
QUARL: QUANTIZED REINFORCEMENT LEARNING

Srivatsan Krishnan * 1 Sharad Chitlangia * 2 Maximilian Lam * 1 Zishen Wan 1 Aleksandra Faust 3

Vijay Japana Reddi 1

ABSTRACT
Quantization techniques continue to play a significant role in serving deep learning applications on resource-
constrained devices. However, whether these prior techniques, applied traditionally to image-based models, work
with the same efficacy to the sequential decision-making process in reinforcement learning remains an unanswered
question. To address this void, we conduct the first comprehensive empirical study that quantifies the effects
of quantization on various deep reinforcement learning policies with the intent to reduce their computational
resource demands. We apply techniques such as post-training quantization and quantization aware training to a
spectrum of reinforcement learning tasks (such as Pong, Breakout, BeamRider, and more) and training algorithms
(such as PPO, A2C, DDPG, and DQN). Across this spectrum of tasks and learning algorithms, we show that
policies can be quantized to 6-8 bits of precision without loss of accuracy. We also show that certain tasks
and reinforcement learning algorithms yield policies that are more difficult to quantize due to their effect of
widening the models’ distribution of weights and that quantization aware training consistently improves results
over post-training quantization and oftentimes even over the full precision baseline. Finally, we demonstrate
real-world applications of quantization for reinforcement learning. We use mixed/half-precision training to train a
Pong model 50% faster, and deploy a quantized reinforcement learning-based robot navigation policy onto an
embedded system, achieving an 18× speedup and a 4× reduction in memory usage over an unquantized policy.

1 INTRODUCTION

Deep reinforcement learning has promise in many appli-
cations, ranging from game playing (Silver et al., 2016;
2017; Kempka et al., 2016) to robotics (Lillicrap et al.,
2015; Zhang et al., 2015) to locomotion and transporta-
tion (Arulkumaran et al., 2017; Kendall et al., 2018). How-
ever, the training and deployment of reinforcement learning
models remain challenging. Training is expensive because
of their computationally expensive demands of repeatedly
performing the forward and backward propagation in neural
network training. Achieving state of the art results in the
game DOTA2 required around 128,000 CPUs cores and
256 P100 GPUs—the total infrastructure cost in the tens
of millions of US dollars (OpenAI, 2018). Deploying deep
reinforcement learning (DRL) models is prohibitively expen-
sive, if not even impossible, due to the resource constraints
on embedded computing systems typically used for applica-
tions, such as robotics and drone navigation. For example, a
Ras-Pi3b board has only ∼900 MB of RAM and exceeding
this limit may cause accesses to swap memory that may

*Equal contribution 1Harvard University 2BITS-Pilani Goa
3Robotics at Google. Correspondence to: Srivatsan Krishnan
<srivatsan@seas.harvard.edu>.

Proceedings of the 3rd SysML Conference, Austin, TX, USA, 2020.
Copyright 2020 by the author(s).

slow down an application by an order of magnitude.

Quantization may substantially reduce the memory, com-
pute, and energy usage of deep learning models without
significantly harming their quality (Han et al., 2015; Zhou
et al., 2016; Han et al., 2016). However, it is unknown
whether the same techniques carry over to reinforcement
learning. Unlike models in supervised learning, the quality
of a reinforcement learning policy depends on how effective
it is in sequential decision making. Specifically, an agent’s
current input and decision heavily affect its future state
and future actions; it is unclear how quantization affects
the long-term decision making capability of reinforcement
learning policies. Also, there are many different algorithms
to train a reinforcement learning policy. Algorithms like
actor-critic methods (A2C), deep-q networks (DQN), proxi-
mal policy optimization (PPO) and deep deterministic policy
gradients (DDPG) are significantly different in their opti-
mization goals and implementation details, and it is unclear
whether quantization would be similarly effective across
these algorithms. Finally, reinforcement learning policies
are trained and applied to a wide range of environments, and
it is unclear how quantization affects performance in tasks
of differing complexity.

Here, we aim to understand quantization effects on deep
reinforcement learning policies with the goal of reducing

QuaRL: Quantized Reinforcement Learning

memory and compute to enable faster and cheaper train-
ing/deployment. Hence, we comprehensively benchmark
the effects of quantization on policies trained by various rein-
forcement learning algorithms on different tasks, conducting
in excess of 350 experiments to present a representative and
conclusive analysis. We perform experiments over 3 ma-
jor axes: (1) environments (Arcade Learning Environment,
PyBullet, OpenAI Gym), (2) reinforcement learning train-
ing algorithms (Deep-Q Networks, Advantage Actor-Critic,
Deep Deterministic Policy Gradients, Proximal Policy Opti-
mization) and (3) quantization methods (post-training quan-
tization, quantization aware training).

We show that deep reinforcement learning models can be
quantized to 6-8 bits of precision without loss in quality.
Furthermore, we analyze how each axis affects the final
performance of the quantized model to develop insights
into how to achieve better model quantization. Our results
show that some tasks and training algorithms yield models
that are more difficult to apply post-training quantization as
they widen the spread of the models’ weight distribution,
yielding higher quantization error. This motivates the use of
quantization aware training, which we show demonstrates
improved performance over post-training quantization and
oftentimes even over the full precision baseline.

