
Analyzing and Improving Resilience and Robustness of
Autonomous Systems

(Invited Paper)

Zishen Wan1, Karthik Swaminathan2, Pin-Yu Chen2, Nandhini Chandramoorthy2
Arijit Raychowdhury1

1Georgia Institute of Technology, Atlanta, GA 2IBM T.J. Watson Research Center, Yorktown Heights, NY

ABSTRACT
Autonomous systems have reached a tipping point, with a myriad
of self-driving cars, unmanned aerial vehicles (UAVs), and robots
being widely applied and revolutionizing new applications. The
continuous deployment of autonomous systems reveals the need
for designs that facilitate increased resiliency and safety. The ability
of an autonomous system to tolerate, or mitigate against errors,
such as environmental conditions, sensor, hardware and software
faults, and adversarial attacks, is essential to ensure its functional
safety. Application-aware resilience metrics, holistic fault analysis
frameworks, and lightweight fault mitigation techniques are being
proposed for accurate and effective resilience and robustness as-
sessment and improvement. This paper explores the origination of
fault sources across the computing stack of autonomous systems,
discusses the various fault impacts and fault mitigation techniques
of different scales of autonomous systems, and concludes with chal-
lenges and opportunities for assessing and building next-generation
resilient and robust autonomous systems.

1 INTRODUCTION
The advent of autonomous systems, including self-driving cars,
Unmanned Aerial Vehicles (UAVs), and robots, has completely rev-
olutionalized several application domains such as automotive, avia-
tion, and agriculture, to name a few [1–3]. The overall market for
autonomous vehicles is expected to grow 30-fold over this decade
to over $2 Trillion in 2030 [4]. This has further spurred a series
of innovations both at the algorithm and system-level, resulting
in large-scale deployment such as Intelligent Swarms, increased
autonomy, and highly efficient custom hardware designs at low
form factors [5–10].

Like any computing system at-scale, autonomous systems also
face several challenges in deployment, primarily the need for de-
signs that facilitate increased resilience and safety. Increased tran-
sistor density and complexity in the overall manufacturing pro-
cess that arises out of transistor scaling to sub-10 nm nodes only
serve to exacerbate these challenges. Autonomous systems, par-
ticularly those operating in harsh environmental conditions, can
encounter various sources of errors and potential failures. These
include radiation-induced soft or transient errors (SER), timing
errors or memory bit failures due to voltage over-scaling, aging
or on-field permanent failures, changes in the input data due to
malfunctioning sensors or environmental conditions, or even Silent
Data Corruptions (SDCs) that were recently discovered at-scale re-
sulting in mercurial or unpredictable functionality in certain cores
or computing units [11]. Further, optimizations targeted towards

CPU GPU FPGA ASIC

Robot Operating System (ROS)Linux

GPS/IMU

LiDAR

Camera

Radar

End-to-End Learning

Perception Planning Control

Output Action

Localization Speed up/down

Input Sensor Data

Turn left/right

System

Compute

or

Hardware

Algorithm

Mission time
Mission Energy
Success Rate

Metric

…

Autonomous
Systems

Fault example
(from sensor)

Fault example
(from hardware)

Environments

Figure 1: Overview of autonomous systems, where data flows from
environment to sensors, going through compute (with hardware-
system-algorithm support) to output actions in a loop. Faults in
any stage may propagate through the cross-layer closed-loop au-
tonomous system and impact the final performance and reliability.

maximizing the performance and power efficiency, such as operat-
ing at reduced supply voltages, lower precision operation, or lower
resolution inputs, can have adverse consequences on the overall
reliability. Finally, targeted or adversarial errors, possibly from ma-
licious entities, can have catastrophic effects on the functionality
of autonomous systems. A small error in the model parameters or
adversarial or data poisoning attacks on the inputs can result in a
significant increase in misclassifications.

The ability of an autonomous system to tolerate or mitigate these
errors is essential to ensure its functional safety. Recent industry
studies [12, 13] have shown that evaluating the resilience of indi-
vidual components or parts of the compute/control stack is devoid
of a full end-to-end and cross-stack perspective that may both limit
reliability solutions as well as miss error propagation altogether
through a complex system. In contrast to standard metrics such as
Mean-Time-To-Failure (MTTF) used for large-scale cloud and data-
center systems, autonomous system resilience highly depends on
the application, sensor inputs, and the nature of the environment.
As a result existing methodologies for evaluating and ensuring Reli-
ability, Availability, and Serviceability (RAS) in CPU and GPU-based
multiprocessors, for instance, would not be effective in this context.
This underscores the need to develop new metrics, error detection,
and mitigation strategies specifically targeted for such systems. For
instance, estimating the end-to-end reliability of an autonomous
system that comprises an aggregation of several general-purpose
and custom computing components continues to remain a challenge
even today.

Table 1: Exampled fault sources in autonomous systems.

Resilience

Input Data
Fault

Environmental conditions (e.g., blur, contrast, brightness)
Sensor noise (e.g., camera, IMU, LiDAR, GPS)
Unreliable or tainted information from swarm agents

Hardware
Fault

Soft errors (radiation)
Memory bit failures (voltage over-scaling)
Timing errors (voltage droops, overclocking)
Aging/on-field permanent failures

Software
Fault

Software bugs
Incorrect or overly aggressive implementation

Robustness
Adversarial

Attack
Adversarial attack on ML model (perception, E2E learning)
Data poisoning attack on input data

Hardware
Error Targeted hardware errors (Rowhammer, corrupted model)

In this paper, we explore the key considerations involved in de-
signing autonomous systems that are highly efficient, but are also
resilient to faults across the computing stack. We highlight key ob-
servations on the types of faults that are of interest in this domain,
metrics that determine the impact of these faults on the overall sys-
tem functionality, and methodologies for modeling, detecting, and
mitigating the errors induced due to these faults. Finally, we present
a series of challenges and opportunities for the research community
that could be instrumental in the development of reliable, efficient,
and scalable autonomous systems of the future.

2 AUTONOMOUS SYSTEMS AND FAULT
SOURCES

This section introduces the autonomous system and its fault sources.
We first present an overview of the closed-loop cross-layer au-
tonomous system computing stack (Section 2.1). Then we highlight
the various fault originations that will impact the resilience and
robustness of autonomous systems (Section 2.2).

2.1 Autonomous Systems
Autonomous systems typically operate in a closed-loop manner,
where the data flows from the environment, going through the
autonomous system and back to the environment, as shown in
Fig. 1. This procedure involves sensing the environment (input data),
making autonomous decisions (compute), and finally actuating
within the environment (output action) in a loop.

Cross-layer compute stack is an integral component of the closed-
loop autonomous systems, spanning from autonomy algorithm,
system, and compute hardware, to achieve intelligence. Autonomy
algorithms interpret the environment and make decisions, which
typically includes two paradigms, namely physical model-based
autonomy (e.g., perception, localization, planning, control) and
learning-based autonomy (e.g., end-to-end learning). The system
layer provides communication functions and resource allocation
for autonomous applications with ROS [14], maps workloads to
compute units, and schedules tasks at runtime with Linux. Compute
hardware then executes algorithm kernels with the support of
different substrate platforms (e.g., CPU, GPU, FPGA, ASIC). All
of these cross-layer components work as a coherent closed-loop
system to achieve autonomous intelligence.

2.2 Fault Sources
Understanding where a fault originates from is necessary for ana-
lyzing how it propagates through the autonomous system to impact
resiliency and safety. We identify different fault sources and broadly

Table 2: Comparison of reliability evaluation metrics between pro-
cessors and autonomous systems.

