respond

OctoMap

Linux

H
ar

dw
ar

e
La

ye
r

Sy
st

em
La

ye
r

Flight Controller
Thrust

Controller
Attitude

Controller
Speed/Position

Controller

IMU
Sensors

GPS
Camera

ActuatorBody
Frame

Robot Operating System (ROS)

Thread

Core 1
Companion Computer (CPU)

Thread

Core 2

Thread

Core N
…

Figure 2: Computing Stack for MAV system.

2.1 MAV System
System Layer. The system layer includes both Robot

Operating System (ROS) and Linux. ROS is the commonly
used operating system to provides communication functions
and resource allocation for robotics applications, such as
MAV. ROS typically consists of multiple ROS nodes, ROS
services, and a ROS master to support the functionalities and
communications in the system [24]. Underneath ROS, Linux
system maps workloads to compute units and schedules tasks
at runtime. Each ROS node is treated as a process scheduled
to a thread on CPU cores.

There is a significant advancement of high-level MAV algo-
rithms and systems in perception, localization, mapping, and
deep learning in recent years [25,26,27,28,29,30,31]. Among
all autonomy paradigms, Perception-Planning-Control (PPC)

2

computational pipeline is widely used for various cyber-
physical systems [32]. In the PPC pipeline, the perception
stage takes the sensor data and creates three-dimensional
models to provide a volumetric representation of space, such
as a point cloud [33] and occupancy map [34]. The three-
dimensional models are then fed into the planning stage to
determine a collision-free trajectory by running a motion
planner (e.g., RRT [35] and their variants [36]). Based on
MAV’s dynamics, the control stage follows the planned path
through PID [37] or other controllers.

Hardware Layer. The hardware mainly consists of sen-
sors, a companion computer, and a flight controller. The
companion computer is used to execute the PPC kernels,
which are the ROS nodes in the system layer. These kernels
are usually running on a general-purpose processor (e.g., Intel
i7/9 CPUs). Unlike an autonomous vehicle, MAVs are lim-
ited in computing resources and energy budget, and thus, it is
less common to equip MAV with computationally intensive
algorithms that require access to GPU or ASIC. The com-
panion computer would generate high-level flight commands
(e.g., velocity in x, y, z directions) in response to the sensor
readings (e.g., RGB-D, GPS). The flight controller converts
the high-level flight commands to low-level actuation com-
mands to control and stabilize the drone. In this work, we
consider the transient faults in the companion computer and
not the flight controller as the former one runs the complex
end-to-end applications and system layer tasks.

2.2 MAV Safety
MAV applications have stringent requirements for safe

and high-quality flights and also unique fault protection chal-
lenges compared to other autonomous vehicles such as cars.
First, it is challenging to deploy dedicated fault protection
hardware within resource-constrained MAVs. In autonomous
vehicles, the redundancy protection techniques, such as dual
modular redundancy (DMR) [38], and triple modular redun-
dancy (TMR) [39], are adopted to deploy redundant hardware
to improve auto-driving reliability. However, it is not feasible
to deploy such redundancy due to both the power and form
factor limitations of a MAV system. Moreover, MAVs typi-
cally have strict real-time latency and power constraints due
to the limited onboard battery capacity. Therefore, MAVs
need to reduce flight time and energy as much as possible.
Finally, unlike cars moving on a 2D occupancy grid, drones
are flying within free 3D space. Therefore, motion planning
for drones is computed in a higher-dimensional space. The
additional calculation of control variables along the z-axis,
such as the rotation in yaw, roll, and pitch dimensions, causes
more complex and vulnerable computation than in vehicles.

3. MAV FAULT ANALYSIS FRAMEWORK
To analyze faults’ impact on the MAV system in an end-

to-end fashion, we developed MAVFI, an open-source fault
injection tool for MAV applications. MAVFI supports both
assembly-level and variable-level fault injection and collects
the end-to-end system Quality-of-Flight (QoF) metrics, such
as flight time and success rate. At assembly-level, MAVFI
can introduce bit-flips at a source or destination register of any
ROS node. At variable-level, MAVFI can introduce bit-flips
at the cross-stage variable of the PPC pipeline.

ROS node Fault injectionServiceTopic Error propagation e.g.

AirSim Interface
Publish Images

Publish IMU

Perception

Collision Check

OctoMap
Generation

Point Cloud
Generation

Planning
Motion Planner:
Shortest Path +
Smoothening

Mission Planner:
Package Delivery

Control
Path Tracking/

Command Issue

Actuator

RGB-D

OctoMap

Point Cloud

MultidoftrajOctoMap

Trajectory

Multidoftraj

Flight Command
Attach + Sync
Fault Injection

Continue

Collision

MAVFI
End-to-End QoF

Flight time
Success rate

Mission energy

ROS node Fault injection Bit flipServiceTopic Error propagation e.g.

Host Sim. Companion Computer

AirSim

Unreal
Engine

Sensors

IMU
Camera

Fl
ig

ht
 C

on
tr

ol
le

r
Ac

tu
at

or

Figure 3: Overview of the interaction between the MAV’s
PPC pipeline and MAVFI fault injection node.

3.1 Overview of MAVFI
Fig. 3 illustrates the simulation infrastructure of the MAV

system, including environment and drone simulation on the
host simulator and the MAV’s PPC pipeline integrated with
MAVFI on the companion computer. Each ROS node com-
prises a single compute kernel, such as point cloud generation
or motion planner. Each PPC stage contains one or multiple
ROS nodes. ROS node communicates through ROS top-
ics (one-to-many node communication) and/or ROS services
(one-to-one node communication) as shown in the system
layer of Fig. 2. To maintain our framework’s portability, the
MAVFI tool is built as a ROS node, which leverages the ROS
communication protocol and Linux system call.

To establish end-to-end MAV experiments, we borrowed
another open-source ROS-based MAV simulation infrastruc-
ture, i.e., MAVBench [32], which includes Unreal Engine to
simulate the surrounding environment, AirSim simulator [40]
to capture a MAV’s dynamics and kinematics, and PPC com-
putational pipeline to generate flight commands in real-time.
The AirSim interface allows the PPC pipeline to access the
sensor data (e.g., RGB-D and IMUs) and send back the flight
commands to the flight controller in the AirSim simulator.
The PPC pipeline processes the sensor data and generates
flight commands continuously until the mission is complete.
Finally, the end-to-end mission QoFs are recorded.

Fig. 3 also illustrates an error propagation example when
a fault is injected at the Motion Planner kernel and mani-
fests as a corruption of execution results (i.e., Multidoftraj,
Trajectory), which eventually corrupts the flight command
and impacts the overall end-to-end QoF. To the best of our
knowledge, MAVFI is the first fault injection tool targeted at
ROS-based MAV applications.

3.2 Details of MAVFI Fault Injection
MAVFI is supported on x86/Linux platforms. Fig. 4 shows

the assembly-level fault injection details of MAVFI. Each
oval node is a ROS node. The figure provides the detailed
fault injection sequence using an example for ROS node
2. During the system initialization phase, the MAVFI node
publishes its process ID (pID) to all the other nodes and sub-
scribes to their pID. Thus, the MAVFI node can attach and
manipulate the other ROS nodes in the system via the ptrace
system call. The ptrace system call allows us to synchronize
and manipulate the register file of processes in the system

3

Node 2

Ptrace

Attach/Sync

Continue

Avg Execution time

Node 2
pID

Node 1
pID

Node 3
pID

Main
program

REG1

MAVFI

More Nodes

Publisher

Subscriber

Node 1

MAVFI
pID REG2

REGn

REG1
REG2
REGn

�

�

Publish pID
Collect pID
Attach/Sync
Pause All

�
�
�
�

�
�

�

�

�

�
�
�
�

Fetch Reg File
Random Bit Flips
Write Back
Continue

�

Node 3

Figure 4: The design details for the interactions in MAVFI.

with much less overhead than the ROS communication proto-
col. MAVFI is the first fault injection framework built on top
of both ptrace system call and ROS. During fault injection,
the ptrace system call is leveraged to realize the node pause,
fetching the register file, write back, and continue operations
in sequence.

During the simulation of real-time MAV applications, MAVFI
selects a random time point within the average execution
time to pause all the nodes. All ROS nodes’ execution will
be stopped before conducting fault injection, ensuring every
node following the original executive order. After all the
nodes have stopped, the general-purpose and floating-point
register files of the target node (i.e., node 2 in this case) are
fetched via the ptrace system call, with the instruction pointer
register decoded to access the current operating register. The
number of registers being accessed by the current instruction
ranges from 0 to 2. If the value is zero, MAVFI resumes all
ROS nodes’ execution and repeats the above steps to obtain a
new instruction. For more than one register under operation,
MAVFI would randomly choose one register to inject. The
chosen register can be either a general-purpose register (i.e.,
R8-R15) or a floating-point register (i.e., XMM0-XMM7) in
our x86 system. For the source register, according to the
user-defined injection configuration, a single bit-flip or multi-
ple bit-flips are introduced into the chosen register. For the
destination register, before fault injection, MAVFI would step
toward the next instruction to allow the current instruction
to finish the writing operation, which avoids the corrupted
destination register being overwritten by the current instruc-
tion. After fault injection, the corrupted register is written
back to the target node’s register files, and all nodes would
be notified to resume the execution.

3.3 End-to-end (E2E) Fault Analysis
To evaluate the fault tolerance of different kernels in the

MAV system, MAVFI can enable end-to-end fault tolerance
analysis at assembly-level and variable-level.

