MLSys | 2023

Towards Cognitive Al Systems: A Survey and Prospective on Neuro-Symbolic Al

Zishen Wan, Che-Kai Liu*, Hanchen Yang*, Chaojian Li*, Haoran You*, Yonggan Fu, Cheng Wan, Tushar Krishna, Yingyan (Celine) Lin, Arijit Raychowdhury

Georgia Institute of Technology, Atlanta, GA

State of AI / Landscape

Language and image recognition capabilities of AI systems have improved rapidly Our World in Data

Data source: Kiela et al. (2021) – Dynabench: Rethinking Benchmarking in NLP OurWorldinData.org – Research and data to make progress against the world's largest problems.

Licensed under CC-BY by the author Max Roser

MLSys'23 SNAP Workshop Towards Cognitive AI Systems: A Survey and Prospective on Neuro-Symbolic AI 06/08/2023

• Unsustainable compute trajectory

- Unsustainable compute trajectory
- Lack of explainability and transparency

- Unsustainable compute trajectory
- Lack of explainability and transparency
- Lack of robustness and reliability

- Unsustainable compute trajectory
- Lack of explainability and transparency
- Lack of robustness and reliability
- Struggle in some tasks

- Unsustainable compute trajectory
- Lack of explainability and transparency
- Lack of robustness and reliability
- Struggle in some tasks

Training compute (FLOPs) of milestone Machine Learning systems over time

Are there more trees than animals?

- Unsustainable compute trajectory
- Lack of explainability and transparency
- Lack of robustness and reliability
- Struggle in some tasks

Training compute (FLOPs) of milestone Machine Learning systems over time

Are there more trees than animals?

What's the shape of object closest to large cylinder

Neural Networks / Deep Learning

[Credit to MIT 6.S191, David Cox]

Symbolic Al

Neuro-Symbolic Al

Neuro-Symbolic Al

- Features
 - Neuro: scalable, flexible, handle inconsistency
 - **Symbolic**: interpretable, explainable, data-efficient

Neuro-Symbolic Al

 Very little understanding exists of the computational characteristics of neuro-symbolic AI workloads

• Very little understanding exists of the computational characteristics of neuro-symbolic AI workloads

Example 2 Step 1: Categorizing Neuro-Symbolic Al Algorithm

• Very little understanding exists of the computational characteristics of neuro-symbolic AI workloads

Step 1: Categorizing Neuro-Symbolic Al Algorithm

Step 2: Benchmarking selecting algorithms on current Hardware

 Very little understanding exists of the computational characteristics of neuro-symbolic AI workloads

Step 1: Categorizing Neuro-Symbolic Al Algorithm

Step 2: Benchmarking selecting algorithms on current Hardware

Ø

Step 3: Our view for Neuro-Symbolic AI Challenges and Opportunities

• Very little understanding exists of the computational characteristics of neuro-symbolic AI workloads

Step 1: Categorizing Neuro-Symbolic AI Algorithm

Step 3: Our view for Neuro-Symbolic AI Challenges and Opportunities

• Classification Criterion:

How neuro-symbolic integrated into a cohesive system (Henry Kautz's taxonomy)

MLSys'23 SNAP Workshop Towards Cognitive AI Systems: A Survey and Prospective on Neuro-Symbolic AI 06/08/2023

1 Symbolic[Neuro]

Example: AlphaGo^[1] AlphaZero^[2]

[1] Nature 2017; [2] Nature 2020

2 Neuro | Symbolic

Example: AlphaGo^[1] AlphaZero^[2]

Example:

neuro-vector-symbolic architecture^[3] neuro-probabilistic logic programming^[4] neuro-symbolic dynamic reasoning^[5]

[3] Nature 2023; [4] AI 2021; [5] ICLR 2020

[1] Nature 2017; [2] Nature 2020

Neuro | Symbolic Example

а

RAVEN example test

b

NVSA frontend: perception

Neuro | Symbolic Example

MLSys'23 SNAP Workshop Towards Cognitive AI Systems: A Survey and Prospective on Neuro-Symbolic AI 06/08/2023

MLSys'23 SNAP Workshop Towards Cognitive AI Systems: A Survey and Prospective on Neuro-Symbolic AI 06/08/2023

Neuro | Symbolic Example

b

а

RAVEN example test

NVSA frontend: perception

3 Neuro:Symbolic -> Neuro

Example: logical neural network^[6] Inductive logic programming^[7]

3 Neuro:Symbolic -> Neuro

[6] NeurIPS 2020; [7] JAIR 2018

logical neural network^[6]

4 Neuro[Symbolic]

Example: logical tensor network^[8] deep ontology network^[9]

[8] AI 2022; [9] JAIR 2020

4 Neuro[Symbolic]

Example: logical tensor network^[8] deep ontology network^[9]

[8] AI 2022; [9] JAIR 2020

logical tensor network^[8]

MLSys'23 SNAP Workshop Towards Cognitive AI Systems: A Survey and Prospective on Neuro-Symbolic AI 06/08/2023