Conventional
Reliability Metric

Application-aware
Reliability Metric

Failure-in-Time (FIT) rate
Mean-time-between-failure (MTBF)

UAV [23]
Flight distance
Flight energy
Navigation success rate

Car [22, 24]

Mission success rate
#Traffic violations
#Accidents
Time to traffic violation
Stopping distance

Robot [25] Collision Exposure Factor

categorize them based on two characteristics: resilience and robust-
ness, as summarized in Table 1.

2.2.1 Resilience. Resilience is the ability of autonomous systems
to tolerate errors that randomly occur occurred at input data and
various levels of the computing organizations.

Input data fault: Faults in input data can arise from environ-
mental conditions, sensors, and other agents in swarm systems.
Various occlusion, contrast, brightness, and blur conditions from
environments may add perturbations in sensing images and de-
grade perception accuracy. Noise and malfunction of sensors (e.g.,
camera, IMU, LiDAR, GPS) may alter the input information and
modify the autonomous systems’ interpretation of surrounding
states. Unreliable or tainted information from other agents in col-
laborative systems may confuse normal agents and result in wrong
decisions.

Hardware fault:Hardware faults include radiation-induced soft
errors [15], memory bit failures due to voltage over-scaling [16],
timing errors due to voltage droops or overclocking [17], and ag-
ing or on-field permanent stuck-at failures that are repeatable and
occur the sameway every time [18]. For example, a recent chip char-
acterization study reveals that lowering operation voltage brings
bit-flips in on-chip SRAM cells, and the failures consistently exist
under voltage scaling [19]. These failures may impact both memory
and compute units and exacerbate with the continuously increased
technology node density, wider datapaths, and voltage scaling.

Software fault: Software faults originate from either software
bugs in computer software or overly aggressive implementation,
such as software approximation and low precision [20, 21]. Timing
faults in network communication paths (e.g., data loss, out-of-order
or delayed data delivery) [22] may result in unexpected and incor-
rect values in the autonomous system as well.

2.2.2 Robustness. Robustness is the ability of autonomous sys-
tems to tolerate errors that are maliciously induced, such as adver-
sarial attacks and targeted hardware errors. Adversarial attacks
particularly impact input data or ML-based models. The poisoned
data may make the sensing images suspicious and be maliciously
tampered with to mislead output action. The attacked ML model
(e.g., in perception or end-to-end learning) may intend to generate
wrong decisions with the correct information or seek to increase
compute latency and energy consumption of autonomous systems.
Targeted hardware errors, such as Rowhammer [26], ClkScrew
attack [27] and hardware fault attack [28] may result in contami-
nated storage data and wrong compute results, posing threats to
the autonomous systems. The distributed on-chip power control
mechanism could be subject to malicious or inadvertent energy
attacks [29].

2

Contrast ConditionBrightness ConditionOriginal Environment

Brightness Contrast Flight Time (s) Flight Energy (kJ) Success Rate (%)
No noise (b=0) No noise (c=1) 124.3 67.5 100

b = 45 No noise (c=1) 131.6 72.2 99
b = 90 No noise (c=1) 145.1 77.9 96

No noise (b=0) c = 1.5 139.3 75.1 97
No noise (b=0) c = 2.0 162.7 89.8 92

Figure 2: The impact of environmental conditions (e.g., brightness
and contrast) on UAV autonomous system performance and safety.

3 FAULT IMPACT ON AUTONOMOUS
SYSTEMS

This section studies the fault impact on autonomous systems. First,
we discuss application-aware metrics for accurate and effective
resilience evaluation (Section 3.1). Next, we examine various fault
impacts on autonomous systems with an example navigation task
(Section 3.2). Finally, we review the existing fault injection frame-
work and highlight the significance of intelligent fault injection for
complex autonomous systems (Section 3.3).

3.1 Metric
Observation 1: Identifying application-aware metrics is critical for
holistic and effective autonomous system resilience evaluation.

Identifying correct metrics and establishing safety violation con-
ditions paves the way for evaluating autonomous system resilience.
Conventional reliability metrics, such as failure-in-time (FIT) rate
and mean-time-between-failure (MTBF), are effective in evaluat-
ing individual component resilience (e.g., CPU and GPU proces-
sor). However, these metrics miss capturing the fault propagation
through various components in autonomous systems.

Application-level performance and safety characteristics should
be incorporated into resilience metrics to reveal fault impact. Ta-
ble 2 presents exampled application-aware reliability metrics for
three autonomous applications. For UAVs, mission flight time, flight
energy, and success rate of the autonomous navigation task can
be used for UAV system resilience evaluation [23]. For self-driving
cars, AVFI [22] quantifies mission success rate, the number of traffic
violations, and time to traffic violation as application-aware failure
metrics to evaluate safety. Similarly, DriveFI [24] defines the in-
stantaneous safety criteria and stopping distance based on collision
avoidance conditions. For robots, Shah et al. [25] define collision
exposure factor as a metric to assess the failure circuit vulnerability
of motion planning task, based on the relation between physical
space and safety violation cases. These application-aware metrics
are able to capture end-to-end fault propagation across comput-
ing stack, and provide guidance in intelligent fault injection and
designing efficient domain-specific resilient techniques.

3.2 Fault Impact
Fault originated at various places (Section 2.2) may propagate
through the autonomous system and impact the application per-
formance and reliability (Fig. 1). Using application-aware metrics
(Section 3.1), we examine the fault impact on autonomous systems.

Gaussian noise
std = 0

Gaussian noise
std = 2.0

Gaussian Noise std (m) Flight Time (s) Flight Energy (kJ) Success Rate (%)
0 124.3 67.5 100
0.5 130.1 69.1 99
1.0 155.4 86.9 95
1.5 189.6 108.2 90
2.0 261.7 144.8 82

Figure 3: The impact of senor noises (e.g., Gaussian noise in camera
depth reading) on UAV autonomous system performance and safety.

Observation 2: Environmental conditions and sensor noises may
degrade the surrounding interpretation, and impact the performance
and safety of autonomous systems.

Fig. 2 demonstrates the environmental impact on autonomous
navigation applications, where we investigate two types of condi-
tions: brightness and contrast. We use UAV autonomous navigation
as a case study, where the task of the UAV is to fly from the start
position to the goal position in the shortest time without colliding
into any obstacles. The experiments are based on UAV simulators
MAVBench [30] and PEDRA [31]. For environment noise, we apply
noise model 𝑓 (𝐼) = 𝑏𝐼 +𝑐 on sensing images, where 𝐼 represents im-
ages, 𝑏 and 𝑐 represent brightness and contrast factor, respectively.
We evaluate {𝑏 = 0, 45, 90} and {𝑐 = 1.0, 1.5, 2.0} cases, and observe
that increased brightness and contrast result in lower task success
rate with higher mission time and energy. This is because bright-
ness and contrast make some objects appear whiter and increase
the difficulty for UAVs to detect, resulting in path detours and more
path planning actions. Various real-world weather conditions, such
as rain, fog, and snow, can manifest as different types of fault in
sensing images and result in potential safety violations [32].

Fig. 3 assesses the sensor noise impact on UAV autonomous
navigation application, where we inject Gaussian noise in depth
reading of RGBD camera with various scales. We observe that
Gaussian noise inflates and obscures the objects, making the UAV
plan the trajectory more often since the original planned path may
be falsely perceived to lead to a collision. This causes the average
flight time to increase by 2.1×, with 2.1×more energy consumption.
False perception can even fail the navigation task, either making
the UAV collide into obstacles or fail to find feasible paths, resulting
in up to 18% success rate drop. This observation aligns with [30].