E2E Fault Analysis at Assembly-level: The complete
MAV application is built on top of the tightly coupled various
PPC kernels, as shown in Fig. 3. To evaluate the error propa-
gation through multiple kernels, MAVFI can inject faults into
a register bit at assembly-level and obtain the final end-to-end
flight metrics. In this way, each kernel’s fault vulnerability
can be evaluated through the impact on the entire end-to-end

system metrics. Detailed analysis can be found in Section 4.2.
E2E Fault Analysis at Variable-level: To further study

the vulnerabilities of PPC stages, MAVFI can introduce a
single bit-flip into cross-stage variables at the variable-level.
Similar to the end-to-end assembly-level fault tolerance anal-
ysis, we quantitatively evaluate the fault’s end-to-end impact
with the QoF metrics. As shown in Section 4.3, a notable vul-
nerability variation existed among variables, which motivates
us to detect and recover transient fault based on the anomaly
behavior of the cross-stage variables.

In Section 4, we analyze the end-to-end fault tolerance
with fault injection at both assembly-level and variable-level
for MAV-specific kernels, such as OctoMap, motion planner,
and evaluate the system performance and safety impact con-
sidering error propagation. This end-to-end analysis provides
insights into the most vulnerable kernels at the system level,
which can guide the design of a more resilient system for
MAV. As shown in Section 4.2, it is interestingly observed
that the planning and control stages are more vulnerable than
the perception stage.

3.4 Fault Model
MAVFI simulates transient faults (i.e., soft errors) that oc-

cur in the processor’s register file, ALUs, and pipeline regis-
ters by introducing bit-flip at the source or destination register,
which is known as assembly-level fault injection. MAVFI
can inject either single or multiple bit-flips simultaneously.
In the previous study [41], it was shown that single bit-flip
yields a higher percentage of data corruption compared to
multiple-bit errors. Therefore, for the analysis results in the
paper, we mainly focus on single bit-flip, which also aligns
with the previous fault tolerance analysis for autonomous ve-
hicles [17]. As shown in Section 4, with single fault injection,
the corrupted register may manifest as incorrect output val-
ues of computational kernels and impact the flight metrics of
MAVs. MAVFI also supports bit-flips at the variable-level to
further analyze the error propagation of the end-to-end MAV
applications. We do not consider faults in the memories or
caches as they are typically protected by error correction
codes (ECCs). The fault model used in this work is in line
with previous works in this area [42, 43, 44, 45, 46].

4. MAV FAULT TOLERANCE ANALYSIS
This section presents the fault tolerance analysis at differ-

ent granularity levels, i.e., single-kernel level and end-to-end
system level performance. Through the comparison, we ob-
serve that single-kernel analysis provides different or even
opposite insights on the vulnerabilities of kernels than the
end-to-end fault tolerance analysis. This is evidence that end-
to-end fault analysis is crucial to capture transient fault’s im-
pact at the system level. For end-to-end analysis, we analyze
the fault injection at both assembly-level and variable-level
in Section 4.2 and Section 4.3, respectively.

4.1 Single-Kernel Fault Tolerance Analysis
To prove the importance of end-to-end fault analysis, we

first conduct single-kernel fault injection and analysis at
assembly-level. The single-kernel fault injection flow is simi-
lar to the prior fault injection tool [47]. We evaluate the com-
monly used kernels in the PPC pipeline, including OctoMap

4

Octomap RRT RRT-Connect RRT-Star PID0
20
40
60
80

100
Pe

rc
en

ta
ge

 (%
)

benign crash hang silent data corruption

Figure 5: Execution outcomes of individual kernels with
single-bit injections.

for the perception stage, three sampling-based motion plan-
ners (i.e., RRT, RRTConnect, RRTstar) for the planning stage,
and Proportional-Integral-Derivative (PID) controller for the
control stage. A single bit-flip is injected into a randomly
picked source or destination register in each experiment run,
and there are in total 5000 runs for each kernel. Each kernel
is run without fault injection to obtain the error-free golden
results. With fault injection, there are four types of outcomes:
execution results different from the golden results (i.e. silent
data corruption (SDC)), execution exceptions (i.e. crash),
infinite execution time (i.e. hang), and execution results same
as the golden results (i.e. benign) [48].

From the single-kernel perspective, the perception stage
is most vulnerable to faults. As shown in Fig. 5, most com-
pute kernels are more than 25% benign error-tolerant except
for OctoMap at the perception stage. This is because transient
faults can easily corrupt the output (Octree) with noisy values
for the OctoMap kernel. Hence, OctoMap is less resilient
than sampling-based planning and PID algorithms. On the
other hand, the path planning kernels are all sampling-based
algorithms, known for their high efficiency and performance.
Injected errors should not affect output results as long as the
corrupted way-point is not sampled. The more way-points
are sampled, the higher probability the planning algorithms
could sample a corrupted way-point, resulting in SDC. RRT-
Connect runs two RRT algorithms from both start and goal,
ending up with slightly fewer sampled way-points than RRT.
RRTstar is the optimized version of RRT algorithm to find the
shortest path by selecting even fewer way-points than RRT
and RRTConnect, making RRTstar having the least SDC. The
PID algorithm at the control stage also experiences around
25% benign cases since the PID has a simple self-healing
mechanism to clip data points outside of a bounded range.

4.2 End-to-End Fault Tolerance Analysis
Compared to the single-kernel fault analysis, we further in-

vestigate and demonstrate that end-to-end analysis is needed
based on our MAVFI framework. MAVFI is capable to eval-
uate faults’ impact on end-to-end performance considering
error propagation across kernels. We evaluate the MAV’s end-
to-end performance by QoF metrics, including flight time and
success rate. Flight time is the total amount of time for the
MAV to reach a given destination. Since rotors dominate
mission energy, flight energy is proportional to flight time.
Due to the space restrictions, we only show flight time in this
section. Success rate is the percentage of successful cases
over total experiment runs. We define a successful case as
the drone reaches the destination without any collision, and
a failure case as the drone collides into obstacles or fails to
find a feasible path to the destination.

(a) Flight time.

Planning

C
on

tr
olPerception

(b) Flight success rate.

Figure 6: The QoF metrics with fault injection at PPC kernels.

We introduce a single bit-flip at assembly-level in all PPC
kernels. In our default settings, the PPC pipeline includes
Point cloud generation, OctoMap, Collision check for per-
ception, RRT* for planning, and PID for control. Two other
common planning algorithms are evaluated at the planning
stage, i.e., RRT and RRTConnect. Each kernel has been exper-
imented with 100 fault injection runs. Besides fault injection,
100 error-free experiment runs are defined as Golden. In
each experiment, all kernels in the PPC pipeline would be
launched by ROS to complete a given navigation task. In
fault injection runs, only one of the kernels would have a
one-time fault injection for each flight mission. Without loss
of generality, we limit our discussion to a navigation task
in the Sparse environment (Fig. 11c) here. More results on
different environments can be found in Section 6.

From an end-to-end perspective, the perception stage
is relatively resilient to faults. For the perception stage,
both Point Cloud Generation and OctoMap have little impact
on the overall QoF metrics as shown in Fig. 6. However,
according to Fig. 5, OctoMap has the highest percentage of
SDC among the evaluated kernels, which is regarded as the
most vulnerable kernel in the single-kernel analysis. The
reason why OctoMap is the most reliable kernel in the end-to-
end analysis is that even if an occupied voxel is corrupted and
mistaken as a free voxel, all other voxels around it are still
occupied. Therefore, the MAV can still determine obstacles’
locations provided the OctoMap’s resolution is sufficient.
This counter-intuitive insight is difficult to discover without
end-to-end analysis. Collision Check kernel is the most criti-
cal one in the perception stage since a false alarm can lead to
trajectory re-planning or even collision.

From an end-to-end perspective, planning, and control
are more vulnerable to faults. While the SDC percentages
of planning and control kernels are lower than OctoMap,
corrupted outputs (e.g., yaw, velocity) from these two stages
can directly lead to a detour or crash of the MAV. From
Fig. 7a, even though the average flight time is similar, the
range of RRT, RRTConnect, RRT*, and PID is much wider
than Octomap and Golden. The error propagation of the
corrupted execution results could greatly increase the flight
time by up to 57.3% and even lead to degradation of success
rate by up to 8% as shown in Fig. 6b. Therefore, the planning
and control stages are more vulnerable than the perception
stage from an end-to-end perspective, which is also counter-
intuitive from the single-kernel analysis shown in Section 4.1.

4.3 End-to-End Fault Tolerance Analysis at the
Variable-level

We further analyze end-to-end fault tolerance at variable-
level by introducing bit-flip at cross-stage variables to explore

5

Perception Planning Control

(a) Flight time.

Perception Planning Control

(b) Flight success rate.
Figure 7: Flight time and success rate with single-bit injec-
tions at the cross-stage variables.

Golden
FI-Sign

FI-Exponent

FI-Mantissa

90
100
110
120
130
140
150
160

Fl
ig

ht
 T

im
e

(s
)

(a) Flight time.

Original
1.37908

flip sign
-1.37908

flip exp
1.8973e-135

flip mant
1.37908

(b) Bit-flip analysis.

Figure 8: The impact of fault injection at different data fields
on flight time and value histogram.

Table 2: MAV’s QoF metrics with single- and multiple-bit
injections.

