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State of Al / Landscape

Language and image recognition capabilities of Al systems have improved rapidly iy

Our World

Test scores of the Al relative to human performance
+20

Al systems perform better than
/’ the humans who did these tests

1AI systems perform worse

O<Human performance, as the benchmark, is set to zero.

=20

-40
Reading
compre-
hension

-60

Handwriting recognition Language understanding

Speech recognition

-80
Image recognition

-100

i

Data source: Kiela et al. (2021) - Dynabench: Rethinking Benchmarking in NLP
OurWorldinData.org - Research and data to make progress against the world’s largest problems. Licensed under CC-BY by the author Max Roser
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The capability of each Al system is normalized

to aninitial performance of -100.
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Al Challenges
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Training compute (FLOPs) of milestone Machine Learning systems over time
LERL )

Al Challenges

e Unsustainable compute trajectory

Training compute (FLOPs)
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Al Challenges

* Unsustainable compute trajectory s
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Training compute (FLOPs) of milestone Machine Learning systems over time
ae il

Al Challenges

* Unsustainable compute trajectory
* Lack of explainability and transparency

Training compute (FLOPs)

* Lack of robustness and reliability

* Struggle in some tasks
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Training compute (FLOPs) of milestone Machine Learning systems over time
et

Al Challenges

e Unsustainable compute trajectory
* Lack of explainability and transparency

Training compute (FLOPs)

* Lack of robustness and reliability

 Struggle in some tasks
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Training compute (FLOPs) of milestone Machine Learning systems over time
LERL )

Al Challenges

e Unsustainable compute trajectory
* Lack of explainability and transparency
* Lack of robustness and reliability

 Struggle in some tasks
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Neural Networks / Deep Learning

Fully-connected 1

pooled
feature maps pooled  featuremaps featyre maps

feature maps O
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Outputs
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layer 1 layer 2

[Credit to MIT 6.5191, David Cox]
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Symbolic Al

apple
origin structure xinc
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apple tree body stem fruit
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round hand red green apple

[Credit to MIT 6.5191, David Cox]
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Neuro-Symbolic Al

:parameters (?bl ?b2 - block)
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Neuro-Symbolic Al

Fully-connected 1
pooled
feature maps pooled  feature maps featyre maps
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Input Convolutional Pooling 1 Convolutional  pooling2
layer 1 layer 2

Neural Network
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Outputs
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Symbolic Al

(o Features

inconsistency

* Symbolic: interpretable,
\_ explainable, data-efficient

* Neuro: scalable, flexible, handle

~
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Neuro-Symbolic Al
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(o Features

inconsistency

* Symbolic: interpretable,
explainable, data-efficient

\_

~

* Neuro: scalable, flexible, handle

J

apple
/ , \ (:action pickup
kind
e structure \ :parameters (?bl ?b2 - block)
/ / \ fruit :precondition (and (on ?bl ?b2)
apple tree body stem (hand-clear))
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Symbolic Al

(e Advantages:

\_

~

* Improve efficiency, robustness,
and explainability

 Human-like reasoning and

cognition capability

J
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Towards Understanding the Computational
Characteristics of Neuro-Symbolic Workloads

* Very little understanding exists of the computational characteristics of
neuro-symbolic Al workloads
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Towards Understanding the Computational
Characteristics of Neuro-Symbolic Workloads

* Very little understanding exists of the computational characteristics of
neuro-symbolic Al workloads

gc;% Step 1: Categorizing Neuro-Symbolic Al Algorithm
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Towards Understanding the Computational
Characteristics of Neuro-Symbolic Workloads

* Very little understanding exists of the computational characteristics of
neuro-symbolic Al workloads

‘% Step 1: Categorizing Neuro-Symbolic Al Algorithm

wll* Step 2: Benchmarking selecting algorithms on current Hardware

@ Step 3: Our view for Neuro-Symbolic Al Challenges and Opportunities
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Towards Understanding the Computational
Characteristics of Neuro-Symbolic Workloads

* Very little understanding exists of the computational characteristics of
neuro-symbolic Al workloads

é'ﬁcé% Step 1: Categorizing Neuro-Symbolic Al Algorithm
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Neuro-Symbolic Al Algorithms

e Classification Criterion:

How neuro-symbolic
integrated into a
cohesive system

(Henry Kautz’s taxonomy)
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Neuro-Symbolic Al Algorithms

e Classification Criterion: o Symbolic[Neuro] 9 Neuro |Symbolic
How neuro-symbolic o
integrated into a Symbolic !
cohesive system = |
(Henry Kautz’s taxonomy) e

9 Neuro:Symbolic->Neuro e Neuro[Symbolic]

Symbolic

Neural

s e
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Neuro-Symbolic Al Algorithms

oSymboIic[Neuro]

Symbolic

Il e 1

Example:
AlphaGolll
AlphaZero!?]