Faults from other sensor modules can impact application safety
as well. For example, [32] reveals that Radar faults will degrade
distance and velocity information, and propagate into self-driving
car systems, resulting in unsafe and traffic rule violations in both
high-speed and low-speed driving scenarios. Reproducible and rig-
orous fault models for each type of sensor need to be established
to facilitate accurate end-to-end resilience assessment.

Observation 3: Hardware faults in memory and compute units
can propagate through the autonomous system and impact applica-
tion performance and safety. Meanwhile, the frontend module (e.g.,
perception) demonstrates higher resilience than the backend module
(e.g., planning and control).

Fig. 4 shows the memory bit failure impact on a learning-based
autonomous navigation task. Recent chip characterization stud-
ies [16, 33] reveal that aggressive SRAM supply voltage scaling for

3

0.75 0.80 0.85 0.90 0.95 1.00
Normalized V

0.00

0.05

0.10

0.15

0.20

p
(b

it
er

ro
r

ra
te

)

0
1
0
0

0
0
1
0

1
0
0
0

0
0
0
0

0
1
0
1

0 0 0 0 0 0
0
0
0

0
0
1
0

0
0
0
0

0
0
0
0

0
0
0
1

0 0 0 0 0

(a) Memory bit failure model [16].

0 1e-5 1e-4 1e-3 1e-2 1e-1
Bit Error Rate

0

50

100

150

200

F
lig

ht
T

im
e

(s
)

85

90

95

100

S
u

cc
es

s
R

at
e

(%
)

(b) Memory bit failure impact.
Figure 4: The impact of memory bit failures (due to voltage over-
scaling) on UAV autonomous system performance and safety.

energy efficiency improvement will cause bit-level failures in SRAM
on account of process variation. The error rate increases exponen-
tially with lowered voltage, and errors are persistent across supply
voltages for a fixed memory array (Fig. 4(a)). Applying the mem-
ory fault model to a learning-based autonomous navigation task,
we observe that learning-based autonomy has inherent resilience
when the number of bit-flips is small. However, as the bit error rate
increases, the errors have higher chances of propagating through
the system and making UAV detour optimal trajectory, resulting in
longer flight time or even collision to fail the task (Fig. 4(b)).

Fig. 5 explores the silent data corruption impact on a physical
model-based autonomous navigation task. Physical model-based
autonomy typically involves multiple stages, where the percep-
tion stage builds a detailed representation of surroundings and
locates the agent, the planning stage finds an optimal collision-free
path, followed by the control stage to continuously track the dif-
ferences between actual poses and pre-planned path and move the
agent. We pick a typical kernel in each stage and inject a single
transient bit-flip at the source or destination register of execution
instruction [23]. The fault emulates silent data corruption in the
processor’s functional units. As Fig. 5(a) shows, we observe that
in this application, fault in fronted perception has less impact on
task performance, while faults in backend planning and control
have a higher chance of leading to task failure. This is because
perception has more information redundancy than planning and
control. One corrupted voxel in perception may still be remedied by
other normal voxels and result in correct planning results, however,
backend stages usually only include critical information and can
directly lead to a detour (Fig. 5(b)) [23]. Similarly, in a self-driving
car, fault in the backend compute module (e.g., throttle, PID con-
troller, steer) brings more traffic violation [24]. This observation
provides opportunities for intelligent and adaptive fault mitigation.

Observation 4:Adversarial attacks in data collection, model train-
ing, and model deployment pose reliability and safety threats to au-
tonomous systems.

Adversarial robustness aims to study the weaknesses of a model
in its lifecycle that could possibly be exploited by a bad actor and
result in negative impacts [34]. The lifecycle spans data collection
and processing, model training, and model deployment. A threat
model specifies the capability of the bad actor and the attacker’s
objective. For example, data poisoning attack assumes an attacker
can manipulate a subset of the training data such that models
trained on the tampered dataset will carry certain vulnerabilities
to be exploited, such as a backdoor attack that is able to control the
prediction of the model upon the presence of some trigger patter
at the data input. Another well-known weakness is adversarial

Baseline Perception
(Octomap)

Planning
(RRT)

Control
(PID)

60

80

100

120

140

F
lig

ht
T

im
e

(s
)

90

92

94

96

98

100

S
u

cc
es

s
R

at
e

(%
)

(a) Compute SDC impact.

0 10 20 30 40
x (m)

0

10

20

30

40

y
(m

)

Obstacle

start position

goal position

no
fault

fault in perception

fault in control

(b) Exampled trajectories under SDC.
Figure 5: The impact of compute silent data corruption (SDC) on
UAV autonomous system performance and safety.

example, a crafted perturbed data sample to evade the prediction
of a target model while maintaining high similarity to the original
natural instances. These adversarial examples can also be realized
in the physical space as adversarial objects. In particular, many
physical adversarial examples are shown to be evasive to object
detectors (e.g., adversarial stop sign [35], adversarial T-Shirt [36],
and adversarial make-up [37]), which is an essential component
in autonomous systems. For instance, the authors in [36] showed
that their adversarial T-Shirt could achieve 74% and 57% attack
success rates in the digital and physical worlds against YOLOv2,
respectively, which means in a majority of the frames, the target
model makes incorrect object detections for a person wearing the
adversarial T-Shirt. There are also specialized adversarial attacks
proposed for autonomous systems, such as the phantom attack
targeting advanced driver-assistance systems [38]. Many attacks
can be executed given limited information and feedback, such as
using the principle of query-based black-box attacks [39, 40].

3.3 Fault Injection Tool and Methodology
Observation 5: Intelligent fault injection (FI) scheme can reduce FI
experiment time, prune FI test space, and efficiently identify safety-
critical scenarios.

Fault injection is a critical and well-established technique for
system resilience evaluation. Taking hardware transient fault as
an example, several FI tools targeted different computing stack lay-
ers have been recently proposed, such as PINFI [41], NVBitFI [42],
LLFI [43], GemFI [44] at architecture-level, Ares [45], PytorchFI [46],
TensorFI [47] at application-level. These tools are used to inject
faults by randomly sampling from fault locations and obtain stati-
cally significant estimation for resilience evaluation.

However, the conventional random FI method faces several chal-
lenges in autonomous system resilience evaluation. First, random
FI cannot guarantee to cover all safety-critical scenarios. This is
because some safety-critical bits are clustered in the state space,
making random FI cannot mine them [48]. Second, random FI in
autonomous systems will incur huge performance overhead and
result in long experiment durations. The resilience evaluation of
the autonomous system needs to be conducted at the end of each
scenario run to precisely capture the error propagation impact. We
observe that a single navigation task in UAV simulator PEDRA [31]
or MAVBench [30] typically takes 4 minutes. That implies it would
cost 2.8 days for one set of FI evaluations on a single scenario with
1000 runs, even with negligible overhead. Similarly, [24] discloses
that it roughly takes 5 minutes for one FI experiment on one proces-
sor on the Apollo platform, meaning 3.5 days per driving scenario
with 1000 runs, resulting in prohibitively expensive cost.

4

Therefore, it is imperative to speed up FI and reduce the experi-
ment cost. The key idea is to prune FI test space and efficiently mine
the safety-critical scenarios. Several techniques can contribute to
developing an intelligent FI scheme.

First, application-specific characteristics can be involved in FI
scheme. BinFI [48] approximates the error propagation of au-
tonomous systems based on the insight that functions of ML model
often exhibit monotonicity and are tailored for specific purposes,
and adopt binary-search like FI scheme to pinpoint safety-critical
scenarios with much lower cost compared to random FI.