Bit Flips Flight
Time (s)

Flight
Distance (m)

Total
Energy (kJ)

Number of
Re-plans

Success
Rate (%)

0 (golden) 94.6 49.5 51.4 3.71 100
1 105.6 55.9 57.2 4.07 92
3 107.3 56.8 58.7 4.19 91
5 111.8 59.4 61.1 4.28 89

the vulnerable cross-stage variables. A better understanding
of vulnerable variables provides insights to improve the PPC
kernels and facilitate anomaly fault detection in Section 5.
Similar to Section 4.2, 100 navigation tasks are run for each
variable with a single-bit injection. The summary of QoF
metrics is shown in Fig. 7.

The functionality and position of the variable impact
its fault tolerance. Variables have different resilience to
injected bit-flips. For example, in the perception stage, fu-
ture_collision_seq is much more robust than time_to_collision,
whose QoF metrics noticeably vary when compared to the
golden run. The functionality and position of these variables
influence their fault tolerance and impact on MAV perfor-
mance. Faults in time_to_collision can skew the drone’s
perceived distance to obstacles. Similarly, data corruption
of (x,y,z) and yaw of way-points planned by motion planner
can lead to an incorrect direction or crash into obstacles, and
faults in (vx, vy, vz) could make the drone fail to keep track
of a trajectory. As a result, the distorted trajectory lead to
collision or an increase in flight time and mission energy.

Sign bits and exponent fields are more vulnerable to
faults than mantissa fields. Single bit-flip in different data
fields of a variable has a distinct level of impact on MAV
performance. We conduct 100 fault injection experiments

at the float64 variable (x, y, z), which contains 1 sign bit,
11 exponent bits, and 52 mantissa bits. Faults in sign and
exponent fields have a greater impact on drone’s reliability
and result in increased flight time, energy, and failure cases,
as shown in Fig. 8a. Faults in the sign and exponent will
result in a greater change in the variable’s value compared
to faults in the mantissa field. For example, when a single
bit-flip at the exponent and sign, a value is corrupted from
1.38 to 0 and -1.38, respectively, as illustrated in Fig. 8b.

As MAVFI supports both single-bit and multiple-bit in-
jection, we also evaluate the end-to-end performance impact
with multiple bit-flips, as shown in Tab. 2. In this experiment,
100 fault injections are performed for 1-, 3-, 5-bits at (ax, ay,
az), which are the output variables of the planning stage. By
injecting faults from 1-bit to 5-bits, the average flight time
and energy increase by 6.2s and 3.9kJ, respectively, and the
success rate decreases by 3%. Since more bit-flips are more
likely to affect the sign and exponent fields, the value changes
could be more dramatic for multiple-bit injection.

5. ANOMALY DETECTION AND RECOV-
ERY

To increase the reliability of the MAV system, we further
explore the detection and recovery technique based on the
observations from MAVFI. As the conventional redundancy-
based hardware protection (e.g. DMR) introduces significant
overhead, we propose two software-level low-overhead fault
anomaly detection and recovery schemes for MAV. The pro-
posed schemes detect anomalous behavior of SDC in the PPC
and cease the error propagation before sending the corrupted
flight commands to the MAV, thus ensuring MAV’s safety.

5.1 Overview of Detection and Recovery
Anomaly detection techniques have already been adopted

in several application domains, including fraud detection
for online transactions [49] and anomaly detection in safety-
critical systems [50]. There are several anomaly detection
techniques [51], including clustering-based classifier, Gaussian-
based classifier, neural network-based classifier, and autoen-
coder, as shown in Tab. 3. Among all the techniques, the con-
ventional clustering-based and Gaussian-based techniques do
not need a training process but can only achieve moderate
detection accuracy. The neural network-based classifier can
achieve better detection accuracy, while it is supervised learn-
ing, which requires a large amount of labeled training data.
Furthermore, the inherently biased dataset toward normal data
makes supervised learning hard to replicate its high accuracy
in anomaly detection. The recent autoencoder neural network
uses an unsupervised learning mechanism, which does not re-
quire labeled data for training, and achieves decent detection
accuracy as a traditional neural network classifier [52]. We
implemented both Gaussian-based and autoencoder-based
anomaly detection techniques for transient fault detection in
this work. It is observed that both techniques can achieve
efficient fault detection and flight time reduction. At the
same time, the autoencoder-based scheme obtained better
performance with lower computational overhead.

Fig. 9a shows the proposed anomaly detection and recov-
ery scheme integrated with the PPC pipeline, which forms a
closed-loop system. According to the analysis in Section 4.3,

6

Table 3: Properties of anomaly detection techniques.

Techniques Training
required

Initialization
dataset

Computation
overhead

Detection
effectiveness

Autoencoder (This work) Unsupervised Large Large Good
Neural network based Supervised Large Large Good
Clustering based No Moderate Moderate Moderate
Gaussian model (This work) No Moderate Low Moderate

Detection

Technique 2: (c)
Autoencoder-based

Data Preprocessing

x, y, z
ax, ay, az

Technique 1: (b)
Gaussian-based

Manti.
Var(t - 1)

Var(t)

REG

Var(t)

Var(t)

time_to_col
future_col_seq

Perception

Sensor data Anomaly Detection Node
Recompute
Recompute
Recompute

Var(t)

Manti.
Var(t - 1)

Var(t)

REG

Var(t)

Planning

vx, vy, vz
Yaw Var(t)

Manti.
Var(t - 1)

Var(t)

REG

Var(t)

Control

GAD

GAD
GAD

AAD

(a) Overview.

Technique 1: Gaussian-based

Customized GAD

Var(t)

Anomaly

Mean-n +n

cGAD

cGAD

Alarm

Normal

Var(t)

Perception

Planning

Control

GAD

(b) Gaussian-based.

Technique 2: Autoencoder-based

Normal

Anomaly Alarm

Var(t)

Perception

Planning

Control

Threshold

3

AAD

EncoderDecoder

||" − "$||%%

13 6 3 13

(c) Autoencoder-based

Figure 9: The proposed anomaly detection and recovery
scheme for MAV computational pipeline.

the critical cross-stage variables as shown in Fig. 7 are moni-
tored for the anomalous SDC. The monitored variables pass
through a data preprocessing module to increase the detec-
tion performance while further reducing the computational
overhead. After data preprocessing, the processed variables
go into either of the proposed anomaly detection techniques.
Once an anomalous behavior, i.e., data corruption, is detected,
an alarm signal will be raised, triggering the recomputation
of the corresponding stage, prevent the corrupted execution
results from propagating to the following stage. The pro-
posed closed-loop detection and recovery system can greatly
increase the reliability of MAV’s PPC pipeline against SDC
that degrades the safety and flight performance of MAV. The
effectiveness and overhead of these two detection techniques
are extensively experimented with and compared in Section 6.
Our approach focuses on SDC as crash can be detected by
the ROS system. The ROS master node would restart the
node automatically if it crashes [53].

5.2 Data Preprocessing
In Fig. 9a, the monitored cross-stage variables from the

PPC pipeline are processed in the data preprocessing block
before sent to the anomaly detection block. There are two
steps in data preprocessing, including data format transfor-
mation and delta calculation. First, for data format transfor-
mation, the sign and exponent bits of float64 variables are
transformed into 16-bits integer variables, reducing double-
precision floating-point operations into 16-bits integer opera-
tions. Since transient faults at the mantissa bits of float64 are

insignificant as shown in Section 4.3, only the sign and expo-
nent bits are monitored to reduce the overhead of detection.
Second, the deltas of the incoming variables are calculated.
We define delta as the number of value changes from the
previous time point to the current time point for a variable.
Fig. 10 shows the insight of using the variable’s delta for
anomaly detection. For most variables, the value could have
either uniform distribution or Gaussian distribution. For in-
stance, the multi_x variable of a way-point indicates the local
goal in the x-axis and has a uniform distribution as shown in
Fig. 10a. However, the uniform value distribution is not well
suited to Gaussian-based anomaly detection, leading to very
low detection accuracy. By leveraging the variables’ contin-
uous property, the uniform distribution can be transformed
into Gaussian distribution by calculating the variables’ delta.
Furthermore, the range of the variable’s delta is much smaller
than the original data. For instance, as shown in Fig. 10, range
of multi_x, multi_vx, and multi_ax variables are reduced by
98%, 94%, and 76%, respectively, making the differences
between normal and anomaly data even more. Thus, the data
preprocessing can increase the performance of the anomaly
detection while decreasing the overhead of detection.

5.3 Anomaly Detection

5.3.1 Gaussian-based Anomaly Detection
Fig. 9b shows the design details of the Gaussian-based

Anomaly Detection (GAD). Each PPC stage has a corre-
sponding GAD that consists of several customized GAD
(cGAD) for each variable. If the value of an incoming vari-
able is outside the range of its normal data distribution, its
cGAD will send out an alarm. The alarms from each cGAD
are gathered for each of the PPC stages, respectively. An
alarm from a GAD would trigger the recomputation path of
its corresponding stage, stopping the error propagation to the
following stage.

The Gaussian model parameters (i.e., mean, standard devi-
ation) for each cGAD are estimated as following equations:

Mk = Mk−1 +(xk −Mk−1)/k (1)

Sk = Sk−1 +(xk −Mk−1)(xk −Mk) (2)

where k is the number of samples, Mk is the mean value for
the k samples, and Sk is an auxiliary term used in the compu-
tation of standard deviation σ . At initialization, we introduce
and set the terms M1 = x1,S1 = 0. The model parameters
are updated online with the recurrence formulas above for a
new incoming data xk [54]. For k ≥ 2, the standard deviation
σ can be derived by σ =

√
Sk/(k−1). Whenever the value

of the incoming data is n sigma away from the mean value,
the alarm of the cGAD will be raised. The number of sigma
n is a configurable variable that can be optimized based on
the complexity of the flight task and environment. To ensure
the Gaussian models have sufficient samples before starting
anomaly detection, we first have the model updated with
error-free training environments as presented in Section 6.1.