To demonstrate the usefulness of quantization for deep re-
inforcement learning, we train and deploy a quantized re-
inforcement learning based navigation policy onto an em-
bedded system (proxy for compute system on aerial robots)
and achieve an 18× speedup and a 4× reduction in memory
usage over an unquantized policy. We also demonstrate that
quantization during training can result in upto 1.6× speedup.
This can be particularly useful during reinforcement learn-
ing training on memory constrained GPUs.1

2 RELATED WORK

Reducing neural network resource requirements is an active
research topic. Techniques include quantization (Han et al.,
2015; 2016; Zhu et al., 2016; Jacob et al., 2018; Lin et al.,
2019; Polino et al., 2018; Sakr & Shanbhag, 2018), deep
compression (Han et al., 2016), knowledge distillation (Hin-
ton et al., 2015; Chen et al., 2017), sparsification (Han et al.,
2016; Alford et al., 2018; Park et al., 2016; Louizos et al.,
2018b; Bellec et al., 2017) and pruning (Alford et al., 2018;
Molchanov et al., 2016; Li et al., 2016). These methods
are employed because they compress to reduce storage and
memory requirements as well as enable fast and efficient in-
ference and training with specialized operations. We provide
background for these motivations and describe the specific
techniques that fall under these categories and motivate why
quantization for reinforcement learning needs study.

1GPU memory can vary from anywhere from 3 GB to 12GB.

Compression for Memory and Storage: Techniques
such as quantization, pruning, sparsification, and distilla-
tion reduce the amount of storage and memory required by
deep neural networks. These techniques are motivated by
the need to train and deploy neural networks on memory-
constrained environments (e.g., IoT or mobile). Broadly,
quantization reduces the precision of network weights (Han
et al., 2015; 2016; Zhu et al., 2016), pruning removes var-
ious layers and filters of a network (Alford et al., 2018;
Molchanov et al., 2016), sparsification zeros out selective
network values (Molchanov et al., 2016; Alford et al., 2018)
and distillation compresses an ensemble of networks into
one (Hinton et al., 2015; Chen et al., 2017). Various algo-
rithms combining these core techniques have been proposed.
For example, Deep Compression (Han et al., 2015) demon-
strated that a combination of weight-sharing, pruning, and
quantization might reduce storage requirements by 35-49x.

Quantization for Reinforcement Learning: Prior work in
quantization focuses mostly on quantizing image / super-
vised models. However, there are several key differences
between these models and reinforcement learning policies:
an agent’s current input and decision affects its future state
and actions, there are many complex algorithms (e.g: DQN,
PPO, A2C, DDPG) for training, and there are many diverse
tasks. To the best of our knowledge, this is the first work
to ask the question as to how quantization affects deep rein-
forcement learning. To this end, we apply and analyze the
performance of quantization across a broad of reinforcement
learning tasks and training algorithms.

3 QUANTIZED REINFORCEMENT
LEARNING (QUARL)

We develop QuaRL, an open-source software framework
that allows us to systematically apply traditional quantiza-
tion methods to a broad spectrum of deep reinforcement
learning models.2 We use the QuaRL framework to 1)
evaluate how effective quantization is at compressing re-
inforcement learning policies, 2) analyze how quantization
affects/is affected by the various environments and training
algorithms in reinforcement learning and 3) establish a stan-
dard on the performance of quantization techniques across
various training algorithms and environments.

Environments: We evaluate quantized models on three dif-
ferent types of environments: OpenAI gym (Brockman
et al., 2016), Arcade Learning Environment (Bellemare
et al., 2012), and PyBullet (which is an open-source imple-
mentation of the MuJoCo). These environments consist of
a variety of tasks, including CartPole, MountainCar, Lu-
narLandar, Atari Games, Humanoid, etc. The complete list

2Source code for QuaRL can be found here: https://
github.com/harvard-edge/quarl

https://github.com/harvard-edge/quarl
https://github.com/harvard-edge/quarl

QuaRL: Quantized Reinforcement Learning

Algorithm OpenAI Gym Atari PyBullet
Cartpole MountainCar BeamRider Breakout MsPacman Pong Qbert Seaquest SpaceInvaders BipedalWalker HalfCheetah Walker2D

DQN PTQ n/a PTQ PTQ PTQ PTQ PTQ PTQ PTQ n/a n/a n/a

A2C
PTQ
QAT
BW

PTQ
QAT
BW

PTQ
QAT
BW

PTQ
QAT
BW

PTQ
QAT
BW

PTQ
QAT
BW

PTQ
QAT
BW

PTQ
QAT
BW

PPO
PTQ
QAT
BW

PTQ
QAT
BW

PTQ
QAT
BW

PTQ
QAT
BW

PTQ
QAT
BW

PTQ
QAT
BW

PTQ
QAT
BW

PTQ
QAT
BW

DDPG n/a PTQ n/a n/a n/a n/a n/a n/a n/a
PTQ
QAT
BW

PTQ
QAT
BW

PTQ
QAT
BW

Table 1. Summary of algorithms, environments, and quantization scheme in the QuaRL framework. PTQ means post-training quantization,
QAT refers to Quantization-Aware Training, BW corresponds to evaluating the policy from 8-bits to 2-bits. The Atari games are the
no frameskip ver-sions with 4 frames stacked as input to the models. n/a means we cannot evaluate the combination due to algorithm-
environment incompatibility. All put together, including the individual bitwidth experiments, we conduct over 350 experiments to present
a deep understanding of how quantization affects deep reinforcement learning. This is the first such (comprehensive) study.

of environments used in the QuaRL framework is listed in
Table 1. Evaluations across this spectrum of different tasks
provide a robust benchmark on the performance of quanti-
zation applied to different reinforcement learning tasks.