Second, FI can be transformed into multi-phase hierarchical
fault analysis. Shah et al. [25] present a two-phase metric-aware FI
scheme, where environment-agnostic FI is first conducted to mea-
sure motion planning resilience metric collision exposure factor
(Table 2) of all bit locations, and then FI is only conducted on a
subset of bit locations with distinct metric values to approximate
faulty probability of all other bits. Similarly, Rubaiyat et al. [32]
demonstrate a two-phase FI for environmental resilience assess-
ment, where the first phase identifies potential safety violation
scenarios and then pass to FI campaigns in the second phase.

Third, machine learning method can contribute to revealing
safety-critical scenarios and speed up FI experiments. DriveFI [24]
integrate Bayesian network (BN) in FI framework, where BN is
able to provide an interpretable formalism to model faults propaga-
tion across the autonomous system. Bayesian FI is able to efficient
pinpoint 561 critical faults in less than 4 hours, achieving 3690×
acceleration. These intelligent FI techniques efficiently prune the
FI space, mine critical scenarios, and provide guidance for smart
error mitigation techniques that selectively protect critical parts.

4 FAULT DETECTION AND MITIGATION ON
AUTONOMOUS SYSTEMS

This section discusses the techniques for mitigating fault impacts
and improving the resilience of autonomous systems. First, we
discuss the selective redundancy-based mitigation methods from
both sensors and compute. Next, we examine the lightweight cost-
effective protection schemes with a UAV case study, and highlight
the need to understand the relationships among performance, effi-
ciency, and reliability metrics. Finally, we review the key techniques
for improving the adversarial robustness of autonomous systems.

Observation 6: Selective redundancy is still effective for improving
resilience, especially for large-scale autonomous systems.

Selective redundancy, replicating a set of system components to
run identical functions, is a prominent technique for autonomous
systems. Missing or discounting redundancy may pose resiliency
threat to safety-critical autonomous systems, such as recent Boeing
737 MAX crash due to a lack of sensor modality redundancy [49].

Redundancy can be selectively adopted to any stage of the au-
tonomy pipeline. For sensors, two or more sensor systems could
be used to detect obstacles, and they can be integrated to exploit
complementary environmental contexts by fusing data from vari-
ous sensing modalities [50]. For compute, both hardware-level and
software-level selectively redundancy can be deployed for safety-
critical systems. Hardware-level techniques include circuit and
architecture-based error detection and correction schemes, thread
duplication, power redundancy, SoC duplication, etc. Software-level
techniques include algorithm-based error detection and correction

0 1e-5 1e-4 1e-3 1e-2 1e-1
Bit Error Rate

50

100

150

200

250

F
lig

ht
T

im
e

(s
)

fault injection fault mitigation

DMR on DJI Spark UAV

TMR on DJI Spark UAV

1.
27

x

1.
89

x

0 1e-5 1e-4 1e-3 1e-2 1e-1
Bit Error Rate

50

100

150

200

250

F
lig

ht
T

im
e

(s
)

fault injection fault mitigation

Figure 6: Comparison of software-based lightweight fault detection
and recovery scheme [54] and redundancy-based approaches (DMR
and TMR) on DJI Spark UAV platform from end-to-end autonomous
system flight performance perspective.

schemes, instruction retry and duplication, etc. Fallback systems are
recently developed by selectively duplicating computing hardware
and software to meet the safety envelope in self-driving car [51].
How to make the selective redundancy system minimal with re-
source and energy constants is still to be explored.

Observation 7: Lightweight and application-aware fault detec-
tion and mitigation are crucial for the performance and resilience of
resource-constrained autonomous systems.

The redundancy approach is effective for fault mitigation, how-
ever, the incurred area and power overhead may degrade system
performance for resource-constraint systems. Take UAV navigation
as an example, the increased hardware power dissipation requires
extra cooling necessities, which will increase the onboard payload
and lower the flight velocity, resulting in longermission time and en-
ergy [52]. Meanwhile, the power overhead will reduce the available
operation time for battery-powered autonomous systems. Thus, for
resource-constrained and cost-sensitive systems, lightweight fault
protection schemes are critical for both performance and resilience.

Domain-specific properties can be taken into account to achieve
lightweight cost-effective fault mitigation. In physical model-based
autonomy, MAVFI [23] applies a two-layer autoencoder to monitor
the anomaly behaviors of UAV cross-stage variables (e.g., veloc-
ity, time to collision, yaw), and triggers the signal to cease the
error propagation to flight commands. In learning-based autonomy,
neural network-specific strategies, such as range-based anomaly de-
tection [15, 53], will be effective for autonomous system resilience
improvement. The unique end-to-end learning process exposes op-
portunities for lightweight protection. Wan et al. [54] propose a
software-based adaptive exploration-to-exploitation ratio adjust-
ment scheme. Once faults are detected, the UAV will automatically
conduct more exploration actions to avoid being stuck in the wrong
states and adapt itself to the fault pattern.

We evaluate the system performance overhead of range-based
and adaptive protection scheme [54] on a DJI Spark UAV using a
validated UAV roofline model [55]. As shown in Fig 6, the light-
weight fault mitigation scheme incurs negligible UAV performance
degradation (flight mission time increase). By contrast, the triple
module redundancy (TMR) scheme incurs a flight time increase
by 1.89× on DJI Spark with the same task, because higher thermal
design power and weight payload lower the UAV agility and veloc-
ity. This further corroborates that application-aware lightweight
protection techniques are needed for resource-constrained systems.

Observation 8: Reliability, performance, and efficiency metrics
are correlated with each other, and should be considered concurrently
when designing autonomous systems.

5

Achieving high reliability, performance, and efficiency is gener-
ally of significance when building autonomous systems, but these
design metrics do not come in isolation. Optimizing for a single
metric may bring negative effects to other metrics. As Fig. 6 demon-
strates, when we optimize the resilience with the dual module
redundancy (DMR) technique on a micro-UAV DJI Spark, the re-
dundancy increases power and payload overhead, and lowers UAV
safe flight velocity by 21.3%, resulting in 1.27× longer mission time.
Though redundancy increases reliability, it can also negatively af-
fects the UAV task performance. Similarly, as Fig. 4 reveals, when
we optimize the processor energy efficiency by lowering the supply
voltage of SRAM, the voltage over-scaling will incur bit-flips in
memory cells. The memory bit failures propagate through the UAV
system and finally result in longer flight time with higher total
flight energy, even a few task failure cases. Though low-voltage
increases processor efficiency, it poses threats to system reliability
and may even result in lower task efficiency with higher energy
consumption. Thus, we need to understand the relationships among
different metrics and the consequences of each optimization tech-
nique and then take all of these factors into consideration to build
a high-performance, efficient, yet resilient autonomous system.

Observation 9: Holistic and systematic inspection of possible
vulnerabilities and adversarial training can effectively improve au-
tonomous system robustness. Incorporating application-specific prop-
erties can enhance the robustness detection performance.

Many lessons learned from studying and improving the adver-
sarial robustness of general machine learning algorithms can be
well transferred to autonomous systems. Based on the AI model
inspector framework [34], the methods for improving robustness
can be divided into two categories: detection and mitigation. In the
detection phase, a systematic inspection of possible vulnerabilities
considering different threat models can provide both qualitative
and quantitative assessments of the model’s status against adversar-
ial attacks. Moreover, before the model makes an inference of the
current state, a detector should be used in place to discern anoma-
lous inputs, such that the model can refuse to make a prediction or
call for a deeper investigation to reduce the risk of making wrong
decisions. An effective detector usually needs to incorporate do-
main knowledge and task-specific properties to enhance detection
performance and make minimal harm in normal instances, such as
the use of spatial/temporal dependency as intrinsic data properties
[56], and the use of response consistency for detecting models with
backdoors [57]. In the mitigation phase, the most effective strat-
egy against adversarial examples thus far is adversarial training
[58–60], which incorporates self-generated adversarial examples
during model training for improved robustness. Similarly, one can
take a given model and finetune it using robust training methods to
mitigate the adversarial effects [61, 62]. Finally, attack-independent
robustness evaluation and certification-based approaches can be
used to quantify the level of robustness [63, 64].