[1] Nature 2017; [2] Nature 2020
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Neuro-Symbolic Al Algorithms

OSymboIic[Neuro]

Symbolic

INRE=RERL

Example:
AlphaGolll
AlphaZero!?]

[1] Nature 2017; [2] Nature 2020

@Neuro | Symbolic

Symbolic

Neural

Example:
neuro-vector-symbolic architecturel3]
neuro-probabilistic logic programming!4!
neuro-symbolic dynamic reasoning!®!

[3] Nature 2023; [4] Al 2021; [5] ICLR 2020
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Neuro | Symbolic Example

a
RAVEN example test
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Neuro-vector-symbolic architecture
[M. Hersche, et al., Nature Machine Intelligence 2023]
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RAVEN example test

Neuro | Symbolic Example

Context panels
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a b l
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Neuro | Symbolic Example
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Neuro-Symbolic Al Algorithms

e Neuro:Symbolic -> Neuro

Symbolic

Neural

Example:
logical neural network!®!
Inductive logic programmingl!’]
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Neuro-Symbolic Al Algorithms

e Neuro:Symbolic -> Neuro

(Whiskers @ Tail ® (Laser pointer = Chases)) = Cat

(Cat @ Dog) — Pet
Symbolic

Pet

Neural

(Whiskers) (Tail] (=) [(cat

. /
Example- [Laser pointer]

logical neural network!®!
Inductive logic programming!’] logical neural network!®]

[6] NeurIPS 2020; [7] JAIR 2018
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Neuro-Symbolic Al Algorithms

eNeuro[SymboIic]

Neural

=111l

Example:
logical tensor network!8!
deep ontology network!®

[8] Al 2022; [9] JAIR 2020
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Neuro-Symbolic Al Algorithms

e Neuro[Symbolic]
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Example:
logical tensor network!8! logical tensor network!8!
deep ontology network®

[8] Al 2022; [9] JAIR 2020
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Neuro-Symbolic Al Algorithms

e Classification Criterion: o Symbolic[Neuro] 9 Neuro |Symbolic
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Towards Understanding the Computational
Characteristics of Neuro-Symbolic Workloads

* Very little understanding exists of the computational characteristics of
neuro-symbolic Al workloads

gc;% Step 1: Categorizing Neuro-Symbolic Al Algorithm

wil* Step 2: Benchmarking selecting algorithms on current Hardware
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Selected Neuro-Symbolic Al Models

* Logical Neural Network

Neuro:Symbolic->Neuro

(Whiskers ® Tail ® (Laser pointer = Chases)) = Cat
(Cat @ Dog) — Pet

[Whiskers] [Tail]

[ Laser pointer]

* Logical Tensor Network
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AppmE
Yz + Ap ME
7 p=2
RO
L AN A
BRI pPME
FRNAAR Ng
74 W

* Neuro-Vector-Symbolic

Architecture
Neuro | Symbolic

p
Transformation of a PMF with n values to block codes

P

—

o (@ O O OO O @ O
w2 OO @ OO @O Oy,
+i3 O @ O OO @ O Ol
»i4 O O O @O O O @.

Do

= (@O O Ol®@ OO b,
[oX YoXeloX XoXoF:

MLSys’23 SNAP Workshop

Towards Cognitive Al Systems: A Survey and Prospective on Neuro-Symbolic Al

06/08/2023



Compute Runtime Analysis

100
S o
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o= LNN: Logical Neural Network
LNN LTN NVSA LTN: Logical Tensor Network
Neuro Symb. NVSA: Neuro-vector-symbolic architecture

 Measurement Method: Pytorch Profiler
 Hardware: Intel Xeon 4114 CPU, Nvidia RTX 2080 Ti GPU
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Compute Runtime Analysis

100 .
* Observations
=80 2 (13 * Runtime Breakdown: symbolic workloads are not
S [IF S]] negligible and may become a system bottleneck.
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Compute Runtime Analysis