Training Algorithms: We study quantization on four pop-
ular reinforcement learning algorithms, namely Advantage
Actor-Critic (A2C) (Mnih et al., 2016), Deep Q-Network
(DQN) (Mnih et al., 2013), Deep Deterministic Policy Gra-
dients (DDPG) (Lillicrap et al., 2015) and Proximal Policy
Optimization (PPO) (Schulman et al., 2017). Evaluating
these standard reinforcement learning algorithms that are
well established in the community allows us to explore
whether quantization is similarly effective across different
reinforcement learning algorithms.

Quantization Methods: We apply standard quantization
techniques to deep reinforcement learning models. Our
main approaches are post-training quantization and quanti-
zation aware training. We apply these methods to models
trained in different environments by different reinforcement
learning algorithms to broadly understand their performance.
We describe how these methods are applied in the context
of reinforcement learning below.

In context of the QuaRL framework, the policy neural net-
work is retrained from scratch after inserting the quanti-
zation functions between weights and activations (all else
being equal). At evaluation full precision weights are passed
through the uniform affine quantizer.

4 RESULTS

In this section, we first show that quantization has regu-
larization effect on reinforcement learning algorithms and
can boost exploration. Secondly, We show that reinforce-
ment learning algorithms can be quantized safely without
significantly affecting the rewards. To that end, we per-
form evaluations across the three principal axes of QuaRL:

environments, training algorithms, and quantization meth-
ods.For post-training quantization, we evaluate each policy
for 100 episodes and average the rewards. For Quantization
Aware Training (QAT), we train atleast three policies and
report the mean rewards over hundred evaluations.

Effectiveness of Quantization: To evaluate the overall ef-
fectiveness of quantization for deep reinforcement learning,
we apply post-training quantization and quantization aware
learning to a spectrum of tasks and record their performance.
We present the reward results for post-training quantization
in Table 2. We also compute the percentage error of the
performance of the quantized policy relative to that of their
corresponding full precision baselines (E f p16 and Eint8). Ad-
ditionally, we report the mean of the errors across tasks for
each of the training algorithms.

The absolute mean of 8-bit and 16-bit relative errors ranges
between 2% and 5% (with the exception of DQN), which
indicates that models may be quantized to 8/16 bit preci-
sion without much loss in quality. Interestingly, the overall
performance difference between the 8-bit and 16-bit post-
training quantization is minimal (with the exception of the
DQN algorithm, for reasons we explain in Section 2). We
believe this is because the policies weight distribution is
narrow enough that 8 bits is able to capture the distribution
of weights without much error. In a few cases, post-training
quantization yields better scores than the full precision pol-
icy. We believe that quantization injected an amount of
noise that was small enough to maintain a good policy and
large enough to regularize model behavior this supports
some of the results seen by (Louizos et al., 2018a; Bishop,
1995; Hirose et al., 2018).

For quantization aware training, we train the policy with
fake-quantization operations while maintaining the same
model and hyperparameters. Figure 1 shows the results of
quantization aware training on multiple environments and
training algorithms to compress the policies down from 8-

QuaRL: Quantized Reinforcement Learning

Algorithm→ A2C DQN PPO DDPG
Datatype→ fp32 fp16 int8 fp32 fp16 int8 fp32 fp16 int8 fp32 fp16 int8

Environment ↓ Rwd Rwd E f p16 (%) Rwd Eint8 (%) Rwd Rwd E f p16 (%) Rwd Eint8 (%) Rwd Rwd E f p16 (%) Rwd Eint8 (%) Rwd Rwd E f p16 (%) Rwd Eint8 (%)
Breakout 379 371 2.11 350 7.65 214 217 -1.40 78 63.55 400 400 0.00 368 8.00

SpaceInvaders 717 667 6.97 634 11.56 586 625 -6.66 509 13.14 698 662 5.16 684 2.01
BeamRider 3087 3060 0.87 2793 9.52 925 823 11.03 721 22.05 1655 1820 -9.97 1697 -2.54
MsPacman 1915 1915 0.00 2045 -6.79 1433 1429 0.28 2024 -41.24 1735 1735 0.00 1845 -6.34

Qbert 5002 5002 0.00 5611 -12.18 641 641 0.00 616 3.90 15010 15010 0.00 14425 3.90
Seaquest 782 756 3.32 753 3.71 1709 1885 -10.30 1582 7.43 1782 1784 -0.11 1795 -0.73
CartPole 500 500 0.00 500 0.00 500 500 0.00 500 0.00 500 500 0.00 500 0.00

Pong 20 20 0.00 19 5.00 21 21 0.00 21 0.00 20 20 0.00 20 0.00
Walker2D 1890 1929 -2.06 1866 1.27

HalfCheetah 2553 2551 0.08 2473 3.13
BipedalWalker 98 90 8.16 83 15.31
MountainCar 92 92 0.00 92 0.00

Mean 1.66 2.31 -0.88 8.60 -0.62 0.54 1.54 4.93

Table 2. Post training quantization error for DQN, DDPG, PPO, and A2C algorithm. The “Rwd” column corresponds to the rewards.
The negative error percentage means the quantized policy performed better than fp32 policy. We summarize the error in rewards using
arithmetic mean.