5 CHALLENGES AND OPPORTUNITIES
Challenge 1: Cross-layer and end-to-end resilience and robustness
evaluation of autonomous systems.

Autonomous systems typically span multiple computing layers
(hardware and architecture, runtime and system, algorithm and

application), and contain multiple cyber-physical components (sen-
sors, compute platforms, actuators). Evaluating resilience within an
individual component or part of the stack may miss the error propa-
gation through the whole system and drive misleading observations
or suboptimal solutions.

Opportunity: The complexity of autonomous systems reveals
the need to analyze the resilience and robustness in a cross-layer
and end-to-end manner, from both vertically (cross-layer) and hori-
zontally (end-to-end) view, with suitable application-aware metrics
(Fig. 1). For example, hardware faults may get masked when they
propagate up the computing stack, and understanding the masking
potential and propagation potential is critical in fault analysis and
mitigation for autonomous systems. Similarly, faults in autonomous
system frontend perception stage may becomemasked as they prop-
agate to backend planning and control stages, resulting in different
resilience characteristics. Besides, constructing a methodology for
holistic end-to-end resilience and robustness assessment of au-
tonomous systems with open-source fault injection tools, would
considerably help people understand autonomous system resilience
features and propose effective protection solutions.

Challenge 2: Systematic and quantitative comparison and bench-
marking resilience and robustness of autonomous systems.

Given the increasing need to facilitate resilient and robust au-
tonomous system design and the rapid advances of algorithms
and hardware platforms, benchmarking the system resilience in a
comparable, systematic, and quantitative way is critical. Existing
autonomous system benchmarking suites, such as SLAMBench [65]
and RTRBench [66], mainly focus on algorithm efficiency and per-
formance, while missing resilience and robustness consideration.

Opportunity: There is a need to formulate methodologies and
techniques to develop a comprehensive benchmark platform for the
resilience and robustness evaluation of autonomous systems. Such
benchmark suites need to cover a diverse set of reliability aspects
(e.g., hardware resilience and adversarial robustness). Standardized
resilience and robustness benchmarks, such as RobustBench [67]
and IBM ART toolbox [68], can be extended to support autonomous
system evaluation. The benchmark needs to capture both inner-
kernel and intra-kernel resilience. The inner-kernel resilience can
be evaluated by injecting fault in a single autonomy component and
directly observing its output. The intra-kernel resilience needs to
evaluate in an end-to-end manner with fault propagating through
the system across layers of stack, and requires the composability of
metrics to accurately quantify the autonomous system resilience.

Benchmarking the autonomous systems will guide the software
and hardware developers to investigate the trade-offs in resilience,
performance, and efficiency of different autonomy components
and system compositions, facilitating the building of safety-critical
systems in a validatable and holistic manner.

Challenge 3: Suitable fault injection method for each component
in heterogeneous systems, and accurate assessment of autonomous
system-level resilience based on the component-level evaluation.

Autonomous systems are usually composed of many cyber (e.g.,
compute) and physical (e.g., sensors) components. For compute
platform, it is typically designed in a heterogeneous approach, in-
cluding CPU, GPU, and domain-specific accelerators. Each compo-
nent may have its unique features and affect overall autonomous
system resilience to various degrees.

6

Opportunity: The complex cyber-physical system and hetero-
geneous computing hardware expose the opportunity to develop
domain-specific FI techniques and accurate system-level resilience
estimation. On the one hand, prior FI tools are usually designed for
CPUs and GPUs where they target specific ISAs and microarchi-
tectures for high accuracy and efficiency. However, many domain-
specific accelerators in autonomous systems cannot be directly
assessed by these tools due to their specialized ISAs and microar-
chitecture. Suitable fault injection techniques for accelerators need
to be explored. On the other hand, the system resilience is depen-
dent on many compute components and dataflow graphs, so the
overall resilience estimation cannot be determined by simple addi-
tion or bound of each component. Therefore, the component-level
resilience and robustness at the individual SoC level need to be as-
sessed in the context of the entire autonomous system in a realistic
manner. Fault mitigation solutions at the SoC level also need to
work in unison with the overall system resilience strategy [69].

Challenge 4: Accurate resilience and robustness assessment of
end-to-end learning-based autonomous systems.

End-to-end learning (E2E) is one promising autonomy paradigm
in autonomous systems, where the agent takes sensor information
as inputs and directly generate actions through unsupervised learn-
ing (e.g., reinforcement learning) [70, 71]. E2E has different learn-
ing properties than well-studied ML-task in autonomous systems
(e.g., ML-based perception). ML-based task typically adopts offline
training and deployment procedure (e.g., train the policy on high-
end and perform inference on edge), while E2E usually requires
real-time adaptation and fine-tuning on edge due to the simulation-
to-real gap. Besides, different from single-step non-sequential infer-
ence in supervised ML-task, the performance of E2E policy depends
on how effective it is in the long-term decision-making process.

Opportunity: The unique unsupervised and sequential learning
characteristics of E2E-based autonomy unveil the opportunities to
accurately assess its resilience and robustness properties. Faults at
one stage might propagate to subsequent stages in the sequential
decision-making process. Faults may impact the on-device train-
ing process and even degrade policy convergence. Recently, [54]
explores how transient and permanent faults impact E2E-based
autonomous navigation tasks with application-aware metric and
lightweight fault mitigation schemes. A comprehensive resilience
and robustness evaluation of E2E-based autonomous systems, along
with energy and performance optimization techniques, is critical for
democratizing learning-based autonomy for autonomous systems.

Challenge 5: Evaluation and improvement of the resilience and
robustness of swarm intelligence autonomous systems.

Going beyond a single autonomous agent, swarm-intelligent is
attracting increasing attention, where multiple agents collaborate
with each other to perform a task. Swarm autonomous systems
can be designed in either a centralized or decentralized manner,
and need to operate robustly in the presence of faults since the
information from a group of the swarmmay be unreliable or tainted.

Opportunity: There is an opportunity to assess the resilience and
robustness of swarm intelligence systems, especially when multiple
agents interact with each other. Recently, FRL-FI [72] investigates
how transient hardware faults impact federated learning-based
swarm UAV autonomous navigation, and explores the different
resilience characteristics of servers and agents. Leveraging the

insight that faults in server UAV impact swarm systems more, FRL-
FI proposes an application-aware server-centric fault mitigation
technique which is lightweight and able to improve swarm auton-
omy resilience. [73] explores adversarial noise impact on federated
learning-based swarm UAV autonomous navigation, and improves
robustness by adaptively adjusting server-agent communication in-
tervals. Another opportunity lies in how to make the fused map and
perception information of swarm autonomous system error- and
attack-tolerant using software-hardware solutions. State-of-the-art
fault detection and adversarial robustness methods can be incorpo-
rated into swarm systems (e.g., IBM-developed cloud-backed swarm
cognition [74]) for resilience assessment. Suitable metrics and tech-
niques for improved collaborative perception and decision-making
autonomy can help achieve swarm autonomous resilience.

Challenge 6: Lightweight and plug-and-play fault detection and
mitigation techniques for autonomous systems.

