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Safety of Autonomous Navigation

» Autonomous navigation
systems are widely used.

» Specialized hardware
accelerator is rising.

» Hardware Fault is increasing.
o Transient fault
o Permanent fault

» Traditional protection method
incurs large overhead.
o Hardware module redundancy
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Safety of Autonomous Navigation

» Autonomous navigation
systems are widely used.

How is the resilience of autonomous navigation system

to hardware faults?

How do we detect and mitigate hardware faults?
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incurs large overhead.
o Hardware module redundancy
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» Partl: Reliability of learning-based navigation pipeline
» Part2: Reliability of kernel-based navigation pipeline
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Related Work

» Fault characterization
o Neural network in supervised learning: PytorchFl [1], Ares [2], SC'17 [3]
o End-to-end reinforcement learning-based (Our)

» Fault mitigation
o Hardware redundancy-based method: DMR, TMR
o Application-aware method (Our)

[1] Mahmoud, A. et al. Pytorchfi: A Runtime Perturbation Tool for DNNs. In DSN, 2020.
[2] Reagen, B. et al. Ares: A framework for quantifying the resilience of deep neural networks. In DAC, 2018.
[3] Li, G. et al. Understanding error propagation in deep learning neural network (DNN) accelerators and applications. In SC, 2017.
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This work

Analyzing and Improving fault tolerance of learning-based
navigation systems, that is:

@ A fault injection tool-chain for learning-based systems

‘lll Hardware fault study in learning-based systems

T . . .
A Fault mitigation techniques for learning-based systems
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This work

Analyzing and Improving fault tolerance of learning-based
navigation systems, that is:

@ A fault injection tool-chain for learning-based systems
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Fault Model and Fault Injection

» Fault Type

o Transient fault
» Random bitflip

o Permanent fault

» Stuck-at-0
» Stuck-at-1
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Fault Model and Fault Injection

» Fault Type

o Transient fault
» Random bitflip

o Permanent fault

» Stuck-at-0
» Stuck-at-1

> Fault Location
o Memory [1,2]

[1] Reagen, B. et al. Ares: A framework for quantifying the resilience of deep neural networks. In DAC, 2018.
[2] Li, G. et al. Understanding error propagation in deep learning neural network (DNN) accelerators and applications. In SC, 2017.
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Fault Model and Fault Injection

» Fault Type » Fault Injection
o Transient fault o Methodology
» Random bitflip » Static injection

» Dynamic injection

o Permanent fault

> Stuck-at-0 o Phases P
» Stuck-at-1 > Training ' 0 7 ' "
> Inference D\ )
\\ P
s o
. > ~N //
> Fault Location | Agent ]
o Memory [1,2] state| | reward action
s, | | A
Raf
< Environment ]<—

[1] Reagen, B. et al. Ares: A framework for quantifying the resilience of deep neural networks. In DAC, 2018.
[2] Li, G. et al. Understanding error propagation in deep learning neural network (DNN) accelerators and applications. In SC, 2017.
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This work

Analyzing and Improving fault tolerance of learning-based
navigation systems, that is:

ml)  Hardware fault study in learning-based systems
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Grid-Based Navigation Problem
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Low obstacle density Middle obstacle density High obstacle density
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Grid-Based Navigation Problem

abcde f gh i j abcdef ghi|j abcdef gh i j
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Low obstacle density Middle obstacle density High obstacle density
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» Algorithm paradigm: —— ;f"i:" ’

o NN-based method S e
T _ \\ //
o Tabular-based method * jpm—
: : , —J
» Evaluation metric: agent’s success rate st | rovard s
' 1 A,
R (
;S.., Environment ]47
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Faults in Grid World (Training)

NN-based method:
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» Transient fault occurred in later episodes with high BER has higher impact.

Partl: Reliability of learning-based autonomous navigation system

& -BRIC



Faults in Grid World (Training)

NN-based method:

Transient Fault Permanent. Fault,
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» Permanent fault stuck-at-0 has comparable impact as transient fault.
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Faults in Grid World (Training)

NN-based method: NN-based policy weight distribution:

Transient Fault Permanent Fault
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» Permanent fault stuck-at-1 has much severer impact than stuck-at-0.
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Faults in Grid World (Training)

NN-based method: Tabular-based method:
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» NN-based policy exhibit higher resilience than Tabular-based policy (except
stuck-at-1).
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Faults in Grid World (Convergence)

| NN-based method
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Faults in Grid World (Convergence)

NN-based method
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» System can finally achieve
convergence (>95% success rate)
after transient faults injected.