R
ew

ar
d

450

500

550

Fp PTQ8-bit7-bit6-bit5-bit4-bit3-bit2-bit

Cartpole

 Fp 8* 8 7 6 5 4 3 2

550
500
450

Cartpole

Re
w

ar
d

 A2C
 PPO

bit

R
ew

ar
d

0

200

400

Fp PTQ8-bit 7-bit 6-bit 5-bit 4-bit 3-bit 2-bit

BreakOutBreakOut

Re
w

ar
d

 A2C
 PPO

bit

400

200

0
 Fp 8* 8 7 6 5 4 3 2

R
ew

ar
d

0

1000

2000

Fp PTQ8-bit7-bit6-bit5-bit4-bit3-bit2-bit

SeaQuest
2000

1000

0

SHD4XHVW

Re
w

ar
d

bit

 A2C
 PPO

 Fp 8* 8 7 6 5 4 3 2

R
ew

ar
d

−20

0

20

Fp PTQ8-bit 7-bit 6-bit 5-bit 4-bit 3-bit 2-bit

Pong

20
0

-20

Pong

Re
w

ar
d

 A2C
 PPO

bit
 Fp 8* 8 7 6 5 4 3 2

R
ew

ar
d

0

1000

2000

Fp PTQ8-bit7-bit6-bit5-bit4-bit3-bit2-bit

MsPacman

2000
1000

0

MsPacman

Re
w

ar
d

 A2C
 PPO

bit
 Fp 8* 8 7 6 5 4 3 2

R
ew

ar
d

0
5,000
10,000
15,000

Fp PTQ8-bit7-bit6-bit5-bit4-bit3-bit2-bit

QBert
15000
10000
5000

0

QBert

Re
w

ar
d A2C

 PPO

bit
 Fp 8* 8 7 6 5 4 3 2

R
ew

ar
d

0
1000
2000
3000

Fp PTQ8-bit7-bit6-bit5-bit4-bit3-bit2-bit

BeamRiderBeamRider

Re
w

ar
d

 A2C
 PPO

bit

3000
2000
1000

0 Fp 8* 8 7 6 5 4 3 2

R
ew

ar
d

500

1000

Fp PTQ8-bit7-bit6-bit5-bit4-bit3-bit2-bit

SpaceInvader

1000
500

0

SpaceInvader

Re
w

ar
d

 A2C
 PPO

bit
 Fp 8* 8 7 6 5 4 3 2

R
ew

ar
d

−100

0

100

Fp PTQ 8-bit 7-bit 6-bit 5-bit 4-bit 3-bit 2-bit

MountainCarMountainCar

 Fp 8* 8 7 6 5 4 3 2

100
0

-100R
ew

ar
d

 Fp 8* 8 7 6 5 4 3 2

100
0

-100

MountainCar

Re
w

ar
d

 DDPG

bit

R
ew

ar
d

0

1000

2000

Fp PTQ 8-bit 7-bit 6-bit 5-bit 4-bit 3-bit 2-bit

Walker2DBulletEnv-0

Re
w

ar
d

 Fp 8* 8 7 6 5 4 3 2
bit

Walker2D
2000
1000

0
 Fp 8* 8 7 6 5 4 3 2

2000
1000

0

Walker2D

Re
wa

rd

 DDPG

bit

R
e
w
a
rd

0

2000

Fp PTQ8-bit 7-bit 6-bit 5-bit 4-bit 3-bit 2-bit

HalfCheetahBulletEnv-0

 Fp 8* 8 7 6 5 4 3 2

2000
0

R
ew

ar
d

bit

HalfCheetah

 Fp 8* 8 7 6 5 4 3 2

2000

0

HalfCheetah

Re
w

ar
d

 DDPG

bit

R
ew

ar
d

−100

0

100

Fp PTQ8-bit 7-bit 6-bit 5-bit 4-bit 3-bit 2-bit

BiPedalWalker-v2BiPedalWalker

bit

100
0

-100
 Fp 8* 8 7 6 5 4 3 2

Re
w

ar
d

 Fp 8* 8 7 6 5 4 3 2

100
0

-100

BiPedalWalker

Re
wa

rd
 DDPG

bit

Figure 1. Quantization aware training of PPO, A2C, and DDPG algorithms on OpenAI gym, Atari, and PyBullet. FP is achieved by fp32
and 8* is achieved by 8-bit post-training quantization.

bits to 2-bits. Generally, the performance relative to the full
precision baseline is maintained until 5/6-bit quantization,
after which there is a drop in performance. Broadly, at
8-bits, we see no degradation in performance. From the
data, we see that quantization aware training achieves higher
rewards than post-training quantization and also sometimes
outperforms the full precision baseline.