5.3.2 Autoencoder-based Anomaly Detection
Fig. 9c shows the Autoencoder-based Anomaly Detection

(AAD). The AAD block collects the processed variables from
all PPC stages as input. An alarm will be raised and triggers

7

-5 5 15 25 35
value

0
10
20
30
40
50
60
70
80

co
un

t
multi_x

-2 -1 0 1 2
value

0
20
40
60
80

100
120
140

co
un

t

multi_vx

-2 -1 0 1 2
value

0
100
200
300
400
500
600

co
un

t

multi_ax

(a) Histogram of the variables’ value.

-2 -1 0 1 2
value

0
25
50
75

100
125
150
175

co
un

t

multi_x

-2 -1 0 1 2
value

0
50

100
150
200
250
300
350
400

co
un

t
multi_vx

-2 -1 0 1 2
value

0
100
200
300
400
500
600

co
un

t

multi_ax

(b) Histogram of the variables’ delta.

Figure 10: Histogram comparison between the variables’
value and delta after data processing.

the recomputation of the control stage if an anomaly is de-
tected. The proposed autoencoder comprises an encoder with
three fully connected layers and a decoder with two fully con-
nected layers. The encoder has an input layer of 13 neurons,
a hidden layer of 6 neurons, and an output layer of 3 neurons.
The decoder has an input layer of 3 neurons, which takes the
compressed data from the encoder, and an output layer of
13 neurons. The output of the decoder represents the recon-
structed input data. The reconstruction error is the difference
between the input and output of the autoencoder. We use the
mean squared error during the unsupervised training as the re-
construction error minimized by the Adam optimizer [55]. At
the inference phase, if the reconstruction error is beyond the
threshold, the alarm will be raised. The threshold is the upper
bound of the reconstruction error of the error-free golden run.

Rather than the separate Gaussian-based detection module
for each PPC stage, we use a single autoencoder for the whole
PPC pipeline to leverage the correlation among stages. Once
an anomaly is detected, the alarm triggers the recomputation
of the control stage. In this way, the autoencoder scheme
achieves higher detection performance while dramatically
reducing the recomputation overhead, as shown in Tab. 5.

5.4 Recovery Scheme
Once a data anomalous behavior has been detected, the

recomputation path would be triggered to cease the error prop-
agation. The compute stage which is notified to recompute
will fetch the latest data from the previous compute stage or
sensor (Airsim simulator) and re-generate the results.

Take the navigation task as an example. If an anomaly
alarm is raised in the perception stage, the stage starts to
recompute and fetch the current RGB-D camera data from the
AirSim simulator. Then, Point Cloud Generation, Octomap,
and Collision Check kernels process the data and generate
results for the following stage. Similarly, if an alarm is raised
in the planning stage, the planning algorithm will fetch the
latest occupancy map from the perception stage and plans
a new trajectory. Finally, the flight command is monitored
for the control stage before being sent back to the AirSim
simulator. If an alarm is raised, the control stage will abandon
the current anomalous waypoint and fetch the next waypoint
of the trajectory, generating correct flight commands.

5.5 Implementation of Anomaly Detection and
Recovery on ROS Layer

(a) UE Factory. (b) UE Farm. (c) Sparse. (d) Dense.

Figure 11: The environments for evaluation.

In our experiment, the anomaly detection and recovery
scheme is built as a ROS node, referred to as the detection
node in the following, which continuously monitors the cross-
stage variables to guarantee the safety of MAV’s compute sub-
system. The detection node contains the data preprocessing
and anomaly detection functions as explained in Section 5.2
and Section 5.3, respectively. The detection node subscribes
to the topics containing the cross-stage variables from each
PPC stage as input and publishes recomputation signals to
the corresponding stages if an alarm is raised by the detection
function. The detection node can thus continuously super-
vise the PPC pipeline, increasing the reliability of MAV’s
computational pipeline with negligible overhead.

6. EXPERIMENTAL EVALUATION
This section demonstrates the effectiveness of the anomaly

detection and recovery schemes across different environ-
ments. First, we demonstrate the schemes can increase the
mission success rate and QoF metrics with trajectories anal-
ysis. Next, we experiment with more efficient fault detec-
tion and recovery with only recovering particular stages. Fi-
nally, we measure and compare the compute overhead of two
anomaly detection and recovery schemes.

6.1 Experiment Setup
Hardware-in-the-loop Simulator. To demonstrate the

reliability and flight performance benefits of the anomaly
detection and recovery schemes, we used a closed-loop MAV
simulator, MAVBench, as the experimental platform [32].
The environments are simulated in Unreal Engine (UE), and
the MAV’s kinematics and sensors are captured by AirSim,
which also supports various flight controllers. Sensors, includ-
ing RGB-D camera and IMU, used in the experiments, are
common for MAVs. An Intel i9-9940X CPU and an Nvidia
GTX 2080 Ti GPU are used as the host machine to simulate
environments and the drone. The companion computer is
equipped with an Intel i9-9940X CPU, which takes sensory
data from the environment and generates flight commands
for the drone.

Training Environments. To create a training dataset for
the autoencoder-based technique, we built an environment
generator with configurable parameters (i.e., obstacle den-
sity and size of obstacle). The obstacle density is defined as
the probability of a 10 * 10 grid spawned with an obstacle.
Each obstacle is a cuboid with n * n and infinite height at the
center of a grid, where n is a discrete number from 1 to 10.
[obstacle density, size of obstacles] is defined as an environ-
ment configuration pair. We collect data from randomized
environments with the combinations of two obstacle densities
(i.e., 0.05 and 0.2) and two sizes of obstacles (i.e., 3 and 5).
Therefore, there are four configuration pairs in total and each
is run 25 times. For a given configuration, a random seed is
used to randomize the environment in each experiment run.
For Gaussian-based technique, the Gaussian models are also

8

Table 4: The flight success rate in 4 evaluation environments.
Environment Factory Farm Sparse Dense
Golden Run 100.0% 100.0% 95.0% 85.0%
Injection Run 91.7% 97.3% 88.3% 75.3%
Gaussian-based 98.7% 99.3% 94.3% 83.0%
Autoencoder-based 99.3% 100.0% 95.0% 84.7%

updated with the same error-free training environments.
Evaluation Environments. The anomaly detection and

recovery schemes are evaluated in four environments. The
Factory (Fig. 11a) and Farm (Fig. 11b) are provided by UE,
representing common navigation scenarios with blocks, walls,
and hedges. We generate the Sparse (Fig. 11c) with [0.05, 3]
and the Dense (Fig. 11d) with [0.2, 5] using our environment
generator. The random seed is fixed during evaluation.

Overheads. The QoF metrics do not include the fault in-
jection time since the ROS nodes are paused during fault
injection. In terms of simulation time, for one-time fault
injection, MAVFI only takes less than 5 milliseconds, which
is negligible for a typical flight mission that takes more than
100 seconds. For the anomaly detection and recovery exper-
iments, we quantify the overhead for Gaussian-based and
autoencoder-based techniques in Section 6.5.

6.2 Detection and Recovery Effectiveness
To evaluate the anomaly detection and recovery scheme,

we run 100 error-free simulations for each environment as
the baseline (golden run). Then, we conduct 900 single-bit
injections at assembly-level for each environment, including
300 runs for each setting (i.e., FI, D&R(G), and D&R(A))
as shown in Fig. 12, respectively. In each setting, we have
100 fault injections for each PPC stage. The number of total
1000 experiments is chosen considering each experiment run
takes about 5 minutes. Even though MAVFI introduces a
negligible overhead of only 5 milliseconds, the experiment
time is a limiting factor for the total run number.

Improvement of success rate. Tab. 4 shows the success
rates of MAV flight in the golden run, injection run, Gaussian-
and autoencoder-based scheme across four environments. In
the fault injection runs, the success rate is reduced by up to
9.7% in the complex Dense environment. Faults may easily
cause more collision or fail to find a collision-free path in
complex environments. By contrast, Farm is an obstacles-free
environment. Even a drone detours from its path, there are
more feasible paths toward the destination than a complex en-
vironment. With the anomaly detection and recovery scheme,
Gaussian- and autoencoder-based techniques recover up to
89.6% and 100% (fully recover) of failure cases, respectively.
Generally, the autoencoder-based scheme recovers more fail-
ure cases caused by transient faults than the Gaussian-based
scheme and increases the success rate close to or same as the
error-free golden runs in all four environments.

Improvement of QoF metrics. Fig. 12 demonstrates the
flight time of all successful cases in Tab. 4 across four en-
vironments. Similar to Section 4.2, the fault injection runs
results in a much wider range of flight time than the golden
run and increase the flight time by 73.8%, 74.2%, 62.6%,
93.3%, and mission energy by 74.9%, 73.1%, 62.8%, 94.2%
in the worst case for each environment, respectively. With
Gaussian-based anomaly detection and recovery, many of
the outliers can be recovered and the worst-case flight time

is recovered by 56.4%, 63.5%, 49.0%, 58.7%, and mission
energy by 55.8%, 63.3%, 48.6%, 59.9%. On the other hand,
the autoencoder-based technique recovers most of the outliers
and can recover the worse-case flight time by 64.2%, 68.4%,
57.8%, 73.0%, and mission energy by 64.7%, 67.4%, 56.5%,
73.9%, outperforming Gaussian-based technique.