» Extra training time doesn’t bring
obvious improvements under
permanent faults.
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Faults in Grid World (Convergence)

NN-based method
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Faults in Grid World (Inference)

NN-based method:

—~~ 100' . . .

X Inference: Long-term decision-making process
g 75
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» Transient fault: Transient-1 has a negligible effect compared to Transient-M.

» Permanent fault: Stuck-at-1 has a much severe impact on policy than Stuck- at-0
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Faults in Grid World (Inference)

NN-based method: Tabular-based method:
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» Transient fault: Transient-1 has a negligible effect compared to Transient-M.

» Permanent fault: Stuck-at-1 has a much severe impact on policy than Stuck- at-0
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Drone Autonomous Navigation Problem

Environments and demos: Policy architecture:

Convl Conv2 Conv3 FC1 FC2

103 % . 1024 1024

6 W, =

25

103

3

|:| Input Feature Map . Conv Layer . MaxPool . Fully Connected Layer

(PEDRA: https://github.com/ageelanwar/PEDRA )

» Evaluation metric: drone safe flight distance (the longer, the better).
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Faults in Drone Navigation (Training)

Transient Bit-Flip =

6000 - )
15 132 129 119 105 120 g
@2 4000 - 100 & . . .
i 133 128 124 118 80 Higher (lighter) is
2,2000- 60 2 better
k= 132 131 127 125 0 5

0 le-4 le-3 le-2 le-1

Bit Error Rate

» Training method: offline training -> online fine-tunning using transfer learning

» Transient fault: occurred at latter episodes with higher BER impact flight
guality more.
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Faults in Drone Navigation (Training)

Transient Bit-Flip Permanent Fault )
o, 6000~ Stuck-at-0 ., —
5 132 129 119 105 6 120 g
@2 4000 - 100 £ . . .
£ 133 198 - - il T Higher (lighter) is
S 2000 Locstl  hg) 2 better
= 132 131 127 125 0 5
0 le-4 le-3 le-2 le-1

Bit Error Rate

» Training method: offline training -> online fine-tunning using transfer learning

» Transient fault: occurred at latter episodes with higher BER impact flight
guality more.

» Permanent fault: stuck-at-1 has much severe impact than stuck-at-0
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Faults in Drone Navigation (Inference)

B Input [0 Weight BN Act (T) 50 Act (P)

» Weights are sensitive to
transient faults while
input buffer is resilient.

Different
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Faults in Drone Navigation (Inference)
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Faults in Drone Navigation (Inference)

Q (sign, integer, fraction)
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Different & 100- capture the value range
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the better) .2 0 le5 led 1le3 1le2 lel
& Bit error rate
Different
bit locations

inQ(1,4,11):
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Faults in Drone Navigation (Inference)

Q (sign, integer, fraction)
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This work

Analyzing and Improving fault tolerance of learning-based
navigation systems, that is:

. . . . .
A Fault mitigation techniques for learning-based systems
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Training: Adaptive Exploration Rate Adjustment

» Detection: change in cumulative reward

Detection Recovery

- Reward drop
Transient exceeds x% within y

fault continuous episodes

Reward is still low
after going to steady-
exploitation states

Permanent
fault
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Training: Adaptive Exploration Rate Adjustment

» Detection: change in cumulative reward

» Recovery: dynamically adjust exploration-to-exploitation ratio and speed

Detection Recovery

Reward drop

: Increase exploration | f(r): reward dro
Transient | exceeds x% within y P J P

: . rate (ER) f(t): fault occurrence time
fault continuous episodes
ERpew = ERoq + 8(ER) = ERyjg +a X min(f(r), f(1)f (1))
Permanent Rewar-d is still low . Bevert the explorat-lon rate to-
Ul after going to steady- ——>| initial and slow down its decreasing
ault exploitation states speed by 2" X
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Training: Adaptive Exploration Rate Adjustment

* Evaluation:

Before fault mitigation: After fault mitigation:
: Transient Fault Permanent Fault
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» The impact of both transient fault and permanent fault during training can be
relieved.
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Inference: Value Range-Based Anomaly Detection

* Detection: statistically anomaly detection, (a,, b,) -> (1.1a,, 1.1b))

 Recovery: skip faulty operations
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Inference: Value Range-Based Anomaly Detection

* Detection: statistically anomaly detection, (a; b;) ->(1.1a,, 1.1b))
 Recovery: skip faulty operations

. Evaluation:

Grid World navigation Drone autonomous nhavigation

2 No Mitigation  [Z5 Mitigation N 271 No Mitigation [ Mitigation
5 100 &
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Bit error rate (%) Bit ervor rate