Environment EInt8

Breakout 63.55%
BeamRider 22.05%
Pong 0%

 -3 -2 -1 0 1

106

105

104

103

102

101

Fr
eq

ue
nc

y

 Pong
 BeamRider
 BreakOut

Figure 2. Weight distribution and corresponding 8-bit quantized
error for models trained on the Breakout, Beamrider and
Pong environments with DQN.

Effect of Environment on Quantization Quality: To an-
alyze the task’s effect on quantization quality we plot the
distribution of weights of full precision models trained in
three environments (Breakout, Beamrider and Pong)
and their error after applying 8-bit post-training quantization
on them. Each model uses the same network architecture,
is trained using the same algorithm (DQN) with the same
hyperparameters.
Figure 2 shows that the task with the highest error
(Breakout) has the widest weight distribution, the task
with the second-highest error (BeamRider) has a nar-
rower weight distribution, and the task with the lowest error
(Pong) has the narrowest distribution. With an affine quan-
tizer, quantizing a narrower distribution yields less error
because the distribution can be captured at a fine granu-
larity; conversely, a wider distribution requires larger gaps
between representable numbers and thus increases quanti-
zation error. The trends indicate the environment affects

QuaRL: Quantized Reinforcement Learning

models’ weight distribution spread which affects quantiza-
tion performance: specifically, environments that yield a
wider distribution of model weights are more difficult to
apply quantization to. This observation suggests that regu-
larizing the training process may yield better quantization
performance.

Algorithm Environment fp32 Reward Eint8 E f p16

DQN Breakout 214 63.55% -1.40%
PPO Breakout 400 8.00% 0.00%
A2C Breakout 379 7.65% 2.11%

Table 3. Rewards for DQN, PPO, and A2C.

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0

weight

Fr
eq

ue
nc

y

105

103

101

Min Weight: -2.21
Max Weight: 1.31

Min Weight: -1.02
Max Weight: 0.58

Min Weight: -0.79
Max Weight: 0.72

 DQN

 PPO

 A2C

105

103

101

105

103

101

Fr
eq

ue
nc

y
Fr

eq
ue

nc
y

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0

Figure 3. Weight distributions for the policies trained using DQN,
PPO and A2C. DQN policy weights are more spread out and more
difficult to cover effectively by 8-bit quantization (yellow lines).
This explains the higher quantization error for DQN in Table 3. A
negative error indicates that the quantized model outperformed the
full precision baseline.

Effect of Training Algorithm on Quantization Quality:
To determine the effects of the reinforcement learning train-
ing algorithm on the performance of quantized models, we
compare the performance of post-training quantized models
trained by various algorithms. Table 3 shows the error of
different reinforcement learning algorithms and their corre-
sponding 8-bit post-training quantization error for the Atari
Breakout game. Results indicate that the A2C training
algorithm is most conducive to int8 post-training quantiza-
tion, followed by PPO2 and DQN. Interestingly, we see a
sharp performance drop compared to the corresponding full
precision baseline when applying 8-bit post-training quanti-
zation to models trained by DQN. At 8 bits, models trained
by PPO2 and A2C have relative errors of 8% and 7.65%,
whereas the model trained by DQN has an error of ∼64%.
To understand this phenomenon, we plot the distribution of
model weights trained by each algorithm, shown in Figure 2.
The plot shows that the weight distribution of the model
trained by DQN is significantly wider than those trained by
PPO2 and A2C. A wider distribution of weights indicates a
higher quantization error, which explains the large error of
the 8-bit quantized DQN model. This also explains why us-
ing more bits (fp16) is more effective for the model trained
by DQN (which reduces error relative to the full precision
baseline from ∼64% down to ∼-1.4%).

Effect of Training Algorithm on Quantization Quality:
To determine the effects of the reinforcement learning train-
ing algorithm on the performance of quantized models, we
compare the performance of post-training quantized models
trained by various algorithms. Table 3 shows the error of
different reinforcement learning algorithms and their corre-
sponding 8-bit post-training quantization error for the Atari
Breakout game. Results indicate that the A2C training
algorithm is most conducive to int8 post-training quantiza-
tion, followed by PPO2 and DQN. Interestingly, we see a
sharp performance drop compared to the corresponding full
precision baseline when applying 8-bit post-training quanti-
zation to models trained by DQN. At 8 bits, models trained
by PPO2 and A2C have relative errors of 8% and 7.65%,
whereas the model trained by DQN has an error of ∼64%.
To understand this phenomenon, we plot the distribution of
model weights trained by each algorithm, shown in Figure 2.
The plot shows that the weight distribution of the model
trained by DQN is significantly wider than those trained by
PPO2 and A2C. A wider distribution of weights indicates a
higher quantization error, which explains the large error of
the 8-bit quantized DQN model. This also explains why us-
ing more bits (fp16) is more effective for the model trained
by DQN (which reduces error relative to the full precision
baseline from ∼64% down to ∼-1.4%).