Comparison of Gaussian-based and autoencoder-based
schemes. The autoencoder-based technique consistently out-
performs the Gaussian-based technique in all four environ-
ments in terms of both success rate and QoF metrics. The
reason is that the autoencoder can leverage the correlation
among different variables, and thus it can detect the subtle
discrepancy among variables. On the contrary, the Gaussian-
based technique does not have the correlation information
among variables and can only detect each variable separately,
which may fail to detect anomalies if the corrupted data is
still inside the range of the normal data distribution.

Comparison of environments. More challenging environ-
ment with a higher density of obstacles is also more difficult
for the anomaly detection and recovery schemes to recover
from errors. For the Dense environment, a MAV has more
complex trajectories to follow and more dynamic actions in
response to the obstacles, making the range of the variable dis-
tribution wider. The wider distribution increases the number
of false-negative detection. Thus, there is still a 20.1% gap
between autoencoder-based recovery results and golden for
the worse case. On the other hand, for the obstacle-free Farm
environment or Sparse, the autoencoder-based technique can
achieve a similar performance as the golden run.

6.3 Trajectory Analysis
To demonstrate the impact of faults and the effectiveness

of the anomaly detection and recovery schemes, we visualize
MAV’s trajectories in the Dense environment as shown in
Fig. 13. We present the trajectories with the autoencoder-
based technique, while the Gaussian-based technique has
similar results in a successful detection.

Fig. 13 shows the scenario that a single-bit injection in the
PPC stage can lead to flight detour and how the detection and
recovery scheme improves the flight. Without fault injection
(blue curve), the drone takes off at the start point and flies
towards the endpoint in the beginning phase. When facing
an obstacle, it stops at a safe distance and re-plans a new
trajectory that flies back slightly and bypasses the obstacle.
When transient faults get injected and corrupt the critical
variable, such as the coordinate of a way-point, the path may
be distorted, making the drone flying in a wrong direction.
The drone may not stop until it faces an obstacle (orange
curve), which causes the drone to fly back or re-plan its
trajectory. The more often the drone re-plan and detour from
its path, the longer it takes to reach the destination, which
increases the flight time by 21.9% and 24.5% for Fig. 13a
and Fig. 13b, respectively. With the detection scheme, once
the anomaly has been detected, the corrupted way-point is
abandoned. The alarm raised by the detection module triggers
the recomputation of the corresponding stage. Therefore, the
drone would follow a better trajectory (green curve) without
detour, which recovers the QoF metrics.

6.4 Anomaly Detection and Recovery for Dif-
ferent Compute Stages

9

Golden FI D&R(G) D&R(A)
100

150

200
Fl

ig
ht

 T
im

e
(s

)

(a) UE Factory.

Golden FI D&R(G) D&R(A)

75

100

125

Fl
ig

ht
 T

im
e

(s
)

(b) UE Farm.

Golden FI D&R(G) D&R(A)

100

150

Fl
ig

ht
 T

im
e

(s
)

(c) Sparse.

Golden FI D&R(G) D&R(A)

100

150

200

Fl
ig

ht
 T

im
e

(s
)

(d) Dense.

Figure 12: The effectiveness of the proposed anomaly detection and recovery schemes in terms of flight time. D&R(G) and
D&R(A) represent the Gaussian-based and autoencoder-based schemes, respectively.

start point

end point

Obstacle

Obstacle

hazard

(a) Fault injection in perception.

Obstacle

Obstacle

start point

end point

hazard

(b) Fault injection in planning.

Figure 13: Trajectories of golden run, with fault injection,
with both fault injection and fault detection and recovery.

(a) Gaussian-based anomaly detection and recovery.

(b) Autoencoder-based anomaly detection and recovery.

Figure 14: Worst-case QoF metrics with different fault detec-
tion and recovery stages (normalized to golden run).

To evaluate the effectiveness of error detection in different
PPC stages, we further experiment with the anomaly detec-
tion and recovery scheme for certain compute stages in the
MAV compute pipeline, as shown in Fig. 14.

Single-stage detection and recovery. We first experiment
the anomaly detection and recovery by only detecting a single
pipeline stage. As shown in Fig. 14, with only detect and
recover anomaly for a single stage, the Gaussian-based tech-
nique recovers the flight time by 16.2%, 29.9%, 34.7% and
the autoencoder-based technique recovers the flight time by
20.1%, 59.3%, 73.2% for perception, planning, and control,
respectively, along with the success rate improvement, in Fac-
tory environment. A similar trend has been demonstrated in
the other three environments. Both techniques show that the
flight time can be recovered the most by detecting the faults

Table 5: Compute time overhead of anomaly detection and
recovery scheme for each stage.

Environment Factory Farm Sparse Dense
DET RECOV DET RECOV DET RECOV DET RECOV

Perception <0.0001% 0.9603% <0.0001% 1.0902% <0.0001% 0.9788% <0.0001% 1.1932%
Planning <0.0001% 1.0199% <0.0001% 0.7801% <0.0001% 0.9421% <0.0001% 1.0279%
Control 0.0008% <0.0001% 0.0007% <0.0001% 0.0009% <0.0001% 0.0012% <0.0001%

sum (Gaussian) 1.9810% 1.8710% 1.9218% 2.2223%
PPC 0.0042% <0.0001% 0.0037% <0.0001% 0.0047% <0.0001% 0.0062% <0.0001%

sum (AutoE) 0.0042% 0.0037% 0.0047% 0.0062%

that happened in the control stage. The reasons are twofold.
First, the planning and control stages are more vulnerable
to transient faults from an end-to-end perspective. Second,
the control stage is the last stage in the PPC pipeline, and
thus any error propagated from previous stages has to pass
through the control stage before actually corrupting the flight
command. The vulnerability analysis of the individual stage
also lines up with the analysis in Section 4.2.

Multi-stages detection and recovery. To understand how
different pipeline stages affect the anomaly detection and
recovery schemes, we apply the scheme on multi-stages,
namely the planning-and-control (PC) stage and all PPC
stages. The Gaussian-based approach recovers the flight
time by 65.1%, 76.5%, and the autoencoder-based recovers
the flight time by 74.8%, 87.1% for PC and PPC, respectively,
along with the increase in success rate, in Factory environ-
ment. For the Gaussian-based technique, detecting the PC
stage significantly outperforms the single-stage detection and
recovery in all environments. For the autoencoder-based tech-
nique, detecting PC stage achieve slightly better performance
than only detecting control in Factory, Farm, and Sparse
environment. However, in Dense environment, detecting the
PC stage with the autoencoder-based scheme greatly outper-
forms detecting the control stage by 47.4%. Results from
both techniques show that a MAV achieves similar or higher
performance by monitoring more stages, and the performance
benefit is more for complex environments.

6.5 Compute Overhead
Software-level protection. We first evaluate the overhead

of the proposed software-level anomaly detection and recov-
ery scheme in this work across the evaluation environments.
The detection and recovery overhead is the total amount of de-
tection and recomputation time for each mission, respectively.
Tab. 5 shows that the overall overhead of the autoencoder
is much smaller than the Gaussian-based technique. The
overhead of the Gaussian-based technique is dominated by
the recovery of perception and planning stages, which takes
around 289 ms for each occupancy map generation and 83 ms
for each trajectory generation. On the other hand, even if the
autoencoder-based technique’s detection overhead is higher,
the recovery overhead is negligible since the recomputation

10

Time Energy

(a) AirSim Drone (Ours).

Time Energy

(b) DJI Spark.

Figure 15: Comparison of redundancy-based schemes (DMR
and TMR) and the proposed anomaly detection and recovery
schemes on ARM Cortex-A57.

of the control stage only takes 0.46 ms. As our proposed
fault detection and recovery is operated at software-level with
negligible overhead, it is possible to deploy multiple anomaly
detection nodes to improve the robustness of detection nodes,
which can be the future work.

Hardware-level protection. To demonstrate the benefits
of our proposed software-level schemes over conventional
redundancy-based hardware protections, we adopt a MAV vi-
sual performance model from [7] to evaluate the performance
overhead of microarchitecture-based redundancy schemes
(DMR and TMR) on MAV. In the comparison, two types
of drones, AirSim drone (used in this work) and DJI Spark
(with the same specs as [7]), are used as experimental plat-
forms. Fig. 15 shows that TMR incurs a flight time increase
by 1.06× on AirSim drone and 1.91× on DJI compared to
anomaly detection scheme. The rationale is that hardware
redundancy brings higher compute power with higher thermal
design power and weight, thus lowering flight velocity and
increasing flight time. Given the tight resource constraints
for the MAV system, our software-level anomaly detection
and recovery scheme demonstrates negligible end-to-end per-
formance overhead.

6.6 Computing Platform Comparison
To show the portability of our proposed schemes, we con-

duct variable-level fault injection on both Intel i9 CPU and
ARM Cortex-A57 CPU on the Nvidia TX2 platform, by in-
troducing a single bit-flip at the cross-stage variables as in
Section 4.3. As the results shown in Fig. 16, we observe
a similar error detection and recovery trend for both plat-
forms. On the TX2, the worst flight time increases 2.8×
since the TX2 is an edge platform that has longer latency and
slower responses to environmental changes. With the dedi-
cated anomaly detection ROS node continuously monitors
the anomaly of cross-stage variables, the flight time has been
successfully recovered by 79.3% and 88.0% with Gaussian-
based and autoencoder-based techniques, respectively. In this
experiment, we chose the variable-level fault injection as TX2
CPU uses ARM instruction set architecture, which needs a
different assembly-level injection than x86 Intel CPU.