The increasing complexity in hardware and software design, and
strict constraints in energy and real-time of autonomous systems
make full system fault testing and recovery incur high overhead and
may degrade system performance. How to accurately determine
critical and non-critical tasks and protect the system with mini-
mal resources by leveraging application-aware properties remains
underspecified and challenging.

Opportunity: There is a need for lightweight and plug-and-play
fault detection and mitigation techniques. The insight that some
components are more critical to faults exposes the opportunity
for adaptive fault mitigation schemes. For instance, frontend and
backend kernels exhibit different resilience, implying different mit-
igation schemes may be applied. It is also critical to identify the
safety-critical parts or the minimal subset of computing systems
that can guarantee safe operation, while meeting real-time con-
straints. Targeted tests can be generated for quick and lightweight
resilience evaluation instead of whole system assessment, which can
reduce the engineering and development efforts. Besides, the unique
temporal and spatial data diversity of autonomous systems can be
leveraged as redundancy to improve resilience. DiverseAV [75]
exploits the temporal sensor data diversity by distributing the sen-
sor data between two software agents, achieving fault detection
for hardware faults in autonomous systems with low computa-
tional overhead. In light of the rapid evolution of hardware for au-
tonomous systems, the development of post-silicon software-based
solutions capable of mitigating hardware faults and minimizing the
cost of re-architecting the design has been becoming essential.

6 CONCLUSION
The autonomous system is rising, and the ability of an autonomous
system to tolerate or mitigate against errors is essential to ensure its
functional safety and resilience. This paper presents the cross-layer
closed-loop autonomous systems and illustrates associated fault
sources, fault impact, and fault mitigation techniques, along with
several key observations. We conclude the paper by discussing the
challenges, research opportunities, and roadmap for assessing and
building next-generation resilient and robust autonomous systems.

ACKNOWLEDGEMENT
This work was supported by IARPA sponsered Microelectronics for
AI program.

7

REFERENCES
[1] Z. Wan, B. Yu, T. Y. Li, J. Tang, Y. Zhu, Y. Wang, A. Raychowdhury, and S. Liu, “A

survey of fpga-based robotic computing,” IEEE Circuits and Systems Magazine,
vol. 21, no. 2, pp. 48–74, 2021.

[2] S. Liu, Z. Wan, B. Yu, and Y. Wang, “Robotic computing on fpgas,” Synthesis
Lectures on Computer Architecture, vol. 16, no. 1, pp. 1–218, 2021.

[3] Z. Wan, A. Lele, B. Yu, S. Liu, Y. Wang, V. J. Reddi, C. Hao, and A. Raychowdhury,
“Robotic computing on fpgas: Current progress, research challenges, and oppor-
tunities,” in IEEE International Conference on Artificial Intelligence Circuits and
Systems, 2022.

[4] A. M. Research(AMR), “Autonomous vehicle market to reach $2161.78 billion,
globally, by 2030,” 2022.

[5] A. Suleiman, Z. Zhang, L. Carlone, S. Karaman, and V. Sze, “Navion: A 2-mw
fully integrated real-time visual-inertial odometry accelerator for autonomous
navigation of nano drones,” IEEE Journal of Solid-State Circuits, vol. 54, no. 4,
pp. 1106–1119, 2019.

[6] D. Palossi, A. Loquercio, F. Conti, E. Flamand, D. Scaramuzza, and L. Benini, “A
64-mw dnn-based visual navigation engine for autonomous nano-drones,” IEEE
Internet of Things Journal, vol. 6, no. 5, pp. 8357–8371, 2019.

[7] Z. Wan, Y. Zhang, A. Raychowdhury, B. Yu, Y. Zhang, and S. Liu, “An energy-
efficient quad-camera visual system for autonomous machines on fpga platform,”
in 2021 IEEE 3rd International Conference on Artificial Intelligence Circuits and
Systems (AICAS), pp. 1–4, IEEE, 2021.

[8] T. Gao, Z. Wan, Y. Zhang, B. Yu, Y. Zhang, S. Liu, and A. Raychowdhury, “Ielas: An
elas-based energy-efficient accelerator for real-time stereo matching on fpga plat-
form,” in 2021 IEEE 3rd International Conference on Artificial Intelligence Circuits
and Systems (AICAS), pp. 1–4, IEEE, 2021.

[9] Q. Liu, Z. Wan, B. Yu, W. Liu, S. Liu, and A. Raychowdhury, “An energy-efficient
and runtime-reconfigurable fpga-based accelerator for robotic localization sys-
tems,” in 2022 IEEE Custom Integrated Circuits Conference (CICC), pp. 01–02, IEEE,
2022.

[10] Z. Wan, A. S. Lele, and A. Raychowdhury, “Circuit and system technologies
for energy-efficient edge robotics,” in 2022 27th Asia and South Pacific Design
Automation Conference (ASP-DAC), pp. 275–280, IEEE, 2022.

[11] P. H. Hochschild, P. Turner, J. C. Mogul, R. Govindaraju, P. Ranganathan, D. E.
Culler, and A. Vahdat, “Cores that don’t count,” in Proceedings of the Workshop
on Hot Topics in Operating Systems (HotOS), HotOS ’21, p. 9–16, 2021.

[12] H. D. Dixit, S. Pendharkar, M. Beadon, C. Mason, T. Chakravarthy, B. Muthiah,
and S. Sankar, “Silent data corruptions at scale,” arXiv preprint arXiv:2102.11245,
2021.

[13] P. H. Hochschild, P. Turner, J. C. Mogul, R. Govindaraju, P. Ranganathan, D. E.
Culler, and A. Vahdat, “Cores that don’t count,” in Proceedings of the Workshop
on Hot Topics in Operating Systems, pp. 9–16, 2021.

[14] A. Koubâa et al., Robot Operating System (ROS)., vol. 1. Springer, 2017.
[15] G. Li, S. K. S. Hari, M. Sullivan, T. Tsai, K. Pattabiraman, J. Emer, and S. W.

Keckler, “Understanding error propagation in deep learning neural network (dnn)
accelerators and applications,” in Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis, pp. 1–12, 2017.

[16] N. Chandramoorthy, K. Swaminathan, M. Cochet, A. Paidimarri, S. Eldridge, R. V.
Joshi, M. M. Ziegler, A. Buyuktosunoglu, and P. Bose, “Resilient low voltage
accelerators for high energy efficiency,” in 2019 IEEE International Symposium on
High Performance Computer Architecture (HPCA), pp. 147–158, IEEE, 2019.

[17] J. Zhang, K. Rangineni, Z. Ghodsi, and S. Garg, “Thundervolt: enabling aggressive
voltage underscaling and timing error resilience for energy efficient deep learning
accelerators,” in Proceedings of the 55th Annual Design Automation Conference,
pp. 1–6, 2018.

[18] J. J. Zhang, T. Gu, K. Basu, and S. Garg, “Analyzing and mitigating the impact of
permanent faults on a systolic array based neural network accelerator,” in 2018
IEEE 36th VLSI Test Symposium (VTS), pp. 1–6, IEEE, 2018.

[19] D. Stutz, N. Chandramoorthy, M. Hein, and B. Schiele, “Bit error robustness for
energy-efficient dnn accelerators,” Proceedings of Machine Learning and Systems,
vol. 3, pp. 569–598, 2021.

[20] M. Lam, S. Chitlangia, S. Krishnan, Z. Wan, G. Barth-Maron, A. Faust, and V. J.
Reddi, “Quantized reinforcement learning (quarl),” arXiv preprint arXiv:1910.01055,
2019.