5 RESOURCE CONSTRAINED CASE
STUDIES

To show the usefulness of our results, we use quantization
to optimize the deployment of reinforcement learning poli-
cies on resource constrained aerial robot. To that end, we
train and deploy a quantized robot navigation model onto a
resource constrained embedded system (RasPi-3b), demon-
strating 4× reduction in memory and an 18× speedup in
inference. We also train a pong model 1.6x faster by using
mixed precision training. Faster training time means run-
ning more experiments for the same time on a given system.
Achieving speedup on resource-constrained devices enables
deployment of the policies on real robots.

We train a reinfocement learning based point-to-point navi-
gation models (Policy I, II, and III) for aerial robots using
Air Learning (Krishnan et al., 2019) and deploy them onto
a RasPi-3b, a cost effective, general-purpose embedded
processor. RasPi-3b is used as proxy for the resource con-
strained compute platform for the aerial robot. The compute
platforms used on aerial robots have similar characteristics.
For each of these policies, we report the accuracies and
inference speedups attained by the int8 and fp32 policies.

Table 4 shows the accuracies and inference speedups at-
tained for each corresponding quantized policy. We see
that quantizing smaller policies (Policy I) yield moderate
inference speedups (1.18× for Policy I), while quantizing
larger models (Policies II, III) can speed up inference by

QuaRL: Quantized Reinforcement Learning

up to 18×. This speed up in policy III execution times
results in speeding-up the generation of the hardware actua-
tion commands from 5 Hz (201.115 ms for fp32) to 90 Hz
(11.036 ms for int8). Note that in this experiment we quan-
tize both weights and activations to 8-bit integers; quantized
models exhibit a larger loss in accuracy as activations are
more difficult to quantize without some form of calibration
to determine the range to quantize activation values to (Choi
et al., 2018).

A deeper investigation shows that Policies II and III take
more memory than the total RAM capacity of the RasPi-3b,
causing numerous accesses to swap memory during infer-
ence (which is extremely slow). Hence, quantizing these
policies allow them to fit into the RasPi’s RAM, eliminating
accesses to swap and boosting performance by an order of
magnitude. Figure 4 shows the memory usage while execut-
ing the quantized and unquantized version of Policy III, and
shows how without quantization memory usage skyrockets
above the total RAM capacity of the board.

Policy
Name

Network
Parameters

fp32
Time
(ms)

fp32
Success

Rate (%)

int8
Time
(ms)

int8
Success

Rate (%)
Speed up

Policy I 3L, MLP, 64 Nodes 0.147 60% 0.124 45% 1.18 ×
Policy II 3L, MLP, 256 Nodes 133.49 74% 9.53 60% 14 ×
Policy III 3L, MLP (4096, 512, 1024) 208.115 86% 11.036 75% 18.85 ×

Table 4. Inference speeds in millisecond (ms) on Ras-Pi3b+ and
success rate (%) for three policies.

System Memory
(RAM)

To
ta

l M
em

or
y

(M
B)

200

400

600

800

1000

1200

Time Step
0 5,000 10,000

FP-32
Policy-III

Int8
Policy-III

5000 100000
Time Step

Swap Memory

200
400
600
800
1000
1200

To
ta

l M
em

or
y

(M
B)

RAM

Figure 4. Memory consumption for Policy III’s fp-32 and int8
policies.

In context of real-world deployment of an aerial (or any
other type of) robot, a speedup in policy execution poten-
tially translates to faster actuation commands to the aerial
robot – which in turn implies faster and better responsive-
ness in a highly dynamic environment (Falanga et al., 2019).
Our case study demonstrates how quantization can facilitate
the deployment of a accurate policies trained using rein-
forcement learning onto a resource constrained platform.
Mixed/Half-Precision Training: Motivated by that rein-
forcement learning training is robust to quantization er-
ror, we train three policies of increasing model complexity
(Policy A, Policy B, and Policy C) using mixed
precision training and compare its performance to that of
full precision training (see Appendix for details). In mixed
precision training, the policy weights, activations, and gradi-
ents are represented in fp16. A master copy of the weights
are stored in full precision (fp32) and updates are made to it

during backward pass (Micikevicius et al., 2017). We mea-
sure the runtime and convergence rate of both full precision
and mixed precision training.

Algorithm Network
Parameter

fp32
Runtime

(min)

MP
Runtime

(min)
Speedup

DQN-Pong
Policy A 127 156 0.87×
Policy B 179 172 1.04×
Policy C 391 242 1.61×

Table 5. Mixed precision training for RL.

 0 200k 400k 600k 800k 1M

20
fD
10
F
0

fD
-10
 fD
-20

Policy A Policy B Policy C

 Mixed Precision
 Fp32 Only

step

Re
w

ar
d

 20
fD
10
F
0

fD
-10
 fD
-20

20
fD
10
F
0

fD
-10
 fD
-20

 Mixed Precision
 Fp32 Only

 Mixed Precision
 Fp32 Only

 0 200k 400k 600k 800k 1M
step

 0 200k 400k 600k 800k 1M
step

Figure 5. Mixed precision v/s fp32 training rewards.