7. RELATED WORK
Fault injection. As shown in Table 1, the most prior

fault injection works perform isolated kernel analysis at
application-level [10, 56, 57, 58, 59], micro-architecture level
[60, 61, 62], or RTL-level [63, 64] to understand the fault
tolerance characteristics. [65] indicated that lower-level fault
injection is more accurate than the application-level approach.

i9-9940X Cortex-A57
Core Number 14 4
Core Freq. (GHz) 3.3 2
Power (Watt) 165 <15
Flight time (s) 115 322
Flight energy (kJ) 61.7 177.1

Figure 16: Comparison of anomaly detection and recovery
schemes on Intel i9 CPU and ARM Cortex-A57.

However, to conduct lower-level fault injection, micro-architecture
level detail of the evaluated edge device is needed. Further-
more, for the end-to-end simulation of MAV, even the simple
factory environment takes 5 minutes per run and needs thou-
sands of runs in total. Consequently, it is more practical for
sophisticated applications (i.e., navigation task for MAV) to
adopt system-level fault injection methodology as the pro-
posed MAVFI than the low-level approach.

Safety standards. Many efforts have been dedicated for
autonomous vehicle safety from both academia and industry
[66,67,68]. For example, the safety standard ISO 26262 [69]
has been developed to provide comprehensive guidance and
safety requirements for vehicle and their systems, e.g., safety
goal under hazardous events [70]. There are also online safety
protection hardware systems developed for vehicles, such as
the NXP FS4500 system for functional safety measurement.
A variety of fault tolerance analysis has been performed at
the software level for environment noises [8], sensor noises
[71], and faults/vulnerabilities in the computing system for
autonomous vehicle [16, 17, 72, 73, 74]. Unfortunately, to
date, there are no comprehensive standards for autonomous
UAV assessment. The most related is ISO 21384 [75], which
is released in December 2019 to cover the safety and security
requirements for standard UAVs. The ISO committee is still
working on more complementary standards regarding safety,
quality, and terminology. However, with the growing number
of autonomous drones [76], there is a strong demand for
assessing autonomous drone reliability.

System recovery. Besides redundancy system [77, 78, 79],
there are recovery schemes based on checkpoint and idem-
potency. The former [80, 81, 82, 83, 84] set checkpoints at
a different level of granularity and restart from the check-
point when an error occurred. Due to the high overhead of
checkpoint-based recovery, [85,86, 87] leveraged the idem-
potency property to alleviate the checkpoint overhead. A pro-
gram is idempotent if its multiple executions lead to the same
results. Therefore, recomputation can recover from the errors
for idempotent programs. Asymmetric Resilience [88] fur-
ther proposed task-level idempotency for accelerators, which
is more vulnerable to transient error than CPU and alleviates
accelerator from expensive resiliency optimization.

8. CONCLUSION
Practical reliability considerations for MAV systems re-

quire a better understanding of fault tolerance in complex
end-to-end computation pipelines. We built an open-source
fault analysis framework, MAVFI, to enable comprehensive
end-to-end fault tolerance analysis. Compared to conven-
tional single kernel fault injection analysis, our work shows
that end-to-end analysis is essential to capturing the kernel
vulnerability. Beyond MAVFI, we further propose Gaussian-

11

based and autoencoder-based anomaly detection and recovery
schemes with low compute overhead. Experimental results
demonstrate that with less than 0.0062% compute overhead,
the autoencoder-based scheme can fully recover from all fail-
ure cases in the best-case scenario with negligible overhead.

Acknowledgements
This work was sponsored in part by the ADA (Applications
Driving Architectures) Center and C-BRIC (Center for Brain-
inspired Computing) , two of six centers in JUMP, a Semi-
conductor Research Corporation (SRC) program sponsored
by DARPA.

REFERENCES
[1] A. Goodchild and J. Toy, “Delivery by drone: An evaluation of

unmanned aerial vehicle technology in reducing co2 emissions in the
delivery service industry,” Transportation Research Part D: Transport
and Environment, vol. 61, pp. 58–67, 2018.

[2] S. Waharte and N. Trigoni, “Supporting search and rescue operations
with uavs,” in 2010 International Conference on Emerging Security
Technologies, pp. 142–147, IEEE, 2010.

[3] D. R. C. McCullough, “Unmanned Aircraft Systems(UAS) Guidebook
in Development.”
https://cops.usdoj.gov/html/dispatch/08-
2014/UAS_Guidebook_in_Development.asp.

[4] R. Feltman, “The Future of Sports Photography: Drones.”
https://www.theatlantic.com/technology/archive/2014/
02/the-future-of-sports-photography-drones/283896/.

[5] Z. Wan, B. Yu, T. Y. Li, J. Tang, Y. Zhu, Y. Wang, A. Raychowdhury,
and S. Liu, “A survey of fpga-based robotic computing,” arXiv
preprint arXiv:2009.06034, 2020.

[6] S. Krishnan, Z. Wan, K. Bhardwaj, P. Whatmough, A. Faust, G.-Y.
Wei, D. Brooks, and V. J. Reddi, “The sky is not the limit: A visual
performance model for cyber-physical co-design in autonomous
machines,” IEEE Computer Architecture Letters, vol. 19, no. 1,
pp. 38–42, 2020.

[7] S. Krishnan, Z. Wan, K. Bharadwaj, P. Whatmough, A. Faust,
S. Neuman, G.-Y. Wei, D. Brooks, and V. J. Reddi, “Machine
learning-based automated design space exploration for autonomous
aerial robots,” arXiv preprint arXiv:2102.02988, 2021.

[8] A. Toschi, M. Sanic, J. Leng, Q. Chen, C. Wang, and M. Guo,
“Characterizing perception module performance and robustness in
production-scale autonomous driving system,” in IFIP International
Conference on Network and Parallel Computing, pp. 235–247,
Springer, 2019.

[9] Y. Cao, C. Xiao, D. Yang, J. Fang, R. Yang, M. Liu, and B. Li,
“Adversarial objects against lidar-based autonomous driving systems,”
arXiv preprint arXiv:1907.05418, 2019.

[10] S. S. Mukherjee, J. Emer, and S. K. Reinhardt, “The soft error
problem: An architectural perspective,” in 11th International
Symposium on High-Performance Computer Architecture,
pp. 243–247, IEEE, 2005.

[11] R. Bertran, A. Buyuktosunoglu, P. Bose, T. J. Slegel, G. Salem,
S. Carey, R. F. Rizzolo, and T. Strach, “Voltage noise in multi-core
processors: Empirical characterization and optimization opportunities,”
in 2014 47th Annual IEEE/ACM International Symposium on
Microarchitecture, pp. 368–380, IEEE, 2014.

[12] J. A. Guzmán-Rabasa, F. R. López-Estrada, B. M. González-Contreras,
G. Valencia-Palomo, M. Chadli, and M. Perez-Patricio, “Actuator fault
detection and isolation on a quadrotor unmanned aerial vehicle
modeled as a linear parameter-varying system,” Measurement and
Control, vol. 52, no. 9-10, pp. 1228–1239, 2019.

[13] X. Qi, Z. Liu, Y. He, L. Yang, and J. Han, “Self-healing control
framework against actuator fault of single-rotor unmanned helicopters,”
Recent Progress in Some Aircraft Technologies, p. 113, 2016.

[14] T. He, L. Zhang, F. Kong, and A. Salekin, “Exploring inherent sensor
redundancy for automotive anomaly detection,” in 2020 57th
ACM/IEEE Design Automation Conference (DAC), pp. 1–6, IEEE,
2020.

[15] M. Lee, B. Mudassar, T. Na, and S. Mukhopadhyay, “Warningnet: a
deep learning platform for early warning of task failures under input
perturbation for reliable autonomous platforms,” in 2020 57th
ACM/IEEE Design Automation Conference (DAC), pp. 1–6, IEEE,
2020.

[16] S. S. Banerjee, S. Jha, J. Cyriac, Z. T. Kalbarczyk, and R. K. Iyer,
“Hands off the wheel in autonomous vehicles?: A systems perspective
on over a million miles of field data,” in 2018 48th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks
(DSN), pp. 586–597, IEEE, 2018.

[17] S. Jha, S. Banerjee, T. Tsai, S. K. Hari, M. B. Sullivan, Z. T.
Kalbarczyk, S. W. Keckler, and R. K. Iyer, “Ml-based fault injection
for autonomous vehicles: a case for bayesian fault injection,” in 2019
49th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN), pp. 112–124, IEEE, 2019.

[18] Q. Lu, M. Farahani, J. Wei, A. Thomas, and K. Pattabiraman, “Llfi:
An intermediate code-level fault injection tool for hardware faults,” in
2015 IEEE International Conference on Software Quality, Reliability
and Security, pp. 11–16, IEEE, 2015.

[19] J. Wei, A. Thomas, G. Li, and K. Pattabiraman, “Quantifying the
accuracy of high-level fault injection techniques for hardware faults,”
in 2014 44th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks, pp. 375–382, IEEE, 2014.