MLSys'23 SNAP Workshop Towards Cognitive AI Systems: A Survey and Prospective on Neuro-Symbolic AI 06/08/2023

• Very little understanding exists of the computational characteristics of neuro-symbolic AI workloads

Step 1: Categorizing Neuro-Symbolic Al Algorithm

Step 2: Benchmarking selecting algorithms on current Hardware

Step 3: Our view for Neuro-Symbolic AI Challenges and Opportunities

Selected Neuro-Symbolic Al Models

• Logical Neural Network

Neuro:Symbolic->Neuro

- Logical Tensor Network Neuro[Symbolic]
- Neuro-Vector-Symbolic Architecture Neuro | Symbolic

- Measurement Method: P,
- Hardware: Intel Xeon 4114 CPU, Nvidia RTX 2080 Ti GPU

• Hardware: Intel Xeon 4114 CPU, Nvidia RTX 2080 Ti GPU

- Measurement Method: P, concinent
- Hardware: Intel Xeon 4114 CPU, Nvidia RTX 2080 Ti GPU

- Measurement Method: P,
- Hardware: Intel Xeon 4114 CPU, Nvidia RTX 2080 Ti GPU

Compute Operator Analysis

• Six operators: convolution, matrix multiplication (MatMul), vector/element-wise operation, data transformation, data movement, others (logic)

Compute Operator Analysis

LNN (Neuro)	0.00%	0.51%	43.6%	16.4%	39.5%	0.00%	r >60%
LNN (Symbolic)	0.00%	0.00%	19.3%	17.3%	39.4%	24.0%	- 45%
LTN (Neuro)	0.00%	62.5%	26.8%	7.20%	3.48%	0.00%	- 30%
LTN (Symbolic)	0.00%	0.00%	73.1%	2.40%	6.36%	18.1%	2070
NVSA (Neuro)	30.7%	34.8%	22.0%	3.11%	9.40%	0.00%	- 15%
NVSA (Symbolic)	35.7%	0.52%	49.9%	6.82%	7.12%	0.00%	- 0%
	Conv	MatMul Vecto	r Elemen	t Data Transforr	n Data Movem	entOther	070

Observations

• Neuro Workload: dominated by MatMul and activation operations

 Six operators: convolution, matrix multiplication (MatMul), vector/element-wise operation, data transformation, data movement, others (logic)

Compute Operator Analysis

LNN (Neuro)	0.00%	0.51%	43.6%	16.4%	39.5%	0.00%		->60%		
LNN (Symbolic)	0.00%	0.00%	19.3%	17.3%	39.4%	24.0%		- 45%		
LTN (Neuro)	0.00%	62.5%	26.8%	7.20%	3.48%	0.00%		- 30%		
LTN (Symbolic)	0.00%	0.00%	73.1%	2.40%	6.36%	18.1%		- 3078		
NVSA (Neuro)	30.7%	34.8%	22.0%	3.11%	9.40%	0.00%		- 15%		
NVSA (Symbolic)	35.7%	0.52%	49.9%	6.82%	7.12%	0.00%		- 0%		
Conv MatMul Element Data Data Data Novement Other										

Observations

- Neuro Workload: dominated by MatMul and activation operations
- Symbolic Workload: dominated by vector and scalar operations low operational intensity and complex control flows (inefficient on GPUs)

 Six operators: convolution, matrix multiplication (MatMul), vector/element-wise operation, data transformation, data movement, others (logic)

Compute Operator Analysis

Observations

- Neuro Workload: dominated by MatMul and activation operations
- Symbolic Workload: dominated by vector and scalar operations low operational intensity and complex control flows (inefficient on GPUs)

 Accelerating computation becomes important

 Six operators: convolution, matrix multiplication (MatMul), vector/element-wise operation, data transformation, data movement, others (logic)

• Very little understanding exists of the computational characteristics of neuro-symbolic AI workloads

Step 1: Categorizing Neuro-Symbolic Al Algorithm

Step 3: Our view for Neuro-Symbolic AI Challenges and Opportunities

Data

O Lack of cognitive datasets

CLEVRER Dataset

Lack of cognitive datasets

Building ImageNet-like NSAI datasets

CLEVRER Dataset

MLSys'23 SNAP Workshop Towards Cognitive AI Systems: A Survey and Prospective on Neuro-Symbolic AI 06/08/2023

(NSVQA)

equal_integer: $(number, number) \rightarrow Boolean$

- Very little understanding exists of the computational characteristics of neuro-symbolic AI workloads
- Step 1: Categorizing Neuro-Symbolic Al Algorithm
- Step 2: Benchmarking selecting algorithms on current Hardware
- Step 3: Our view for Neuro-Symbolic AI Challenges and Opportunities

Prof. Tushar Krishna(tushar@ece.gatech.edu)Prof. Celine Lin(ylin715@gatech.edu)Prof. Arijit Raychowdhury (arijit.raychowdhury@ece.gatech.edu)

Paper available at <u>https://arxiv.org/pdf/2401.01040.pdf</u>