» Grid World: agent’s success rate increase by 2x

» Drone autonomous navigation: safe flight distance increases by 39%
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Drone Flight Trajectory Demo

No fault:

Start
location
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Drone Flight Trajectory Demo

No fault: Fault injected:

location
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Drone Flight Trajectory Demo

No fault:

Start
location

Fault mitigated:
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Part 1 Summary

Analyzing and Improving Fault Tolerance of Learning-Based Navigation

System:
723
23
— ——

o000 [

The safety and reliability of A fault injection tool-chain Large-scale fault injection Low-overhead fault
end-to-end learning-based that emulates hardware study in both training and detection and recovery
navigation systems is faults and enables rapid inference stages of techniques for both
important, but not well fault analysis of learning- learning-based systems training and inference
understood based navigation systems against permanent and

transient faults
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Autonomous Navigation System Paradigm

Compute

_____________________________________________

(\
X
J

Perception H Planning H Control

_____________________________________________

» Partl: Reliability of learning-based navigation pipeline
» Part2: Reliability of kernel-based navigation pipeline

& -BRIC



Autonomous Navigation System Paradigm

» Part2: Reliability of kernel-based navigation system
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Drone Computing Stack

Robot Operating System (ROS)
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Hardware
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Drone Computing Stack

Hardware
Layer

Robot Operating System (ROS)
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MAVFI Basis: Drone Simulator

MAVBench drone simulator

https://github.com/harvard-edge/MAVBench
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MAVFI Basis: Drone Simulator
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MAVFI Fault Injection Framework
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MAVFI Fault Injection Framework
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MAVFI Fault Injection Framework
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MAVFI Fault Injection Framework
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Fault Injection Methodology Details

MAVFI
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Figure 5: The design details for the interactions in MAVFI.
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Fault Injection Methodology Discussion

Table 2: Comparison of fault injection techniques at various

layers of abstraction.

Abstraction Platform Perf. E2E Exec. E2E Exec.
Layer (cycles/sec) | Time (1 run) | Time (1000 runs)
RTL IVM Alpha-like processor 6x102 | 42x10% hours | 1.74x107days
RTL simulation [58]
Micro-architecture gem5 simulator [10] 3x100 83.3 hours 3472 days
. OpenSPARC T1
1x107 25 h 1040 d
FPGA Emulation FPGA emulation [67] X ours ays
Architecture TSIM SPARC simulator [19] 6x107 4.17 hours 173.6 days
Software (Ours) x86 processor [84] 3x10° 5 mins 3.48 days
12 Point Cloud =%~ Path Smoothen
10791 -W- Octomap —¥— 1 End-to-End Run
100 -@- SLAM —— 1000 End-to-End Runs
(2]
@ 10°; 1 year
E 108+ 1 month
5 104 J 1 day
5 End-
§ 102 - to-end
w 100 . .
5 H } Single
10771 Kernel

R"I'L Micro'-a rch

FPGA

Arch

Software

Simulation Simulation Emulation Simulation Emulation

Fault Injection Methedology
Figure 4: Comparison of fault injection techniques at various
layers of abstraction.

(Ours)

> Software-level fault

injection is necessary for
end-to-end fault analysis
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Anomaly Detection and Recovery
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Anomaly Detection and Recovery
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Anomaly Detection and Recovery
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Key Takeaways from Results

» End-to-end fault analysis is essential to understand kernel
vulnerability and fault’s impact compared to conventional
isolated analysis approach.
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Key Takeaways from Results

» End-to-end fault analysis is essential to understand kernel
vulnerability and fault’s impact compared to conventional
isolated analysis approach.
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Key Takeaways from Results

» Anomaly detection and recovery enables autonomy reliability
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Key Takeaways from Results

» Anomaly detection and recovery enables autonomy reliability
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» The compute overhead of anomaly detection and recovery is
negligible compared to redundancy-based scheme
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Part 2 Summary

MAVFI: An End-to-End Fault Analysis Framework with Anomaly
Detection and Recovery for Micro Aerial Vehicles

%

o000 [

The safety and reliability of A fault injection tool-chain Large-scale fault injection Low-overhead fault
end-to-end kernel-based that emulates hardware study in different kernels of detection and recovery
navigation systems is faults and enables rapid kernel-based systems techniques to enable
important, but not well fault analysis of kernel- against hardware faults autonomy robustness
understood based navigation systems
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Thank You
Any Questions?

Email: zishenwan@gatech.edu
More info at website: https://zishenwan.github.io
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