[20] E. Cheng, S. Mirkhani, L. G. Szafaryn, C.-Y. Cher, H. Cho,
K. Skadron, M. R. Stan, K. Lilja, J. A. Abraham, P. Bose, et al.,
“Clear: Cross-layer exploration for architecting resilience-combining
hardware and software techniques to tolerate soft errors in processor
cores,” in Proceedings of the 53rd Annual Design Automation
Conference, pp. 1–6, 2016.

[21] S. K. S. Hari, T. Tsai, M. Stephenson, S. W. Keckler, and J. Emer,
“Sassifi: An architecture-level fault injection tool for gpu application
resilience evaluation,” in 2017 IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS), pp. 249–258,
IEEE, 2017.

[22] D. T. Stott, B. Floering, D. Burke, Z. Kalbarczpk, and R. K. Iyer,
“Nftape: a framework for assessing dependability in distributed
systems with lightweight fault injectors,” in Proceedings IEEE
International Computer Performance and Dependability Symposium.
IPDS 2000, pp. 91–100, IEEE, 2000.

[23] D. Skarin, R. Barbosa, and J. Karlsson, “Goofi-2: A tool for
experimental dependability assessment,” in 2010 IEEE/IFIP
International Conference on Dependable Systems & Networks (DSN),
pp. 557–562, IEEE, 2010.

[24] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “Ros: an open-source robot operating
system,” in ICRA workshop on open source software, vol. 3, p. 5,
Kobe, Japan, 2009.

[25] S. Lynen, T. Sattler, M. Bosse, J. A. Hesch, M. Pollefeys, and
R. Siegwart, “Get out of my lab: Large-scale, real-time visual-inertial
localization.,” in Robotics: Science and Systems, vol. 1, 2015.

[26] S. Liu, M. Watterson, S. Tang, and V. Kumar, “High speed navigation
for quadrotors with limited onboard sensing,” in 2016 IEEE
international conference on robotics and automation (ICRA),
pp. 1484–1491, IEEE, 2016.

[27] T. Gao, Z. Wan, Y. Zhang, B. Yu, Y. Zhang, S. Liu, and
A. Raychowdhury, “ielas: An elas-based energy-efficient accelerator
for real-time stereo matching on fpga platform,” arXiv preprint
arXiv:2104.05112, 2021.

[28] S. Krishnan, B. Borojerdian, W. Fu, A. Faust, and V. J. Reddi, “Air
learning: An ai research platform for algorithm-hardware
benchmarking of autonomous aerial robots,” arXiv preprint
arXiv:1906.00421, 2019.

[29] A. Loquercio, A. I. Maqueda, C. R. Del-Blanco, and D. Scaramuzza,
“Dronet: Learning to fly by driving,” IEEE Robotics and Automation
Letters, vol. 3, no. 2, pp. 1088–1095, 2018.

[30] S. Krishnan, S. Chitlangia, M. Lam, Z. Wan, A. Faust, and V. J. Reddi,
“Quantized reinforcement learning (quarl),” arXiv preprint
arXiv:1910.01055, 2019.

[31] A. Anwar and A. Raychowdhury, “Autonomous navigation via deep
reinforcement learning for resource constraint edge nodes using
transfer learning,” IEEE Access, vol. 8, pp. 26549–26560, 2020.

[32] B. Boroujerdian, H. Genc, S. Krishnan, W. Cui, A. Faust, and

12

https://cops.usdoj.gov/html/dispatch/08-2014/UAS_Guidebook_in_Development.asp
https://cops.usdoj.gov/html/dispatch/08-2014/UAS_Guidebook_in_Development.asp
https://www.theatlantic.com/technology/archive/2014/02/the-future-of-sports-photography-drones/283896/
https://www.theatlantic.com/technology/archive/2014/02/the-future-of-sports-photography-drones/283896/

V. Reddi, “Mavbench: Micro aerial vehicle benchmarking,” in 2018
51st Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), pp. 894–907, IEEE, 2018.

[33] R. B. Rusu and S. Cousins, “3d is here: Point cloud library (pcl),” in
2011 IEEE international conference on robotics and automation,
pp. 1–4, IEEE, 2011.

[34] F. Fleuret, J. Berclaz, R. Lengagne, and P. Fua, “Multicamera people
tracking with a probabilistic occupancy map,” IEEE transactions on
pattern analysis and machine intelligence, vol. 30, no. 2, pp. 267–282,
2007.

[35] J. J. Kuffner and S. M. LaValle, “Rrt-connect: An efficient approach to
single-query path planning,” in Proceedings 2000 ICRA. Millennium
Conference. IEEE International Conference on Robotics and
Automation. Symposia Proceedings (Cat. No. 00CH37065), vol. 2,
pp. 995–1001, IEEE, 2000.

[36] D. Gonzalez, J. Perez, V. Milanes, and F. Nashashibi, “A review of
motion planning techniques for automated vehicles,” IEEE
Transactions on Intelligent Transportation Systems, vol. 17, no. 4,
pp. 1135–1145, 2016.

[37] K. H. Ang, G. Chong, and Y. Li, “Pid control system analysis, design,
and technology,” IEEE transactions on control systems technology,
vol. 13, no. 4, pp. 559–576, 2005.

[38] I. B. M. Matsuo, L. Zhao, and W.-J. Lee, “A dual modular redundancy
scheme for cpu–fpga platform-based systems,” IEEE Transactions on
Industry Applications, vol. 54, no. 6, pp. 5621–5629, 2018.

[39] S. Hudson, R. S. Sundar, and S. Koppu, “Fault control using triple
modular redundancy (tmr),” in Progress in Computing, Analytics and
Networking, pp. 471–480, Springer, 2018.

[40] S. Shah, D. Dey, C. Lovett, and A. Kapoor, “Airsim: High-fidelity
visual and physical simulation for autonomous vehicles,” CoRR,
vol. abs/1705.05065, 2017.

[41] B. Sangchoolie, K. Pattabiraman, and J. Karlsson, “One bit is (not)
enough: An empirical study of the impact of single and multiple
bit-flip errors,” in 2017 47th annual IEEE/IFIP international
conference on dependable systems and networks (DSN), pp. 97–108,
IEEE, 2017.

[42] J. J. Cook and C. Zilles, “A characterization of instruction-level error
derating and its implications for error detection,” in 2008 IEEE
International Conference on Dependable Systems and Networks With
FTCS and DCC (DSN), pp. 482–491, IEEE, 2008.

[43] S. Feng, S. Gupta, A. Ansari, and S. Mahlke, “Shoestring:
probabilistic soft error reliability on the cheap,” ACM SIGARCH
Computer Architecture News, vol. 38, no. 1, pp. 385–396, 2010.

[44] S. K. S. Hari, S. V. Adve, H. Naeimi, and P. Ramachandran, “Relyzer:
Exploiting application-level fault equivalence to analyze application
resiliency to transient faults,” ACM SIGARCH Computer Architecture
News, vol. 40, no. 1, pp. 123–134, 2012.

[45] Q. Lu, G. Li, K. Pattabiraman, M. S. Gupta, and J. A. Rivers,
“Configurable detection of sdc-causing errors in programs,” ACM
Transactions on Embedded Computing Systems (TECS), vol. 16, no. 3,
pp. 1–25, 2017.

[46] G. Li, K. Pattabiraman, S. K. S. Hari, M. Sullivan, and T. Tsai,
“Modeling soft-error propagation in programs,” in 2018 48th Annual
IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN), pp. 27–38, IEEE, 2018.

[47] V. Porpodas, “Zofi: Zero-overhead fault injection tool for fast transient
fault coverage analysis,” arXiv preprint arXiv:1906.09390, 2019.

[48] B. Fang, Q. Lu, K. Pattabiraman, M. Ripeanu, and S. Gurumurthi,
“epvf: An enhanced program vulnerability factor methodology for
cross-layer resilience analysis,” in 2016 46th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks
(DSN), pp. 168–179, IEEE, 2016.

[49] M. Ahmed, A. N. Mahmood, and M. R. Islam, “A survey of anomaly
detection techniques in financial domain,” Future Generation
Computer Systems, vol. 55, pp. 278–288, 2016.

[50] M. Zhang, A. Raghunathan, and N. K. Jha, “Medmon: Securing
medical devices through wireless monitoring and anomaly detection,”
IEEE Transactions on Biomedical circuits and Systems, vol. 7, no. 6,
pp. 871–881, 2013.

[51] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A
survey,” ACM computing surveys (CSUR), vol. 41, no. 3, pp. 1–58,

2009.

[52] Z. Chen, C. K. Yeo, B. S. Lee, and C. T. Lau, “Autoencoder-based
network anomaly detection,” in 2018 Wireless Telecommunications
Symposium (WTS), pp. 1–5, IEEE, 2018.

[53] Open Sources Robotics Foundation.
http://wiki.ros.org/roslaunch/XML/node.

[54] D. E. Knuth, Art of computer programming, volume 2: Seminumerical
algorithms. Addison-Wesley Professional, 2014.

[55] D. P. Kingma and J. Ba, “Adam: A method for stochastic
optimization,” arXiv preprint arXiv:1412.6980, 2014.

[56] S. S. Mukherjee, C. Weaver, J. Emer, S. K. Reinhardt, and T. Austin,
“A systematic methodology to compute the architectural vulnerability
factors for a high-performance microprocessor,” in Proceedings. 36th
Annual IEEE/ACM International Symposium on Microarchitecture,
2003. MICRO-36., pp. 29–40, IEEE, 2003.

[57] V. Sridharan and D. R. Kaeli, “Eliminating microarchitectural
dependency from architectural vulnerability,” in 2009 IEEE 15th
International Symposium on High Performance Computer
Architecture, pp. 117–128, IEEE, 2009.