Figure 5 shows that all three policies converge under full
precision and mixed precision training. Interestingly, for
Policy B, training with mixed precision yields faster con-
vergence; we believe that some amount of quantization error
speeds up the training process. Table 5 shows the computa-
tional speedup to the training loop by using mixed precision
training. While using mixed precision training on smaller
networks (Policy A) may slow down training iterations
(as overhead of doing fp32 to fp16 conversions outweigh the
speedup of low precision ops), larger networks (Policy
C) show up to a 60% speedup. Generally, our results show
that mixed precision may speed up the training process by
up to 1.6× without harming convergence.

6 CONCLUSION
We perform the first study of quantization effects on deep
reinforcement learning using QuaRL, a software framework
to benchmark and analyze the effects of quantization on
various reinforcement learning tasks and algorithms. We
broadly demonstrate that reinforcement learning models
may be quantized down to 8/16 bits without loss of perfor-
mance. To show the usefulness of quantization for reinforce-
ment learning, we apply our results to optimize the training
and inference of reinforcement learning models, demonstrat-
ing a 50% training speedup for Pong using mixed precision
optimization and up to a 18x inference speedup on a RasPi
by quantizing a navigation policy. In summary, our findings
indicate that there is much potential for the future of quan-
tization of deep reinforcement learning policies to enable
deployment on resource constrained systems.

REFERENCES
Alford, S., Robinett, R., Milechin, L., and Kepner, J. Pruned

QuaRL: Quantized Reinforcement Learning

and Structurally Sparse Neural Networks. arXiv e-prints,
art. arXiv:1810.00299, Sep 2018.

Arulkumaran, K., Deisenroth, M. P., Brundage, M., and
Bharath, A. A. A Brief Survey of Deep Reinforcement
Learning. arXiv e-prints, art. arXiv:1708.05866, Aug
2017.

Bellec, G., Kappel, D., Maass, W., and Legenstein, R. A.
Deep rewiring: Training very sparse deep networks. Inter-
national Conference on Learning Representations (ICLR),
2017.

Bellemare, M. G., Naddaf, Y., Veness, J., and Bowling, M.
The arcade learning environment: An evaluation platform
for general agents. CoRR, abs/1207.4708, 2012. URL
http://arxiv.org/abs/1207.4708.

Bishop, C. M. Training with noise is equivalent to tikhonov
regularization. Neural Computation, 7(1):108–116, Jan
1995. doi: 10.1162/neco.1995.7.1.108.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J.,
Schulman, J., Tang, J., and Zaremba, W. Openai gym.
CoRR, abs/1606.01540, 2016. URL http://arxiv.
org/abs/1606.01540.

Chen, G., Wongun, C., Yu, X., Han, T., and Chandraker, M.
Learning efficient object detection models with knowl-
edge distillation. In Advances in Neural Information
Processing Systems, 2017.

Falanga, D., Kim, S., and Scaramuzza, D. How fast is too
fast? the role of perception latency in high-speed sense
and avoid. IEEE Robotics and Automation Letters, 4(2):
1884–1891, 2019.

Han, S., Mao, H., and Dally, W. J. Deep compres-
sion: Compressing deep neural networks with pruning,
trained quantization and huffman coding. arXiv preprint
arXiv:1510.00149, 2015.

Han, S., Liu, X., Mao, H., Pu, J., Pedram, A., Horowitz,
M. A., and Dally, W. J. Eie: efficient inference engine
on compressed deep neural network. In 2016 ACM/IEEE
43rd Annual International Symposium on Computer Ar-
chitecture (ISCA), pp. 243–254. IEEE, 2016.

Han, S., Liu, X., Mao, H., Pu, J., Pedram, A., Horowitz,
M. A., and Dally, W. J. Eie: Efficient inference en-
gine on compressed deep neural network. In 2016
ACM/IEEE 43rd Annual International Symposium on
Computer Architecture (ISCA), pp. 243–254, June 2016.
doi: 10.1109/ISCA.2016.30.

Hinton, G., Vinyals, O., and Dean, J. Distilling the
Knowledge in a Neural Network. arXiv e-prints, art.
arXiv:1503.02531, Mar 2015.

Hirose, K., Uematsu, R., Ando, K., Ueyoshi, K., Ikebe,
M., Asai, T., Motomura, M., and Takamaeda-Yamazaki,
S. Quantization error-based regularization for hardware-
aware neural network training. Nonlinear Theory and Its
Applications, IEICE, 9(4):453–465, 2018. doi: 10.1587/
nolta.9.453.

Jacob, B., Kligys, S., Chen, B., Zhu, M., Tang, M., Howard,
A., Adam, H., and Kalenichenko, D. Quantization
and training of neural networks for efficient integer-
arithmetic-only inference. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pp. 2704–2713, 2018.

Kempka, M., Wydmuch, M., Runc, G., Toczek, J., and
Jaśkowski, W. Vizdoom: A doom-based ai research plat-
form for visual reinforcement learning. In 2016 IEEE
Conference on Computational Intelligence and Games
(CIG), pp. 1–8. IEEE, 2016.

Kendall, A., Hawke, J., Janz, D., Mazur, P., Reda, D., Allen,
J., Lam, V., Bewley, A., and Shah, A. Learning to drive
in a day. CoRR, abs/1807.00412, 2018. URL http:
//arxiv.org/abs/1807.00412.