100 .
* Observations
=80 2 (13 * Runtime Breakdown: symbolic workloads are not
EE: S & - negligible and may become a system bottleneck.
= 60} o . :
= S * Runtime Breakdown: for same test size, neuro vs.
%40_ symbolic runtime ratio remains stable.
§ A
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 Hardware: Intel Xeon 4114 CPU, Nvidia RTX 2080 Ti GPU
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Compute Runtime Analysis

100 .
* Observations
=80 e * Runtime Breakdown: symbolic workloads are not
EE: e - negligible and may become a system bottleneck.
= 60f S . :
= § * Runtime Breakdown: for same test size, neuro vs.
%;340_ symbolic runtime ratio remains stable.
2 ||2]]s * Runtime Scalability: when test size increase from 2
00l Z (2] . to 3, runtime increase 5.02x.
=
o= LNN: Logical Neural Network
LNN LTN NVSA LTN: Logical Tensor Network
Neuro Symb. NVSA: Neuro-vector-symbolic architecture

 Measurement Method: Pytorch Profiler
 Hardware: Intel Xeon 4114 CPU, Nvidia RTX 2080 Ti GPU
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LNN: Logical Neural Network
LTN: Logical Tensor Network
NVSA: Neuro-vector-symbolic architecture

Compute Operator Analysis

L >60%
(N;Ile) - 0.00% 0.51% PERLD 16.4%- 0.00%
(Symbolic)” 0:00% 0.00% 193% 17.3% -- 45%
(Neurgy - 0-00% 62.5% 720% 3.48% 0.00%
30%

(sylﬁlTblgnc)' 0.00% 0.00% [EREN 2.40% 6.36% 18.1%

(Il\j]\eluslfg) '-- 22.0% 3.11% 9.40% 0.00% -15%
- 0.52% HEERFM 6.82% 7.12% 0.00%
- 0%

o W‘W @\eﬁ“"‘ 0%‘ (o™ m"“ et

e Six operators: convolution, matrix multiplication (MatMul), vector/element-wise operation,
data transformation, data movement, others (logic)
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LNN: Logical Neural Network
LTN: Logical Tensor Network
NVSA: Neuro-vector-symbolic architecture

Compute Operator Analysis

>60%

(Neuro) - 0-00% 0.51% [EERDAY 16.4% 0.00% * Observations

N i< * Neuro Workload: dominated by
0.00% 0.00% 19.3% 17.3% 24.0% % . . .
(Symbolic) 4-: MatMul and activation operations

LTI - 0.00% QYN 7.20% 3.48% 0.00%
(Neuro)
30%

LIN © _0.00% 0.00% 2.40% 6.36% 18.1%

(Symbolic)
-- 22.0% 3.11% 9.40% 0.00% - 15%

NVSA
(Neuro)
0.52% RN 6.82% 7.12% 0.00%
| - 0%

NVSA
(Symbolic)

co™ W@f\“ &@\eﬁ“"‘ 0?*‘3 (o™ 9‘2*"A et
Je°_qs© r“‘&“ N\

* Six operators: convolution, matrix multiplication (MatMul), vector/element-wise operation,
data transformation, data movement, others (logic)
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LNN: Logical Neural Network
LTN: Logical Tensor Network
NVSA: Neuro-vector-symbolic architecture

Compute Operator Analysis

~60% .
(I{;gNm) - 0.00% 0.51% 0.00% * Observations
* Neuro Workload: dominated by

LNN
.- 0.00% 0.00% 19.3% 17.3% 24.0% 45% : . .

(Symbolic) - MatMul and activation operations

LTN 0 0 0 0 H l

(Neuro) ~ 2-00% 7.20% 3.48% 0.00% . * Symbolic Workload: dominated by
& LIN. 000 0.00% 2 40% o3 D vector and scalar operations - low

2 operational intensity and complex

NVSA o o o o _1%0 . . .

(Neuro) | 22.0% 3.11% 9.40% 0.00% = -15% control flows (inefficient on GPUs)
(SI;IXbS(;?lC) - 0.52% 6.82% 7.12% 0.00% .