[21] T. Tambe, E.-Y. Yang, Z. Wan, Y. Deng, V. J. Reddi, A. Rush, D. Brooks, and G.-Y.
Wei, “Algorithm-hardware co-design of adaptive floating-point encodings for
resilient deep learning inference,” in 2020 57th ACM/IEEE Design Automation
Conference (DAC), pp. 1–6, IEEE, 2020.

[22] S. Jha, S. S. Banerjee, J. Cyriac, Z. T. Kalbarczyk, and R. K. Iyer, “Avfi: Fault
injection for autonomous vehicles,” in 2018 48th annual ieee/ifip international
conference on dependable systems and networks workshops (dsn-w), pp. 55–56, IEEE,
2018.

[23] Y.-S. Hsiao, Z. Wan, T. Jia, R. Ghosal, A. Raychowdhury, D. Brooks, G.-Y. Wei,
and V. J. Reddi, “Mavfi: An end-to-end fault analysis framework with anomaly
detection and recovery for micro aerial vehicles,” arXiv preprint arXiv:2105.12882,
2021.

[24] S. Jha, S. Banerjee, T. Tsai, S. K. Hari, M. B. Sullivan, Z. T. Kalbarczyk, S. W.
Keckler, and R. K. Iyer, “Ml-based fault injection for autonomous vehicles: A case
for bayesian fault injection,” in 2019 49th annual IEEE/IFIP international conference
on dependable systems and networks (DSN), pp. 112–124, IEEE, 2019.

[25] D. Shah, Z. Y. Xue, K. Pattabiraman, and T. M. Aamodt, “Characterizing and
improving the resilience of accelerators in autonomous robots,” arXiv preprint
arXiv:2110.08906, 2021.

[26] O. Mutlu and J. S. Kim, “Rowhammer: A retrospective,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 39, no. 8, pp. 1555–
1571, 2019.

[27] A. Tang, S. Sethumadhavan, and S. Stolfo, “{CLKSCREW}: Exposing the perils of
{Security-Oblivious} energy management,” in 26th USENIX Security Symposium
(USENIX Security 17), pp. 1057–1074, 2017.

[28] S. Hong, P. Frigo, Y. Kaya, C. Giuffrida, and T. Dumitras, , “Terminal brain damage:
Exposing the graceless degradation in deep neural networks under hardware fault
attacks,” in 28th USENIX Security Symposium (USENIX Security 19), pp. 497–514,
2019.

[29] A. Vega, A. Buyuktosunoglu, and P. Bose, “Energy-secure swarm power man-
agement,” in 2018 Design, Automation & Test in Europe Conference & Exhibition
(DATE), pp. 1652–1657, IEEE, 2018.

[30] B. Boroujerdian, H. Genc, S. Krishnan, W. Cui, A. Faust, and V. Reddi, “Mavbench:
Micro aerial vehicle benchmarking,” in 2018 51st annual IEEE/ACM international
symposium on microarchitecture (MICRO), pp. 894–907, IEEE, 2018.

[31] A. Anwar and A. Raychowdhury, “Autonomous navigation via deep reinforce-
ment learning for resource constraint edge nodes using transfer learning,” IEEE
Access, vol. 8, pp. 26549–26560, 2020.

[32] A. H. M. Rubaiyat, Y. Qin, and H. Alemzadeh, “Experimental resilience assessment
of an open-source driving agent,” in 2018 IEEE 23rd Pacific rim international
symposium on dependable computing (PRDC), pp. 54–63, IEEE, 2018.

[33] S. Ganapathy, J. Kalamatianos, K. Kasprak, and S. Raasch, “On characterizing
near-threshold sram failures in finfet technology,” in Proceedings of the 54th
Annual Design Automation Conference 2017, pp. 1–6, 2017.

[34] P.-Y. Chen and S. Liu, “Holistic adversarial robustness of deep learning models,”
arXiv preprint arXiv:2202.07201, 2022.

[35] K. Eykholt, I. Evtimov, E. Fernandes, B. Li, A. Rahmati, C. Xiao, A. Prakash,
T. Kohno, and D. Song, “Robust physical-world attacks on deep learning visual
classification,” in Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 1625–1634, 2018.

[36] K. Xu, G. Zhang, S. Liu, Q. Fan, M. Sun, H. Chen, P.-Y. Chen, Y. Wang, and X. Lin,
“Adversarial t-shirt! evading person detectors in a physical world,” in European
conference on computer vision, pp. 665–681, Springer, 2020.

[37] C.-S. Lin, C.-Y. Hsu, P.-Y. Chen, and C.-M. Yu, “Real-world adversarial examples
via makeup,” in ICASSP 2022-2022 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pp. 2854–2858, IEEE, 2022.

[38] B. Nassi, Y. Mirsky, D. Nassi, R. Ben-Netanel, O. Drokin, and Y. Elovici, “Phan-
tom of the adas: Securing advanced driver-assistance systems from split-second
phantom attacks,” in Proceedings of the 2020 ACM SIGSAC conference on computer
and communications security, pp. 293–308, 2020.

[39] P.-Y. Chen, H. Zhang, Y. Sharma, J. Yi, and C.-J. Hsieh, “Zoo: Zeroth order op-
timization based black-box attacks to deep neural networks without training
substitute models,” in Proceedings of the 10th ACM workshop on artificial intelli-
gence and security, pp. 15–26, 2017.

[40] M. Cheng, T. Le, P.-Y. Chen, J. Yi, H. Zhang, and C.-J. Hsieh, “Query-efficient
hard-label black-box attack: An optimization-based approach,” arXiv preprint
arXiv:1807.04457, 2018.

[41] J. Wei, A. Thomas, G. Li, and K. Pattabiraman, “Quantifying the accuracy of high-
level fault injection techniques for hardware faults,” in 2014 44th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks, pp. 375–382, IEEE,
2014.

[42] T. Tsai, S. K. S. Hari, M. Sullivan, O. Villa, and S. W. Keckler, “Nvbitfi: dynamic
fault injection for gpus,” in 2021 51st Annual IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN), pp. 284–291, IEEE, 2021.

[43] Q. Lu, M. Farahani, J. Wei, A. Thomas, and K. Pattabiraman, “Llfi: An intermediate
code-level fault injection tool for hardware faults,” in 2015 IEEE International
Conference on Software Quality, Reliability and Security, pp. 11–16, IEEE, 2015.

[44] K. Parasyris, G. Tziantzoulis, C. D. Antonopoulos, and N. Bellas, “Gemfi: A fault
injection tool for studying the behavior of applications on unreliable substrates,”
in 2014 44th Annual IEEE/IFIP International Conference on Dependable Systems
and Networks, pp. 622–629, IEEE, 2014.

[45] B. Reagen, U. Gupta, L. Pentecost, P. Whatmough, S. K. Lee, N. Mulholland,
D. Brooks, and G.-Y. Wei, “Ares: A framework for quantifying the resilience of
deep neural networks,” in 2018 55th ACM/ESDA/IEEE Design Automation Confer-
ence (DAC), pp. 1–6, IEEE, 2018.

[46] A. Mahmoud, N. Aggarwal, A. Nobbe, J. R. S. Vicarte, S. V. Adve, C. W. Fletcher,
I. Frosio, and S. K. S. Hari, “Pytorchfi: A runtime perturbation tool for dnns,” in
2020 50th Annual IEEE/IFIP International Conference on Dependable Systems and
Networks Workshops (DSN-W), pp. 25–31, IEEE, 2020.

[47] Z. Chen, N. Narayanan, B. Fang, G. Li, K. Pattabiraman, and N. DeBardeleben,
“Tensorfi: A flexible fault injection framework for tensorflow applications,” in 2020

8

IEEE 31st International Symposium on Software Reliability Engineering (ISSRE),
pp. 426–435, IEEE, 2020.