Krishnan, S., Boroujerdian, B., Fu, W., Faust, A., and
Reddi, V. J. Air learning: An AI research platform
for algorithm-hardware benchmarking of autonomous
aerial robots. CoRR, abs/1906.00421, 2019. URL
http://arxiv.org/abs/1906.00421.

Li, H., Kadav, A., Durdanovic, I., Samet, H., and Graf,
H. P. Pruning filters for efficient convnets. International
Conference on Learning Representations (ICLR), 2016.

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez,
T., Tassa, Y., Silver, D., and Wierstra, D. Continuous
control with deep reinforcement learning. arXiv preprint
arXiv:1509.02971, 2015.

Lillicrap, T. P., Hunt, J. J., Pritzel, A. e., Heess, N., Erez,
T., Tassa, Y., Silver, D., and Wierstra, D. Continuous
control with deep reinforcement learning. International
Conference on Learning Representations (ICLR), Sep
2015.

Lin, J., Gan, C., and Han, S. Defensive quantization: When
efficiency meets robustness. International Conference on
Learning Representations (ICLR), 2019.

Louizos, C., Reisser, M., Blankevoort, T., Gavves, E., and
Welling, M. Relaxed quantization for discretized neural
networks. International Conference on Learning Repre-
sentations (ICLR), 2018a.

Louizos, C., Welling, M., and Kingma, D. P. Learning sparse
neural networks through l0 regularization. International
Conference on Learning Representations (ICLR), 2018b.

http://arxiv.org/abs/1207.4708
http://arxiv.org/abs/1606.01540
http://arxiv.org/abs/1606.01540
http://arxiv.org/abs/1807.00412
http://arxiv.org/abs/1807.00412
http://arxiv.org/abs/1906.00421

QuaRL: Quantized Reinforcement Learning

Micikevicius, P., Narang, S., Alben, J., Diamos, G. F., Elsen,
E., Garcı́a, D., Ginsburg, B., Houston, M., Kuchaiev, O.,
Venkatesh, G., and Wu, H. Mixed precision training.
CoRR, abs/1710.03740, 2017. URL http://arxiv.
org/abs/1710.03740.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A.,
Antonoglou, I., Wierstra, D., and Riedmiller, M. Playing
atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lilli-
crap, T. P., Harley, T., Silver, D., and Kavukcuoglu, K.
Asynchronous methods for deep reinforcement learning.
CoRR, abs/1602.01783, 2016. URL http://arxiv.
org/abs/1602.01783.

Molchanov, P., Tyree, S., Karras, T., Aila, T., and Kautz, J.
Pruning Convolutional Neural Networks for Resource Ef-
ficient Inference. International Conference on Learning
Representations (ICLR), Nov 2016.

OpenAI. Openai five. https://blog.openai.com/
openai-five/, 2018.

Park, J., Li, S. R., Wen, W., Li, H., Chen, Y., and Dubey,
P. Holistic sparsecnn: Forging the trident of accuracy,
speed, and size. International Conference on Learning
Representations (ICLR), 2016.

Polino, A., Pascanu, R., and Alistarh, D. Model compres-
sion via distillation and quantization. International Con-
ference on Learning Representations (ICLR), 2018.

Sakr, C. and Shanbhag, N. R. Per-tensor fixed-point quanti-
zation of the back-propagation algorithm. International
Conference on Learning Representations (ICLR), 2018.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347, 2017.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L.,
van den Driessche, G., Schrittwieser, J., Antonoglou, I.,
Panneershelvam, V., Lanctot, M., Dieleman, S., Grewe,
D., Nham, J., Kalchbrenner, N., Sutskever, I., Lillicrap, T.,
Leach, M., Kavukcuoglu, K., Graepel, T., and Hassabis,
D. Mastering the game of go with deep neural networks
and tree search. Nature, 529:484–503, 2016. URL
http://www.nature.com/nature/journal/
v529/n7587/full/nature16961.html.

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou,
I., Huang, A., Guez, A., Hubert, T., Baker, L., Lai, M.,
Bolton, A., et al. Mastering the game of go without
human knowledge. Nature, 550(7676):354, 2017.

Zhang, F., Leitner, J., Milford, M., Upcroft, B., and Corke,
P. Towards Vision-Based Deep Reinforcement Learning
for Robotic Motion Control. In Australasian Conference
on Robotics and Automation (ACRA), Nov 2015.

Zhou, S., Ni, Z., Zhou, X., Wen, H., Wu, Y., and Zou,
Y. Dorefa-net: Training low bitwidth convolutional
neural networks with low bitwidth gradients. CoRR,
abs/1606.06160, 2016. URL http://arxiv.org/
abs/1606.06160.

Zhu, C., Han, S., Mao, H., and Dally, W. J. Trained ternary
quantization. arXiv preprint arXiv:1612.01064, 2016.

http://arxiv.org/abs/1710.03740
http://arxiv.org/abs/1710.03740
http://arxiv.org/abs/1602.01783
http://arxiv.org/abs/1602.01783
https://blog.openai.com/openai-five/
https://blog.openai.com/openai-five/
http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html
http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html
http://arxiv.org/abs/1606.06160
http://arxiv.org/abs/1606.06160