6\6 2 ‘A\‘A es
RO %qfs@ x?a““’ﬁoﬁoﬁo O‘X\

* Six operators: convolution, matrix multiplication (MatMul), vector/element-wise operation,
data transformation, data movement, others (logic)

co™ N\’A\N\
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LNN: Logical Neural Network
LTN: Logical Tensor Network
NVSA: Neuro-vector-symbolic architecture

Compute Operator Analysis

~60% .
(I{;gNm) - 0.00% 0.51% 16.4%- 0.00% * Observations
* Neuro Workload: dominated by

LNN
.y~ 0.00% 0.00% 19.3% 17.3% 24.0% 45% : . .
(Symbolic) MatMul and activation operations
LTN 0 0 0 0 0 H I
(Neuro) ~ 0-00"- 7.20% 3.48% 0.00% - * Symbolic Workload: dominated by
s Ir}lTbIgnc)' 0.00% 0.00% [EREZY 2.40% 6.36% 18.1% VeCtor.and S_Calar qperatlons - low
Y operational intensity and complex
NVSA o o o o _1%0 . . .
(Neuro) -- - R 000% 1o control flows (inefficient on GPUs)
A 0 0 0 0 0 1 H
(SI;XS(,IIC)- 0.52% s82% 7124 oo |« Accelerating computation becomes

co™ N\,A\N\ o eﬁ‘e 9‘2&\ cor® Q‘A\‘A O,&ei IMmpo rtant
0\0 \ﬂﬁe r“‘&“% §J\0
* Six operators: convolution, matrix multiplication (MatMul), vector/element-wise operation,

data transformation, data movement, others (logic)
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Towards Understanding the Computational
Characteristics of Neuro-Symbolic Workloads

* Very little understanding exists of the computational characteristics of
neuro-symbolic Al workloads

‘% Step 1: Categorizing Neuro-Symbolic Al Algorithm

wll* Step 2: Benchmarking selecting algorithms on current Hardware

@ Step 3: Our view for Neuro-Symbolic Al Challenges and Opportunities
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Challenge and Opportunity

{ Data J @ Lack of cognitive datasets

O %
N

I~

CLEVRER Dataset

m| ee|»

F G
RAVEN Dataset
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Challenge and Opportunity

[ Data J @ Lack of cognitive datasets Q Building ImageNet-like NSAI datasets

Human-like Al

Metacognition :
Interpretability '

. . |
Deductive Reasoning
Systematicity :
|

|

|

|

)

Compositionality
Counterfactual thinking

A
CLEVRER Dataset Zoe|[eee|[ _|[ees
eo(le o o .
e(|lo® (| 00 - em mm =
E F G H

RAVEN Dataset
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Challenge and Opportunity

~

Data @ Lack of cognitive datasets O Building ImageNet-like NSAI datasets

J

~

Model

Neural Network |-+ | Symbolic |4 | Probabilistic

Scalable Interpretable
Flexible Explainable Robust to
\Handle inconsistency)  |Data-efficient ) | uncertainty )
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Challenge and Opportunity

4 )

Data @ Lack of cognitive datasets O Building ImageNet-like NSAI datasets
Model @ Nascent integration Q Unifying neuro-symbolic-prob models
Software | (@) Modularity & extensibility Q Developing efficient SW framework

\ J

Efficient NSAIl Software

Underlying Operations Examples Y I
Fuzzy logic F =Vz(isCarnivor(s)) — (isMammal(x)) I Encompass- broad- set of,
(LTN) {isCarnivor(s):[0, 1], isMammal(z):[1,0]} = F = [1,0] :>| reasoning logics :

Mul and Add (NVSA) X; € {+1,-1}9 = (X; - X,)/(X; + X;) : Fast !
Pre-defined objects equal_color: (entry,entry) — Boolean I - :

- |

(NSVQA) equal_integer: (number, number) — Boolean : Memory-efficient I
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@ Lack of cognitive datasets Building ImageNet-like NSAI datasets
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Towards Understanding the Computational
Characteristics of Neuro-Symbolic Workloads

* Very little understanding exists of the computational characteristics of
neuro-symbolic Al workloads

QStep 1: Categorizing Neuro-Symbolic Al Algorithm
QStep 2: Benchmarking selecting algorithms on current Hardware
QStep 3: Our view for Neuro-Symbolic Al Challenges and Opportunities

Prof. Tushar Krishna (tushar@ece.gatech.edu)
Prof. Celine Lin (ylin715@gatech.edu)
Prof. Arijit Raychowdhury (arijit.raychowdhury@ece.gatech.edu)

Paper available at https://arxiv.org/pdf/2401.01040.pdf
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