[48] Z. Chen, G. Li, K. Pattabiraman, and N. DeBardeleben, “Binfi: An efficient fault
injector for safety-critical machine learning systems,” in Proceedings of the Inter-
national Conference for High Performance Computing, Networking, Storage and
Analysis, pp. 1–23, 2019.

[49] G. Travis, “How the boeing 737 max disaster looks to a software developer,” IEEE
Spectrum, vol. 18, 2019.

[50] X. Zeng, Z. Wang, and Y. Hu, “Enabling efficient deep convolutional neural
network-based sensor fusion for autonomous driving,” in 2022 59th ACM/IEEE
Design Automation Conference (DAC), IEEE, 2022.

[51] L. Waymo, “Waymo safety report: On the road to fully self-driving,” 2017.
[52] S. Krishnan, Z. Wan, K. Bhardwaj, P. Whatmough, A. Faust, G.-Y. Wei, D. Brooks,

and V. J. Reddi, “The sky is not the limit: A visual performance model for cyber-
physical co-design in autonomous machines,” IEEE Computer Architecture Letters,
vol. 19, no. 1, pp. 38–42, 2020.

[53] Z. Chen, G. Li, and K. Pattabiraman, “A low-cost fault corrector for deep neural
networks through range restriction,” in 2021 51st Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN), pp. 1–13, IEEE, 2021.

[54] Z.Wan, A. Anwar, Y.-S. Hsiao, T. Jia, V. J. Reddi, and A. Raychowdhury, “Analyzing
and improving fault tolerance of learning-based navigation systems,” in 2021 58th
ACM/IEEE Design Automation Conference (DAC), pp. 841–846, IEEE, 2021.

[55] S. Krishnan, Z. Wan, K. Bhardwaj, A. Faust, and V. J. Reddi, “Roofline model
for uavs: A bottleneck analysis tool for onboard compute characterization of
autonomous unmanned aerial vehicles,” in 2022 IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS), IEEE, 2022.

[56] Z. Yang, B. Li, P.-Y. Chen, and D. Song, “Characterizing audio adversarial examples
using temporal dependency,” International Conference on Learning Representations,
2019.

[57] R. Wang, G. Zhang, S. Liu, P.-Y. Chen, J. Xiong, and M. Wang, “Practical detec-
tion of trojan neural networks: Data-limited and data-free cases,” in European
Conference on Computer Vision, pp. 222–238, Springer, 2020.

[58] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards deep
learning models resistant to adversarial attacks,” arXiv preprint arXiv:1706.06083,
2017.

[59] M. Cheng, Q. Lei, P.-Y. Chen, I. Dhillon, and C.-J. Hsieh, “Cat: Customized adver-
sarial training for improved robustness,” arXiv preprint arXiv:2002.06789, 2020.

[60] G. Zhang, S. Lu, Y. Zhang, X. Chen, P.-Y. Chen, Q. Fan, L. Martie, L. Horesh,
M. Hong, and S. Liu, “Distributed adversarial training to robustify deep neural
networks at scale,” arXiv preprint arXiv:2206.06257, 2022.

[61] P. Zhao, P.-Y. Chen, P. Das, K. N. Ramamurthy, and X. Lin, “Bridging mode
connectivity in loss landscapes and adversarial robustness,” arXiv preprint
arXiv:2005.00060, 2020.

[62] M. Cheng, P.-Y. Chen, S. Liu, S. Chang, C.-J. Hsieh, and P. Das, “Self-progressing
robust training,” in Proceedings of the AAAI Conference on Artificial Intelligence,

vol. 35, pp. 7107–7115, 2021.
[63] T.-W. Weng, H. Zhang, P.-Y. Chen, J. Yi, D. Su, Y. Gao, C.-J. Hsieh, and L. Daniel,

“Evaluating the robustness of neural networks: An extreme value theory approach,”
arXiv preprint arXiv:1801.10578, 2018.

[64] H. Zhang, T.-W. Weng, P.-Y. Chen, C.-J. Hsieh, and L. Daniel, “Efficient neural
network robustness certification with general activation functions,” Advances in
neural information processing systems, vol. 31, 2018.

[65] M. Bujanca, P. Gafton, S. Saeedi, A. Nisbet, B. Bodin, M. F. O’Boyle, A. J. Davison,
P. H. Kelly, G. Riley, B. Lennox, et al., “Slambench 3.0: Systematic automated
reproducible evaluation of slam systems for robot vision challenges and scene
understanding,” in 2019 International Conference on Robotics and Automation
(ICRA), pp. 6351–6358, IEEE, 2019.

[66] M. Bakhshalipour, M. Likhachev, and P. B. Gibbons, “Rtrbench: A benchmark
suite for real-time robotics,” in 2022 IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS), pp. 175–186, IEEE, 2022.

[67] F. Croce, M. Andriushchenko, V. Sehwag, E. Debenedetti, N. Flammarion, M. Chi-
ang, P. Mittal, and M. Hein, “Robustbench: a standardized adversarial robustness
benchmark,” arXiv preprint arXiv:2010.09670, 2020.

[68] M.-I. Nicolae, M. Sinn, M. N. Tran, B. Buesser, A. Rawat, M. Wistuba, V. Zant-
edeschi, N. Baracaldo, B. Chen, H. Ludwig, et al., “Adversarial robustness toolbox
v1. 0.0,” arXiv preprint arXiv:1807.01069, 2018.

[69] P. Bose, A. Vega, S. Adve, V. Adve, S. Misailovic, L. Carloni, K. Shepard, D. Brooks,
V. J. Reddi, and G.-Y. Wei, “Secure and resilient socs for autonomous vehicles,”
in International Workshop on Domain Specific System Architecture (DOSSA), in
conjunction with IEEE International Symposium on High-Performance Computer
Architecture (HPCA), 2021.

[70] S. Krishnan, B. Boroujerdian, W. Fu, A. Faust, and V. J. Reddi, “Air learning: a
deep reinforcement learning gym for autonomous aerial robot visual navigation,”
Machine Learning, vol. 110, no. 9, pp. 2501–2540, 2021.

[71] S. Krishnan, Z. Wan, K. Bharadwaj, P. Whatmough, A. Faust, S. Neuman, G.-Y.
Wei, D. Brooks, and V. J. Reddi, “Machine learning-based automated design space
exploration for autonomous aerial robots,” arXiv preprint arXiv:2102.02988, 2021.

[72] Z. Wan, A. Anwar, A. Mahmoud, T. Jia, Y.-S. Hsiao, V. J. Reddi, and A. Raychowd-
hury, “Frl-fi: Transient fault analysis for federated reinforcement learning-based
navigation systems,” in 2022 Design, Automation & Test in Europe Conference &
Exhibition (DATE), pp. 430–435, IEEE, 2022.

[73] A. Anwar, Z. Wan, and A. Raychowdhury, “Multi-task federated reinforcement
learning with adversaries,” in ICML workshop, 2022.

[74] A. Vega, A. Buyuktosunoglu, and P. Bose, “Towards “smarter” vehicles through
cloud-backed swarm cognition,” in 2018 IEEE Intelligent Vehicles Symposium (IV),
pp. 1079–1086, IEEE, 2018.

[75] S. Jha, S. Cui, T. Tsai, S. K. S. Hari, M. B. Sullivan, Z. T. Kalbarczyk, S. W. Keckler,
and R. K. Iyer, “Exploiting temporal data diversity for detecting safety-critical
faults in av compute systems,” in 2022 52nd Annual IEEE/IFIP International Con-
ference on Dependable Systems and Networks (DSN), pp. 88–100, IEEE, 2022.

9