[58] C.-Y. Cher, M. S. Gupta, P. Bose, and K. P. Muller, “Understanding
soft error resiliency of blue gene/q compute chip through hardware
proton irradiation and software fault injection,” in SC’14: Proceedings
of the International Conference for High Performance Computing,
Networking, Storage and Analysis, pp. 587–596, IEEE, 2014.

[59] Q. Guan, X. Hu, T. Grove, B. Fang, H. Jiang, H. Yin, and
N. DeBadeleben, “Chaser: An enhanced fault injection tool for tracing
soft errors in mpi applications,” in 2020 50th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks
(DSN), pp. 355–363, IEEE, 2020.

[60] D. S. Khudia and S. Mahlke, “Harnessing soft computations for
low-budget fault tolerance,” in 2014 47th Annual IEEE/ACM
International Symposium on Microarchitecture, pp. 319–330, IEEE,
2014.

[61] M. Didehban and A. Shrivastava, “nzdc: A compiler technique for
near zero silent data corruption,” in 2016 53nd ACM/EDAC/IEEE
Design Automation Conference (DAC), pp. 1–6, IEEE, 2016.

[62] H. So, M. Didehban, Y. Ko, A. Shrivastava, and K. Lee, “Expert:
Effective and flexible error protection by redundant multithreading,” in
2018 Design, Automation & Test in Europe Conference & Exhibition
(DATE), pp. 533–538, IEEE, 2018.

[63] M. Maniatakos, N. Karimi, C. Tirumurti, A. Jas, and Y. Makris,
“Instruction-level impact analysis of low-level faults in a modern
microprocessor controller,” IEEE Transactions on Computers, vol. 60,
no. 9, pp. 1260–1273, 2010.

[64] S. E. Michalak, A. J. DuBois, C. B. Storlie, H. M. Quinn, W. N. Rust,
D. H. DuBois, D. G. Modl, A. Manuzzato, and S. P. Blanchard,
“Assessment of the impact of cosmic-ray-induced neutrons on
hardware in the roadrunner supercomputer,” IEEE Transactions on
Device and Materials Reliability, vol. 12, no. 2, pp. 445–454, 2012.

[65] H. Cho, S. Mirkhani, C.-Y. Cher, J. A. Abraham, and S. Mitra,
“Quantitative evaluation of soft error injection techniques for robust
system design,” in Proceedings of the 50th Annual Design Automation
Conference, pp. 1–10, 2013.

[66] “Uber’s us safety report.”
https://www.uber.com/us/en/about/reports/us-safety-
report/.

[67] “Waymo safety report on the road to fully self-driving,” 2018.
Technical report.

[68] “Automated driving systems 2.0: A vision for safety,” 2018. Technical
report.

[69] R. Palin, D. Ward, I. Habli, and R. Rivett, “Iso 26262 safety cases:
Compliance and assurance,” 2011.

[70] J. Birch, R. Rivett, I. Habli, B. Bradshaw, J. Botham, D. Higham,
P. Jesty, H. Monkhouse, and R. Palin, “Safety cases and their role in
iso 26262 functional safety assessment,” in International Conference
on Computer Safety, Reliability, and Security, pp. 154–165, Springer,
2013.

[71] A. H. M. Rubaiyat, Y. Qin, and H. Alemzadeh, “Experimental
resilience assessment of an open-source driving agent,” in 2018 IEEE
23rd Pacific Rim International Symposium on Dependable Computing

13

http://wiki.ros.org/roslaunch/XML/node
https://www.uber.com/us/en/about/reports/us-safety-report/
https://www.uber.com/us/en/about/reports/us-safety-report/

(PRDC), pp. 54–63, IEEE, 2018.

[72] S. Jha, S. S. Banerjee, J. Cyriac, Z. T. Kalbarczyk, and R. K. Iyer,
“Avfi: Fault injection for autonomous vehicles,” in 2018 48th Annual
IEEE/IFIP International Conference on Dependable Systems and
Networks Workshops (DSN-W), pp. 55–56, IEEE, 2018.

[73] S. Jha, T. Tsai, S. Hari, M. Sullivan, Z. Kalbarczyk, S. W. Keckler, and
R. K. Iyer, “Kayotee: A fault injection-based system to assess the
safety and reliability of autonomous vehicles to faults and errors,”
arXiv preprint arXiv:1907.01024, 2019.

[74] G. Li, Y. Li, S. Jha, T. Tsai, M. Sullivan, S. K. S. Hari, Z. Kalbarczyk,
and R. Iyer, “Av-fuzzer: Finding safety violations in autonomous
driving systems,” in 2020 IEEE 31st International Symposium on
Software Reliability Engineering (ISSRE), pp. 25–36, IEEE, 2020.

[75] Clare Naden, “DRONE MARKET SET TO TAKE OFF WITH NEW
ISO STANDARD.” https://www.iso.org/news/ref2461.html.

[76] Sarah Wray, “Cities should prepare for an increase in delivery drones.”
https://cities-today.com/cities-should-prepare-for-
an-increase-in-delivery-drones/.

[77] P. Koopman and M. Wagner, “Challenges in autonomous vehicle
testing and validation,” SAE International Journal of Transportation
Safety, vol. 4, no. 1, pp. 15–24, 2016.

[78] X. Iturbe, B. Venu, J. Jagst, E. Ozer, P. Harrod, C. Turner, and
J. Penton, “Addressing functional safety challenges in autonomous
vehicles with the arm tcl s architecture,” IEEE Design & Test, vol. 35,
no. 3, pp. 7–14, 2018.

[79] E. Times, “Tesla’s Kitchen-Sink Approach to AVs.”
https://www.eetimes.com/teslas-kitchen-sink-
approach-to-avs/.

[80] A. Kadav, M. J. Renzelmann, and M. M. Swift, “Tolerating hardware
device failures in software,” in Proceedings of the ACM SIGOPS 22nd
symposium on Operating systems principles, pp. 59–72, 2009.

[81] A. Kadav, M. J. Renzelmann, and M. M. Swift, “Fine-grained fault
tolerance using device checkpoints,” ACM SIGPLAN Notices, vol. 48,
no. 4, pp. 473–484, 2013.

[82] A. J. Peña, W. Bland, and P. Balaji, “Vocl-ft: introducing techniques
for efficient soft error coprocessor recovery,” in Proceedings of the
International Conference for High Performance Computing,
Networking, Storage and Analysis, pp. 1–12, 2015.

[83] A. Rezaei, G. Coviello, C.-H. Li, S. Chakradhar, and F. Mueller,
“Snapify: capturing snapshots of offload applications on xeon phi
manycore processors,” in Proceedings of the 23rd international
symposium on High-performance parallel and distributed computing,
pp. 1–12, 2014.

[84] I. Akturk and U. R. Karpuzcu, “Acr: Amnesic checkpointing and
recovery,” in 2020 IEEE International Symposium on High
Performance Computer Architecture (HPCA), pp. 30–43, IEEE, 2020.

[85] S. Feng, S. Gupta, A. Ansari, S. A. Mahlke, and D. I. August, “Encore:
low-cost, fine-grained transient fault recovery,” in Proceedings of the
44th Annual IEEE/ACM International Symposium on
Microarchitecture, pp. 398–409, 2011.

[86] Q. Liu, C. Jung, D. Lee, and D. Tiwari, “Clover: Compiler directed
lightweight soft error resilience,” ACM Sigplan Notices, vol. 50, no. 5,
pp. 1–10, 2015.

[87] J. Menon, M. De Kruijf, and K. Sankaralingam, “igpu: exception
support and speculative execution on gpus,” ACM SIGARCH
Computer Architecture News, vol. 40, no. 3, pp. 72–83, 2012.

[88] J. Leng, A. Buyuktosunoglu, R. Bertran, P. Bose, Q. Chen, M. Guo,
and V. J. Reddi, “Asymmetric resilience: Exploiting task-level
idempotency for transient error recovery in accelerator-based systems,”
in 2020 IEEE International Symposium on High Performance
Computer Architecture (HPCA), pp. 44–57, IEEE, 2020.

14

https://www.iso.org/news/ref2461.html
https://cities-today.com/cities-should-prepare-for-an-increase-in-delivery-drones/
https://cities-today.com/cities-should-prepare-for-an-increase-in-delivery-drones/
https://www.eetimes.com/teslas-kitchen-sink-approach-to-avs/
https://www.eetimes.com/teslas-kitchen-sink-approach-to-avs/

	Introduction
	MAV Background
	MAV System
	MAV Safety

	MAV Fault Analysis Framework
	Overview of MAVFI
	Details of MAVFI Fault Injection
	End-to-end (E2E) Fault Analysis
	Fault Model

	MAV Fault Tolerance Analysis
	Single-Kernel Fault Tolerance Analysis
	End-to-End Fault Tolerance Analysis
	End-to-End Fault Tolerance Analysis at the Variable-level

	Anomaly Detection and Recovery
	Overview of Detection and Recovery
	Data Preprocessing
	Anomaly Detection
	Gaussian-based Anomaly Detection
	Autoencoder-based Anomaly Detection

	Recovery Scheme
	Implementation of Anomaly Detection and Recovery on ROS Layer

	Experimental Evaluation
	Experiment Setup
	Detection and Recovery Effectiveness
	Trajectory Analysis
	Anomaly Detection and Recovery for Different Compute Stages
	Compute Overhead
	Computing Platform Comparison

	Related Work
	Conclusion

